Source file src/iter/iter.go

     1  // Copyright 2023 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  /*
     6  Package iter provides basic definitions and operations related to
     7  iterators over sequences.
     8  
     9  # Iterators
    10  
    11  An iterator is a function that passes successive elements of a
    12  sequence to a callback function, conventionally named yield.
    13  The function stops either when the sequence is finished or
    14  when yield returns false, indicating to stop the iteration early.
    15  This package defines [Seq] and [Seq2]
    16  (pronounced like seek—the first syllable of sequence)
    17  as shorthands for iterators that pass 1 or 2 values per sequence element
    18  to yield:
    19  
    20  	type (
    21  		Seq[V any]     func(yield func(V) bool)
    22  		Seq2[K, V any] func(yield func(K, V) bool)
    23  	)
    24  
    25  Seq2 represents a sequence of paired values, conventionally key-value
    26  or index-value pairs.
    27  
    28  Yield returns true if the iterator should continue with the next
    29  element in the sequence, false if it should stop.
    30  
    31  Yield panics if called after it returns false.
    32  
    33  For instance, [maps.Keys] returns an iterator that produces the sequence
    34  of keys of the map m, implemented as follows:
    35  
    36  	func Keys[Map ~map[K]V, K comparable, V any](m Map) iter.Seq[K] {
    37  		return func(yield func(K) bool) {
    38  			for k := range m {
    39  				if !yield(k) {
    40  					return
    41  				}
    42  			}
    43  		}
    44  	}
    45  
    46  Further examples can be found in [The Go Blog: Range Over Function Types].
    47  
    48  Iterator functions are most often called by a [range loop], as in:
    49  
    50  	func PrintAll[V any](seq iter.Seq[V]) {
    51  		for v := range seq {
    52  			fmt.Println(v)
    53  		}
    54  	}
    55  
    56  # Naming Conventions
    57  
    58  Iterator functions and methods are named for the sequence being walked:
    59  
    60  	// All returns an iterator over all elements in s.
    61  	func (s *Set[V]) All() iter.Seq[V]
    62  
    63  The iterator method on a collection type is conventionally named All,
    64  because it iterates a sequence of all the values in the collection.
    65  
    66  For a type containing multiple possible sequences, the iterator's name
    67  can indicate which sequence is being provided:
    68  
    69  	// Cities returns an iterator over the major cities in the country.
    70  	func (c *Country) Cities() iter.Seq[*City]
    71  
    72  	// Languages returns an iterator over the official spoken languages of the country.
    73  	func (c *Country) Languages() iter.Seq[string]
    74  
    75  If an iterator requires additional configuration, the constructor function
    76  can take additional configuration arguments:
    77  
    78  	// Scan returns an iterator over key-value pairs with min ≤ key ≤ max.
    79  	func (m *Map[K, V]) Scan(min, max K) iter.Seq2[K, V]
    80  
    81  	// Split returns an iterator over the (possibly-empty) substrings of s
    82  	// separated by sep.
    83  	func Split(s, sep string) iter.Seq[string]
    84  
    85  When there are multiple possible iteration orders, the method name may
    86  indicate that order:
    87  
    88  	// All returns an iterator over the list from head to tail.
    89  	func (l *List[V]) All() iter.Seq[V]
    90  
    91  	// Backward returns an iterator over the list from tail to head.
    92  	func (l *List[V]) Backward() iter.Seq[V]
    93  
    94  	// Preorder returns an iterator over all nodes of the syntax tree
    95  	// beneath (and including) the specified root, in depth-first preorder,
    96  	// visiting a parent node before its children.
    97  	func Preorder(root Node) iter.Seq[Node]
    98  
    99  # Single-Use Iterators
   100  
   101  Most iterators provide the ability to walk an entire sequence:
   102  when called, the iterator does any setup necessary to start the
   103  sequence, then calls yield on successive elements of the sequence,
   104  and then cleans up before returning. Calling the iterator again
   105  walks the sequence again.
   106  
   107  Some iterators break that convention, providing the ability to walk a
   108  sequence only once. These “single-use iterators” typically report values
   109  from a data stream that cannot be rewound to start over.
   110  Calling the iterator again after stopping early may continue the
   111  stream, but calling it again after the sequence is finished will yield
   112  no values at all. Doc comments for functions or methods that return
   113  single-use iterators should document this fact:
   114  
   115  	// Lines returns an iterator over lines read from r.
   116  	// It returns a single-use iterator.
   117  	func (r *Reader) Lines() iter.Seq[string]
   118  
   119  # Pulling Values
   120  
   121  Functions and methods that accept or return iterators
   122  should use the standard [Seq] or [Seq2] types, to ensure
   123  compatibility with range loops and other iterator adapters.
   124  The standard iterators can be thought of as “push iterators”, which
   125  push values to the yield function.
   126  
   127  Sometimes a range loop is not the most natural way to consume values
   128  of the sequence. In this case, [Pull] converts a standard push iterator
   129  to a “pull iterator”, which can be called to pull one value at a time
   130  from the sequence. [Pull] starts an iterator and returns a pair
   131  of functions—next and stop—which return the next value from the iterator
   132  and stop it, respectively.
   133  
   134  For example:
   135  
   136  	// Pairs returns an iterator over successive pairs of values from seq.
   137  	func Pairs[V any](seq iter.Seq[V]) iter.Seq2[V, V] {
   138  		return func(yield func(V, V) bool) {
   139  			next, stop := iter.Pull(seq)
   140  			defer stop()
   141  			for {
   142  				v1, ok1 := next()
   143  				if !ok1 {
   144  					return
   145  				}
   146  				v2, ok2 := next()
   147  				// If ok2 is false, v2 should be the
   148  				// zero value; yield one last pair.
   149  				if !yield(v1, v2) {
   150  					return
   151  				}
   152  				if !ok2 {
   153  					return
   154  				}
   155  			}
   156  		}
   157  	}
   158  
   159  If clients do not consume the sequence to completion, they must call stop,
   160  which allows the iterator function to finish and return. As shown in
   161  the example, the conventional way to ensure this is to use defer.
   162  
   163  # Standard Library Usage
   164  
   165  A few packages in the standard library provide iterator-based APIs,
   166  most notably the [maps] and [slices] packages.
   167  For example, [maps.Keys] returns an iterator over the keys of a map,
   168  while [slices.Sorted] collects the values of an iterator into a slice,
   169  sorts them, and returns the slice, so to iterate over the sorted keys of a map:
   170  
   171  	for _, key := range slices.Sorted(maps.Keys(m)) {
   172  		...
   173  	}
   174  
   175  # Mutation
   176  
   177  Iterators provide only the values of the sequence, not any direct way
   178  to modify it. If an iterator wishes to provide a mechanism for modifying
   179  a sequence during iteration, the usual approach is to define a position type
   180  with the extra operations and then provide an iterator over positions.
   181  
   182  For example, a tree implementation might provide:
   183  
   184  	// Positions returns an iterator over positions in the sequence.
   185  	func (t *Tree[V]) Positions() iter.Seq[*Pos[V]]
   186  
   187  	// A Pos represents a position in the sequence.
   188  	// It is only valid during the yield call it is passed to.
   189  	type Pos[V any] struct { ... }
   190  
   191  	// Pos returns the value at the cursor.
   192  	func (p *Pos[V]) Value() V
   193  
   194  	// Delete deletes the value at this point in the iteration.
   195  	func (p *Pos[V]) Delete()
   196  
   197  	// Set changes the value v at the cursor.
   198  	func (p *Pos[V]) Set(v V)
   199  
   200  And then a client could delete boring values from the tree using:
   201  
   202  	for p := range t.Positions() {
   203  		if boring(p.Value()) {
   204  			p.Delete()
   205  		}
   206  	}
   207  
   208  [The Go Blog: Range Over Function Types]: https://go.dev/blog/range-functions
   209  [range loop]: https://go.dev/ref/spec#For_range
   210  */
   211  package iter
   212  
   213  import (
   214  	"internal/race"
   215  	"runtime"
   216  	"unsafe"
   217  )
   218  
   219  // Seq is an iterator over sequences of individual values.
   220  // When called as seq(yield), seq calls yield(v) for each value v in the sequence,
   221  // stopping early if yield returns false.
   222  // See the [iter] package documentation for more details.
   223  type Seq[V any] func(yield func(V) bool)
   224  
   225  // Seq2 is an iterator over sequences of pairs of values, most commonly key-value pairs.
   226  // When called as seq(yield), seq calls yield(k, v) for each pair (k, v) in the sequence,
   227  // stopping early if yield returns false.
   228  // See the [iter] package documentation for more details.
   229  type Seq2[K, V any] func(yield func(K, V) bool)
   230  
   231  type coro struct{}
   232  
   233  //go:linkname newcoro runtime.newcoro
   234  func newcoro(func(*coro)) *coro
   235  
   236  //go:linkname coroswitch runtime.coroswitch
   237  func coroswitch(*coro)
   238  
   239  // Pull converts the “push-style” iterator sequence seq
   240  // into a “pull-style” iterator accessed by the two functions
   241  // next and stop.
   242  //
   243  // Next returns the next value in the sequence
   244  // and a boolean indicating whether the value is valid.
   245  // When the sequence is over, next returns the zero V and false.
   246  // It is valid to call next after reaching the end of the sequence
   247  // or after calling stop. These calls will continue
   248  // to return the zero V and false.
   249  //
   250  // Stop ends the iteration. It must be called when the caller is
   251  // no longer interested in next values and next has not yet
   252  // signaled that the sequence is over (with a false boolean return).
   253  // It is valid to call stop multiple times and when next has
   254  // already returned false. Typically, callers should “defer stop()”.
   255  //
   256  // It is an error to call next or stop from multiple goroutines
   257  // simultaneously.
   258  //
   259  // If the iterator panics during a call to next (or stop),
   260  // then next (or stop) itself panics with the same value.
   261  func Pull[V any](seq Seq[V]) (next func() (V, bool), stop func()) {
   262  	var pull struct {
   263  		v          V
   264  		ok         bool
   265  		done       bool
   266  		yieldNext  bool
   267  		seqDone    bool // to detect Goexit
   268  		racer      int
   269  		panicValue any
   270  	}
   271  	c := newcoro(func(c *coro) {
   272  		race.Acquire(unsafe.Pointer(&pull.racer))
   273  		if pull.done {
   274  			race.Release(unsafe.Pointer(&pull.racer))
   275  			return
   276  		}
   277  		yield := func(v1 V) bool {
   278  			if pull.done {
   279  				return false
   280  			}
   281  			if !pull.yieldNext {
   282  				panic("iter.Pull: yield called again before next")
   283  			}
   284  			pull.yieldNext = false
   285  			pull.v, pull.ok = v1, true
   286  			race.Release(unsafe.Pointer(&pull.racer))
   287  			coroswitch(c)
   288  			race.Acquire(unsafe.Pointer(&pull.racer))
   289  			return !pull.done
   290  		}
   291  		// Recover and propagate panics from seq.
   292  		defer func() {
   293  			if p := recover(); p != nil {
   294  				pull.panicValue = p
   295  			} else if !pull.seqDone {
   296  				pull.panicValue = goexitPanicValue
   297  			}
   298  			pull.done = true // Invalidate iterator
   299  			race.Release(unsafe.Pointer(&pull.racer))
   300  		}()
   301  		seq(yield)
   302  		var v0 V
   303  		pull.v, pull.ok = v0, false
   304  		pull.seqDone = true
   305  	})
   306  	next = func() (v1 V, ok1 bool) {
   307  		race.Write(unsafe.Pointer(&pull.racer)) // detect races
   308  
   309  		if pull.done {
   310  			return
   311  		}
   312  		if pull.yieldNext {
   313  			panic("iter.Pull: next called again before yield")
   314  		}
   315  		pull.yieldNext = true
   316  		race.Release(unsafe.Pointer(&pull.racer))
   317  		coroswitch(c)
   318  		race.Acquire(unsafe.Pointer(&pull.racer))
   319  
   320  		// Propagate panics and goexits from seq.
   321  		if pull.panicValue != nil {
   322  			if pull.panicValue == goexitPanicValue {
   323  				// Propagate runtime.Goexit from seq.
   324  				runtime.Goexit()
   325  			} else {
   326  				panic(pull.panicValue)
   327  			}
   328  		}
   329  		return pull.v, pull.ok
   330  	}
   331  	stop = func() {
   332  		race.Write(unsafe.Pointer(&pull.racer)) // detect races
   333  
   334  		if !pull.done {
   335  			pull.done = true
   336  			race.Release(unsafe.Pointer(&pull.racer))
   337  			coroswitch(c)
   338  			race.Acquire(unsafe.Pointer(&pull.racer))
   339  
   340  			// Propagate panics and goexits from seq.
   341  			if pull.panicValue != nil {
   342  				if pull.panicValue == goexitPanicValue {
   343  					// Propagate runtime.Goexit from seq.
   344  					runtime.Goexit()
   345  				} else {
   346  					panic(pull.panicValue)
   347  				}
   348  			}
   349  		}
   350  	}
   351  	return next, stop
   352  }
   353  
   354  // Pull2 converts the “push-style” iterator sequence seq
   355  // into a “pull-style” iterator accessed by the two functions
   356  // next and stop.
   357  //
   358  // Next returns the next pair in the sequence
   359  // and a boolean indicating whether the pair is valid.
   360  // When the sequence is over, next returns a pair of zero values and false.
   361  // It is valid to call next after reaching the end of the sequence
   362  // or after calling stop. These calls will continue
   363  // to return a pair of zero values and false.
   364  //
   365  // Stop ends the iteration. It must be called when the caller is
   366  // no longer interested in next values and next has not yet
   367  // signaled that the sequence is over (with a false boolean return).
   368  // It is valid to call stop multiple times and when next has
   369  // already returned false. Typically, callers should “defer stop()”.
   370  //
   371  // It is an error to call next or stop from multiple goroutines
   372  // simultaneously.
   373  //
   374  // If the iterator panics during a call to next (or stop),
   375  // then next (or stop) itself panics with the same value.
   376  func Pull2[K, V any](seq Seq2[K, V]) (next func() (K, V, bool), stop func()) {
   377  	var pull struct {
   378  		k          K
   379  		v          V
   380  		ok         bool
   381  		done       bool
   382  		yieldNext  bool
   383  		seqDone    bool
   384  		racer      int
   385  		panicValue any
   386  	}
   387  	c := newcoro(func(c *coro) {
   388  		race.Acquire(unsafe.Pointer(&pull.racer))
   389  		if pull.done {
   390  			race.Release(unsafe.Pointer(&pull.racer))
   391  			return
   392  		}
   393  		yield := func(k1 K, v1 V) bool {
   394  			if pull.done {
   395  				return false
   396  			}
   397  			if !pull.yieldNext {
   398  				panic("iter.Pull2: yield called again before next")
   399  			}
   400  			pull.yieldNext = false
   401  			pull.k, pull.v, pull.ok = k1, v1, true
   402  			race.Release(unsafe.Pointer(&pull.racer))
   403  			coroswitch(c)
   404  			race.Acquire(unsafe.Pointer(&pull.racer))
   405  			return !pull.done
   406  		}
   407  		// Recover and propagate panics from seq.
   408  		defer func() {
   409  			if p := recover(); p != nil {
   410  				pull.panicValue = p
   411  			} else if !pull.seqDone {
   412  				pull.panicValue = goexitPanicValue
   413  			}
   414  			pull.done = true // Invalidate iterator.
   415  			race.Release(unsafe.Pointer(&pull.racer))
   416  		}()
   417  		seq(yield)
   418  		var k0 K
   419  		var v0 V
   420  		pull.k, pull.v, pull.ok = k0, v0, false
   421  		pull.seqDone = true
   422  	})
   423  	next = func() (k1 K, v1 V, ok1 bool) {
   424  		race.Write(unsafe.Pointer(&pull.racer)) // detect races
   425  
   426  		if pull.done {
   427  			return
   428  		}
   429  		if pull.yieldNext {
   430  			panic("iter.Pull2: next called again before yield")
   431  		}
   432  		pull.yieldNext = true
   433  		race.Release(unsafe.Pointer(&pull.racer))
   434  		coroswitch(c)
   435  		race.Acquire(unsafe.Pointer(&pull.racer))
   436  
   437  		// Propagate panics and goexits from seq.
   438  		if pull.panicValue != nil {
   439  			if pull.panicValue == goexitPanicValue {
   440  				// Propagate runtime.Goexit from seq.
   441  				runtime.Goexit()
   442  			} else {
   443  				panic(pull.panicValue)
   444  			}
   445  		}
   446  		return pull.k, pull.v, pull.ok
   447  	}
   448  	stop = func() {
   449  		race.Write(unsafe.Pointer(&pull.racer)) // detect races
   450  
   451  		if !pull.done {
   452  			pull.done = true
   453  			race.Release(unsafe.Pointer(&pull.racer))
   454  			coroswitch(c)
   455  			race.Acquire(unsafe.Pointer(&pull.racer))
   456  
   457  			// Propagate panics and goexits from seq.
   458  			if pull.panicValue != nil {
   459  				if pull.panicValue == goexitPanicValue {
   460  					// Propagate runtime.Goexit from seq.
   461  					runtime.Goexit()
   462  				} else {
   463  					panic(pull.panicValue)
   464  				}
   465  			}
   466  		}
   467  	}
   468  	return next, stop
   469  }
   470  
   471  // goexitPanicValue is a sentinel value indicating that an iterator
   472  // exited via runtime.Goexit.
   473  var goexitPanicValue any = new(int)
   474  

View as plain text