Text file src/runtime/asm_amd64.s

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #include "go_asm.h"
     6  #include "go_tls.h"
     7  #include "funcdata.h"
     8  #include "textflag.h"
     9  #include "cgo/abi_amd64.h"
    10  
    11  // _rt0_amd64 is common startup code for most amd64 systems when using
    12  // internal linking. This is the entry point for the program from the
    13  // kernel for an ordinary -buildmode=exe program. The stack holds the
    14  // number of arguments and the C-style argv.
    15  TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16  	MOVQ	0(SP), DI	// argc
    17  	LEAQ	8(SP), SI	// argv
    18  	JMP	runtime·rt0_go(SB)
    19  
    20  // main is common startup code for most amd64 systems when using
    21  // external linking. The C startup code will call the symbol "main"
    22  // passing argc and argv in the usual C ABI registers DI and SI.
    23  TEXT main(SB),NOSPLIT,$-8
    24  	JMP	runtime·rt0_go(SB)
    25  
    26  // _rt0_amd64_lib is common startup code for most amd64 systems when
    27  // using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28  // arrange to invoke this function as a global constructor (for
    29  // c-archive) or when the shared library is loaded (for c-shared).
    30  // We expect argc and argv to be passed in the usual C ABI registers
    31  // DI and SI.
    32  TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33  	// Transition from C ABI to Go ABI.
    34  	PUSH_REGS_HOST_TO_ABI0()
    35  
    36  	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37  	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38  
    39  	// Synchronous initialization.
    40  #ifndef GOOS_windows
    41  	// Avoid calling it on Windows because it is not used
    42  	// and it would crash the application due to the autogenerated
    43  	// ABI wrapper trying to access a non-existent TLS slot.
    44  	CALL	runtime·libpreinit(SB)
    45  #endif
    46  
    47  	// Create a new thread to finish Go runtime initialization.
    48  	MOVQ	_cgo_sys_thread_create(SB), AX
    49  	TESTQ	AX, AX
    50  	JZ	nocgo
    51  
    52  	// We're calling back to C.
    53  	// Align stack per C ABI requirements.
    54  	MOVQ	SP, BX  // Callee-save in C ABI
    55  	ANDQ	$~15, SP
    56  	MOVQ	$_rt0_amd64_lib_go(SB), DI
    57  	MOVQ	$0, SI
    58  #ifdef GOOS_windows
    59  	// For Windows ABI
    60  	MOVQ	DI, CX
    61  	MOVQ	SI, DX
    62  	// Leave space for four words on the stack as required
    63  	// by the Windows amd64 calling convention.
    64  	ADJSP	$32
    65  #endif
    66  	CALL	AX
    67  #ifdef GOOS_windows
    68  	ADJSP	$-32 // just to make the assembler not complain about unbalanced stack
    69  #endif
    70  	MOVQ	BX, SP
    71  	JMP	restore
    72  
    73  nocgo:
    74  	ADJSP	$16
    75  	MOVQ	$0x800000, 0(SP)		// stacksize
    76  	MOVQ	$_rt0_amd64_lib_go(SB), AX
    77  	MOVQ	AX, 8(SP)			// fn
    78  	CALL	runtime·newosproc0(SB)
    79  	ADJSP	$-16
    80  
    81  restore:
    82  	POP_REGS_HOST_TO_ABI0()
    83  	RET
    84  
    85  // _rt0_amd64_lib_go initializes the Go runtime.
    86  // This is started in a separate thread by _rt0_amd64_lib.
    87  TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    88  	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    89  	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    90  	JMP	runtime·rt0_go(SB)
    91  
    92  DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    93  GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    94  DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    95  GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    96  
    97  #ifdef GOAMD64_v2
    98  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    99  #endif
   100  
   101  #ifdef GOAMD64_v3
   102  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
   103  #endif
   104  
   105  #ifdef GOAMD64_v4
   106  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
   107  #endif
   108  
   109  GLOBL bad_cpu_msg<>(SB), RODATA, $84
   110  
   111  // Define a list of AMD64 microarchitecture level features
   112  // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
   113  
   114                       // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
   115  #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   116                           // LAHF/SAHF
   117  #define V2_EXT_FEATURES_CX (1 << 0)
   118                                        // FMA       MOVBE     OSXSAVE   AVX       F16C
   119  #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   120                                                // ABM (FOR LZNCT)
   121  #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   122                           // BMI1     AVX2     BMI2
   123  #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   124                         // XMM      YMM
   125  #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   126  
   127  #define V4_FEATURES_CX V3_FEATURES_CX
   128  
   129  #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   130                                                // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   131  #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   132                                            // OPMASK   ZMM
   133  #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   134  
   135  #ifdef GOAMD64_v2
   136  #define NEED_MAX_CPUID 0x80000001
   137  #define NEED_FEATURES_CX V2_FEATURES_CX
   138  #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   139  #endif
   140  
   141  #ifdef GOAMD64_v3
   142  #define NEED_MAX_CPUID 0x80000001
   143  #define NEED_FEATURES_CX V3_FEATURES_CX
   144  #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   145  #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   146  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   147  #endif
   148  
   149  #ifdef GOAMD64_v4
   150  #define NEED_MAX_CPUID 0x80000001
   151  #define NEED_FEATURES_CX V4_FEATURES_CX
   152  #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   153  #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   154  
   155  // Darwin requires a different approach to check AVX512 support, see CL 285572.
   156  #ifdef GOOS_darwin
   157  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   158  // These values are from:
   159  // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   160  #define commpage64_base_address         0x00007fffffe00000
   161  #define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   162  #define commpage64_version              (commpage64_base_address+0x01E)
   163  #define AVX512F                         0x0000004000000000
   164  #define AVX512CD                        0x0000008000000000
   165  #define AVX512DQ                        0x0000010000000000
   166  #define AVX512BW                        0x0000020000000000
   167  #define AVX512VL                        0x0000100000000000
   168  #define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   169  #else
   170  #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   171  #endif
   172  
   173  #endif
   174  
   175  TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   176  	// copy arguments forward on an even stack
   177  	MOVQ	DI, AX		// argc
   178  	MOVQ	SI, BX		// argv
   179  	SUBQ	$(5*8), SP		// 3args 2auto
   180  	ANDQ	$~15, SP
   181  	MOVQ	AX, 24(SP)
   182  	MOVQ	BX, 32(SP)
   183  
   184  	// create istack out of the given (operating system) stack.
   185  	// _cgo_init may update stackguard.
   186  	MOVQ	$runtime·g0(SB), DI
   187  	LEAQ	(-64*1024)(SP), BX
   188  	MOVQ	BX, g_stackguard0(DI)
   189  	MOVQ	BX, g_stackguard1(DI)
   190  	MOVQ	BX, (g_stack+stack_lo)(DI)
   191  	MOVQ	SP, (g_stack+stack_hi)(DI)
   192  
   193  	// find out information about the processor we're on
   194  	MOVL	$0, AX
   195  	CPUID
   196  	CMPL	AX, $0
   197  	JE	nocpuinfo
   198  
   199  	CMPL	BX, $0x756E6547  // "Genu"
   200  	JNE	notintel
   201  	CMPL	DX, $0x49656E69  // "ineI"
   202  	JNE	notintel
   203  	CMPL	CX, $0x6C65746E  // "ntel"
   204  	JNE	notintel
   205  	MOVB	$1, runtime·isIntel(SB)
   206  
   207  notintel:
   208  	// Load EAX=1 cpuid flags
   209  	MOVL	$1, AX
   210  	CPUID
   211  	MOVL	AX, runtime·processorVersionInfo(SB)
   212  
   213  nocpuinfo:
   214  	// if there is an _cgo_init, call it.
   215  	MOVQ	_cgo_init(SB), AX
   216  	TESTQ	AX, AX
   217  	JZ	needtls
   218  	// arg 1: g0, already in DI
   219  	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   220  	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   221  	MOVQ	$0, CX
   222  #ifdef GOOS_android
   223  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   224  	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   225  	// Compensate for tls_g (+16).
   226  	MOVQ	-16(TLS), CX
   227  #endif
   228  #ifdef GOOS_windows
   229  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   230  	// Adjust for the Win64 calling convention.
   231  	MOVQ	CX, R9 // arg 4
   232  	MOVQ	DX, R8 // arg 3
   233  	MOVQ	SI, DX // arg 2
   234  	MOVQ	DI, CX // arg 1
   235  #endif
   236  	CALL	AX
   237  
   238  	// update stackguard after _cgo_init
   239  	MOVQ	$runtime·g0(SB), CX
   240  	MOVQ	(g_stack+stack_lo)(CX), AX
   241  	ADDQ	$const_stackGuard, AX
   242  	MOVQ	AX, g_stackguard0(CX)
   243  	MOVQ	AX, g_stackguard1(CX)
   244  
   245  #ifndef GOOS_windows
   246  	JMP ok
   247  #endif
   248  needtls:
   249  #ifdef GOOS_plan9
   250  	// skip TLS setup on Plan 9
   251  	JMP ok
   252  #endif
   253  #ifdef GOOS_solaris
   254  	// skip TLS setup on Solaris
   255  	JMP ok
   256  #endif
   257  #ifdef GOOS_illumos
   258  	// skip TLS setup on illumos
   259  	JMP ok
   260  #endif
   261  #ifdef GOOS_darwin
   262  	// skip TLS setup on Darwin
   263  	JMP ok
   264  #endif
   265  #ifdef GOOS_openbsd
   266  	// skip TLS setup on OpenBSD
   267  	JMP ok
   268  #endif
   269  
   270  #ifdef GOOS_windows
   271  	CALL	runtime·wintls(SB)
   272  #endif
   273  
   274  	LEAQ	runtime·m0+m_tls(SB), DI
   275  	CALL	runtime·settls(SB)
   276  
   277  	// store through it, to make sure it works
   278  	get_tls(BX)
   279  	MOVQ	$0x123, g(BX)
   280  	MOVQ	runtime·m0+m_tls(SB), AX
   281  	CMPQ	AX, $0x123
   282  	JEQ 2(PC)
   283  	CALL	runtime·abort(SB)
   284  ok:
   285  	// set the per-goroutine and per-mach "registers"
   286  	get_tls(BX)
   287  	LEAQ	runtime·g0(SB), CX
   288  	MOVQ	CX, g(BX)
   289  	LEAQ	runtime·m0(SB), AX
   290  
   291  	// save m->g0 = g0
   292  	MOVQ	CX, m_g0(AX)
   293  	// save m0 to g0->m
   294  	MOVQ	AX, g_m(CX)
   295  
   296  	CLD				// convention is D is always left cleared
   297  
   298  	// Check GOAMD64 requirements
   299  	// We need to do this after setting up TLS, so that
   300  	// we can report an error if there is a failure. See issue 49586.
   301  #ifdef NEED_FEATURES_CX
   302  	MOVL	$0, AX
   303  	CPUID
   304  	CMPL	AX, $0
   305  	JE	bad_cpu
   306  	MOVL	$1, AX
   307  	CPUID
   308  	ANDL	$NEED_FEATURES_CX, CX
   309  	CMPL	CX, $NEED_FEATURES_CX
   310  	JNE	bad_cpu
   311  #endif
   312  
   313  #ifdef NEED_MAX_CPUID
   314  	MOVL	$0x80000000, AX
   315  	CPUID
   316  	CMPL	AX, $NEED_MAX_CPUID
   317  	JL	bad_cpu
   318  #endif
   319  
   320  #ifdef NEED_EXT_FEATURES_BX
   321  	MOVL	$7, AX
   322  	MOVL	$0, CX
   323  	CPUID
   324  	ANDL	$NEED_EXT_FEATURES_BX, BX
   325  	CMPL	BX, $NEED_EXT_FEATURES_BX
   326  	JNE	bad_cpu
   327  #endif
   328  
   329  #ifdef NEED_EXT_FEATURES_CX
   330  	MOVL	$0x80000001, AX
   331  	CPUID
   332  	ANDL	$NEED_EXT_FEATURES_CX, CX
   333  	CMPL	CX, $NEED_EXT_FEATURES_CX
   334  	JNE	bad_cpu
   335  #endif
   336  
   337  #ifdef NEED_OS_SUPPORT_AX
   338  	XORL    CX, CX
   339  	XGETBV
   340  	ANDL	$NEED_OS_SUPPORT_AX, AX
   341  	CMPL	AX, $NEED_OS_SUPPORT_AX
   342  	JNE	bad_cpu
   343  #endif
   344  
   345  #ifdef NEED_DARWIN_SUPPORT
   346  	MOVQ	$commpage64_version, BX
   347  	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   348  	JL	bad_cpu
   349  	MOVQ	$commpage64_cpu_capabilities64, BX
   350  	MOVQ	(BX), BX
   351  	MOVQ	$NEED_DARWIN_SUPPORT, CX
   352  	ANDQ	CX, BX
   353  	CMPQ	BX, CX
   354  	JNE	bad_cpu
   355  #endif
   356  
   357  	CALL	runtime·check(SB)
   358  
   359  	MOVL	24(SP), AX		// copy argc
   360  	MOVL	AX, 0(SP)
   361  	MOVQ	32(SP), AX		// copy argv
   362  	MOVQ	AX, 8(SP)
   363  	CALL	runtime·args(SB)
   364  	CALL	runtime·osinit(SB)
   365  	CALL	runtime·schedinit(SB)
   366  
   367  	// create a new goroutine to start program
   368  	MOVQ	$runtime·mainPC(SB), AX		// entry
   369  	PUSHQ	AX
   370  	CALL	runtime·newproc(SB)
   371  	POPQ	AX
   372  
   373  	// start this M
   374  	CALL	runtime·mstart(SB)
   375  
   376  	CALL	runtime·abort(SB)	// mstart should never return
   377  	RET
   378  
   379  bad_cpu: // show that the program requires a certain microarchitecture level.
   380  	MOVQ	$2, 0(SP)
   381  	MOVQ	$bad_cpu_msg<>(SB), AX
   382  	MOVQ	AX, 8(SP)
   383  	MOVQ	$84, 16(SP)
   384  	CALL	runtime·write(SB)
   385  	MOVQ	$1, 0(SP)
   386  	CALL	runtime·exit(SB)
   387  	CALL	runtime·abort(SB)
   388  	RET
   389  
   390  	// Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
   391  	// intended to be called by debuggers.
   392  	MOVQ	$runtime·debugPinnerV1<ABIInternal>(SB), AX
   393  	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   394  	RET
   395  
   396  // mainPC is a function value for runtime.main, to be passed to newproc.
   397  // The reference to runtime.main is made via ABIInternal, since the
   398  // actual function (not the ABI0 wrapper) is needed by newproc.
   399  DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   400  GLOBL	runtime·mainPC(SB),RODATA,$8
   401  
   402  TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   403  	BYTE	$0xcc
   404  	RET
   405  
   406  TEXT runtime·asminit(SB),NOSPLIT,$0-0
   407  	// No per-thread init.
   408  	RET
   409  
   410  TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   411  	CALL	runtime·mstart0(SB)
   412  	RET // not reached
   413  
   414  /*
   415   *  go-routine
   416   */
   417  
   418  // func gogo(buf *gobuf)
   419  // restore state from Gobuf; longjmp
   420  TEXT runtime·gogo(SB), NOSPLIT, $0-8
   421  	MOVQ	buf+0(FP), BX		// gobuf
   422  	MOVQ	gobuf_g(BX), DX
   423  	MOVQ	0(DX), CX		// make sure g != nil
   424  	JMP	gogo<>(SB)
   425  
   426  TEXT gogo<>(SB), NOSPLIT, $0
   427  	get_tls(CX)
   428  	MOVQ	DX, g(CX)
   429  	MOVQ	DX, R14		// set the g register
   430  	MOVQ	gobuf_sp(BX), SP	// restore SP
   431  	MOVQ	gobuf_ctxt(BX), DX
   432  	MOVQ	gobuf_bp(BX), BP
   433  	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   434  	MOVQ	$0, gobuf_ctxt(BX)
   435  	MOVQ	$0, gobuf_bp(BX)
   436  	MOVQ	gobuf_pc(BX), BX
   437  	JMP	BX
   438  
   439  // func mcall(fn func(*g))
   440  // Switch to m->g0's stack, call fn(g).
   441  // Fn must never return. It should gogo(&g->sched)
   442  // to keep running g.
   443  TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   444  	MOVQ	AX, DX	// DX = fn
   445  
   446  	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   447  	// resume execution in the caller's frame (implicit return). The caller's BP
   448  	// is also restored to support frame pointer unwinding.
   449  	MOVQ	SP, BX	// hide (SP) reads from vet
   450  	MOVQ	8(BX), BX	// caller's PC
   451  	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   452  	LEAQ	fn+0(FP), BX	// caller's SP
   453  	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   454  	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   455  	// can cause a frame pointer cycle, see CL 476235.
   456  	MOVQ	(BP), BX // caller's BP
   457  	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   458  
   459  	// switch to m->g0 & its stack, call fn
   460  	MOVQ	g_m(R14), BX
   461  	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   462  	CMPQ	SI, R14	// if g == m->g0 call badmcall
   463  	JNE	goodm
   464  	JMP	runtime·badmcall(SB)
   465  goodm:
   466  	MOVQ	R14, AX		// AX (and arg 0) = g
   467  	MOVQ	SI, R14		// g = g.m.g0
   468  	get_tls(CX)		// Set G in TLS
   469  	MOVQ	R14, g(CX)
   470  	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   471  	MOVQ	$0, BP	// clear frame pointer, as caller may execute on another M
   472  	PUSHQ	AX	// open up space for fn's arg spill slot
   473  	MOVQ	0(DX), R12
   474  	CALL	R12		// fn(g)
   475  	// The Windows native stack unwinder incorrectly classifies the next instruction
   476  	// as part of the function epilogue, producing a wrong call stack.
   477  	// Add a NOP to work around this issue. See go.dev/issue/67007.
   478  	BYTE	$0x90
   479  	POPQ	AX
   480  	JMP	runtime·badmcall2(SB)
   481  	RET
   482  
   483  // systemstack_switch is a dummy routine that systemstack leaves at the bottom
   484  // of the G stack. We need to distinguish the routine that
   485  // lives at the bottom of the G stack from the one that lives
   486  // at the top of the system stack because the one at the top of
   487  // the system stack terminates the stack walk (see topofstack()).
   488  // The frame layout needs to match systemstack
   489  // so that it can pretend to be systemstack_switch.
   490  TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   491  	UNDEF
   492  	// Make sure this function is not leaf,
   493  	// so the frame is saved.
   494  	CALL	runtime·abort(SB)
   495  	RET
   496  
   497  // func systemstack(fn func())
   498  TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   499  	MOVQ	fn+0(FP), DI	// DI = fn
   500  	get_tls(CX)
   501  	MOVQ	g(CX), AX	// AX = g
   502  	MOVQ	g_m(AX), BX	// BX = m
   503  
   504  	CMPQ	AX, m_gsignal(BX)
   505  	JEQ	noswitch
   506  
   507  	MOVQ	m_g0(BX), DX	// DX = g0
   508  	CMPQ	AX, DX
   509  	JEQ	noswitch
   510  
   511  	CMPQ	AX, m_curg(BX)
   512  	JNE	bad
   513  
   514  	// Switch stacks.
   515  	// The original frame pointer is stored in BP,
   516  	// which is useful for stack unwinding.
   517  	// Save our state in g->sched. Pretend to
   518  	// be systemstack_switch if the G stack is scanned.
   519  	CALL	gosave_systemstack_switch<>(SB)
   520  
   521  	// switch to g0
   522  	MOVQ	DX, g(CX)
   523  	MOVQ	DX, R14 // set the g register
   524  	MOVQ	(g_sched+gobuf_sp)(DX), SP
   525  
   526  	// call target function
   527  	MOVQ	DI, DX
   528  	MOVQ	0(DI), DI
   529  	CALL	DI
   530  
   531  	// switch back to g
   532  	get_tls(CX)
   533  	MOVQ	g(CX), AX
   534  	MOVQ	g_m(AX), BX
   535  	MOVQ	m_curg(BX), AX
   536  	MOVQ	AX, g(CX)
   537  	MOVQ	(g_sched+gobuf_sp)(AX), SP
   538  	MOVQ	(g_sched+gobuf_bp)(AX), BP
   539  	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   540  	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   541  	RET
   542  
   543  noswitch:
   544  	// already on m stack; tail call the function
   545  	// Using a tail call here cleans up tracebacks since we won't stop
   546  	// at an intermediate systemstack.
   547  	MOVQ	DI, DX
   548  	MOVQ	0(DI), DI
   549  	// The function epilogue is not called on a tail call.
   550  	// Pop BP from the stack to simulate it.
   551  	POPQ	BP
   552  	JMP	DI
   553  
   554  bad:
   555  	// Bad: g is not gsignal, not g0, not curg. What is it?
   556  	MOVQ	$runtime·badsystemstack(SB), AX
   557  	CALL	AX
   558  	INT	$3
   559  
   560  // func switchToCrashStack0(fn func())
   561  TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   562  	MOVQ	g_m(R14), BX // curm
   563  
   564  	// set g to gcrash
   565  	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   566  	MOVQ	BX, g_m(R14)            // g.m = curm
   567  	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   568  	get_tls(CX)
   569  	MOVQ	R14, g(CX)
   570  
   571  	// switch to crashstack
   572  	MOVQ	(g_stack+stack_hi)(R14), BX
   573  	SUBQ	$(4*8), BX
   574  	MOVQ	BX, SP
   575  
   576  	// call target function
   577  	MOVQ	AX, DX
   578  	MOVQ	0(AX), AX
   579  	CALL	AX
   580  
   581  	// should never return
   582  	CALL	runtime·abort(SB)
   583  	UNDEF
   584  
   585  /*
   586   * support for morestack
   587   */
   588  
   589  // Called during function prolog when more stack is needed.
   590  //
   591  // The traceback routines see morestack on a g0 as being
   592  // the top of a stack (for example, morestack calling newstack
   593  // calling the scheduler calling newm calling gc), so we must
   594  // record an argument size. For that purpose, it has no arguments.
   595  TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   596  	// Cannot grow scheduler stack (m->g0).
   597  	get_tls(CX)
   598  	MOVQ	g(CX), DI     // DI = g
   599  	MOVQ	g_m(DI), BX   // BX = m
   600  
   601  	// Set g->sched to context in f.
   602  	MOVQ	0(SP), AX // f's PC
   603  	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   604  	LEAQ	8(SP), AX // f's SP
   605  	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   606  	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   607  	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   608  
   609  	MOVQ	m_g0(BX), SI  // SI = m.g0
   610  	CMPQ	DI, SI
   611  	JNE	3(PC)
   612  	CALL	runtime·badmorestackg0(SB)
   613  	CALL	runtime·abort(SB)
   614  
   615  	// Cannot grow signal stack (m->gsignal).
   616  	MOVQ	m_gsignal(BX), SI
   617  	CMPQ	DI, SI
   618  	JNE	3(PC)
   619  	CALL	runtime·badmorestackgsignal(SB)
   620  	CALL	runtime·abort(SB)
   621  
   622  	// Called from f.
   623  	// Set m->morebuf to f's caller.
   624  	NOP	SP	// tell vet SP changed - stop checking offsets
   625  	MOVQ	8(SP), AX	// f's caller's PC
   626  	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   627  	LEAQ	16(SP), AX	// f's caller's SP
   628  	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   629  	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   630  
   631  	// Call newstack on m->g0's stack.
   632  	MOVQ	m_g0(BX), BX
   633  	MOVQ	BX, g(CX)
   634  	MOVQ	(g_sched+gobuf_sp)(BX), SP
   635  	MOVQ	$0, BP			// clear frame pointer, as caller may execute on another M
   636  	CALL	runtime·newstack(SB)
   637  	CALL	runtime·abort(SB)	// crash if newstack returns
   638  	RET
   639  
   640  // morestack but not preserving ctxt.
   641  TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   642  	MOVL	$0, DX
   643  	JMP	runtime·morestack(SB)
   644  
   645  // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   646  TEXT ·spillArgs(SB),NOSPLIT,$0-0
   647  	MOVQ AX, 0(R12)
   648  	MOVQ BX, 8(R12)
   649  	MOVQ CX, 16(R12)
   650  	MOVQ DI, 24(R12)
   651  	MOVQ SI, 32(R12)
   652  	MOVQ R8, 40(R12)
   653  	MOVQ R9, 48(R12)
   654  	MOVQ R10, 56(R12)
   655  	MOVQ R11, 64(R12)
   656  	MOVQ X0, 72(R12)
   657  	MOVQ X1, 80(R12)
   658  	MOVQ X2, 88(R12)
   659  	MOVQ X3, 96(R12)
   660  	MOVQ X4, 104(R12)
   661  	MOVQ X5, 112(R12)
   662  	MOVQ X6, 120(R12)
   663  	MOVQ X7, 128(R12)
   664  	MOVQ X8, 136(R12)
   665  	MOVQ X9, 144(R12)
   666  	MOVQ X10, 152(R12)
   667  	MOVQ X11, 160(R12)
   668  	MOVQ X12, 168(R12)
   669  	MOVQ X13, 176(R12)
   670  	MOVQ X14, 184(R12)
   671  	RET
   672  
   673  // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   674  TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   675  	MOVQ 0(R12), AX
   676  	MOVQ 8(R12), BX
   677  	MOVQ 16(R12), CX
   678  	MOVQ 24(R12), DI
   679  	MOVQ 32(R12), SI
   680  	MOVQ 40(R12), R8
   681  	MOVQ 48(R12), R9
   682  	MOVQ 56(R12), R10
   683  	MOVQ 64(R12), R11
   684  	MOVQ 72(R12), X0
   685  	MOVQ 80(R12), X1
   686  	MOVQ 88(R12), X2
   687  	MOVQ 96(R12), X3
   688  	MOVQ 104(R12), X4
   689  	MOVQ 112(R12), X5
   690  	MOVQ 120(R12), X6
   691  	MOVQ 128(R12), X7
   692  	MOVQ 136(R12), X8
   693  	MOVQ 144(R12), X9
   694  	MOVQ 152(R12), X10
   695  	MOVQ 160(R12), X11
   696  	MOVQ 168(R12), X12
   697  	MOVQ 176(R12), X13
   698  	MOVQ 184(R12), X14
   699  	RET
   700  
   701  // reflectcall: call a function with the given argument list
   702  // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   703  // we don't have variable-sized frames, so we use a small number
   704  // of constant-sized-frame functions to encode a few bits of size in the pc.
   705  // Caution: ugly multiline assembly macros in your future!
   706  
   707  #define DISPATCH(NAME,MAXSIZE)		\
   708  	CMPQ	CX, $MAXSIZE;		\
   709  	JA	3(PC);			\
   710  	MOVQ	$NAME(SB), AX;		\
   711  	JMP	AX
   712  // Note: can't just "JMP NAME(SB)" - bad inlining results.
   713  
   714  TEXT ·reflectcall(SB), NOSPLIT, $0-48
   715  	MOVLQZX frameSize+32(FP), CX
   716  	DISPATCH(runtime·call16, 16)
   717  	DISPATCH(runtime·call32, 32)
   718  	DISPATCH(runtime·call64, 64)
   719  	DISPATCH(runtime·call128, 128)
   720  	DISPATCH(runtime·call256, 256)
   721  	DISPATCH(runtime·call512, 512)
   722  	DISPATCH(runtime·call1024, 1024)
   723  	DISPATCH(runtime·call2048, 2048)
   724  	DISPATCH(runtime·call4096, 4096)
   725  	DISPATCH(runtime·call8192, 8192)
   726  	DISPATCH(runtime·call16384, 16384)
   727  	DISPATCH(runtime·call32768, 32768)
   728  	DISPATCH(runtime·call65536, 65536)
   729  	DISPATCH(runtime·call131072, 131072)
   730  	DISPATCH(runtime·call262144, 262144)
   731  	DISPATCH(runtime·call524288, 524288)
   732  	DISPATCH(runtime·call1048576, 1048576)
   733  	DISPATCH(runtime·call2097152, 2097152)
   734  	DISPATCH(runtime·call4194304, 4194304)
   735  	DISPATCH(runtime·call8388608, 8388608)
   736  	DISPATCH(runtime·call16777216, 16777216)
   737  	DISPATCH(runtime·call33554432, 33554432)
   738  	DISPATCH(runtime·call67108864, 67108864)
   739  	DISPATCH(runtime·call134217728, 134217728)
   740  	DISPATCH(runtime·call268435456, 268435456)
   741  	DISPATCH(runtime·call536870912, 536870912)
   742  	DISPATCH(runtime·call1073741824, 1073741824)
   743  	MOVQ	$runtime·badreflectcall(SB), AX
   744  	JMP	AX
   745  
   746  #define CALLFN(NAME,MAXSIZE)			\
   747  TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   748  	NO_LOCAL_POINTERS;			\
   749  	/* copy arguments to stack */		\
   750  	MOVQ	stackArgs+16(FP), SI;		\
   751  	MOVLQZX stackArgsSize+24(FP), CX;		\
   752  	MOVQ	SP, DI;				\
   753  	REP;MOVSB;				\
   754  	/* set up argument registers */		\
   755  	MOVQ    regArgs+40(FP), R12;		\
   756  	CALL    ·unspillArgs(SB);		\
   757  	/* call function */			\
   758  	MOVQ	f+8(FP), DX;			\
   759  	PCDATA  $PCDATA_StackMapIndex, $0;	\
   760  	MOVQ	(DX), R12;			\
   761  	CALL	R12;				\
   762  	/* copy register return values back */		\
   763  	MOVQ    regArgs+40(FP), R12;		\
   764  	CALL    ·spillArgs(SB);		\
   765  	MOVLQZX	stackArgsSize+24(FP), CX;		\
   766  	MOVLQZX	stackRetOffset+28(FP), BX;		\
   767  	MOVQ	stackArgs+16(FP), DI;		\
   768  	MOVQ	stackArgsType+0(FP), DX;		\
   769  	MOVQ	SP, SI;				\
   770  	ADDQ	BX, DI;				\
   771  	ADDQ	BX, SI;				\
   772  	SUBQ	BX, CX;				\
   773  	CALL	callRet<>(SB);			\
   774  	RET
   775  
   776  // callRet copies return values back at the end of call*. This is a
   777  // separate function so it can allocate stack space for the arguments
   778  // to reflectcallmove. It does not follow the Go ABI; it expects its
   779  // arguments in registers.
   780  TEXT callRet<>(SB), NOSPLIT, $40-0
   781  	NO_LOCAL_POINTERS
   782  	MOVQ	DX, 0(SP)
   783  	MOVQ	DI, 8(SP)
   784  	MOVQ	SI, 16(SP)
   785  	MOVQ	CX, 24(SP)
   786  	MOVQ	R12, 32(SP)
   787  	CALL	runtime·reflectcallmove(SB)
   788  	RET
   789  
   790  CALLFN(·call16, 16)
   791  CALLFN(·call32, 32)
   792  CALLFN(·call64, 64)
   793  CALLFN(·call128, 128)
   794  CALLFN(·call256, 256)
   795  CALLFN(·call512, 512)
   796  CALLFN(·call1024, 1024)
   797  CALLFN(·call2048, 2048)
   798  CALLFN(·call4096, 4096)
   799  CALLFN(·call8192, 8192)
   800  CALLFN(·call16384, 16384)
   801  CALLFN(·call32768, 32768)
   802  CALLFN(·call65536, 65536)
   803  CALLFN(·call131072, 131072)
   804  CALLFN(·call262144, 262144)
   805  CALLFN(·call524288, 524288)
   806  CALLFN(·call1048576, 1048576)
   807  CALLFN(·call2097152, 2097152)
   808  CALLFN(·call4194304, 4194304)
   809  CALLFN(·call8388608, 8388608)
   810  CALLFN(·call16777216, 16777216)
   811  CALLFN(·call33554432, 33554432)
   812  CALLFN(·call67108864, 67108864)
   813  CALLFN(·call134217728, 134217728)
   814  CALLFN(·call268435456, 268435456)
   815  CALLFN(·call536870912, 536870912)
   816  CALLFN(·call1073741824, 1073741824)
   817  
   818  TEXT runtime·procyieldAsm(SB),NOSPLIT,$0-0
   819  	MOVL	cycles+0(FP), AX
   820  	TESTL	AX, AX
   821  	JZ	done
   822  again:
   823  	PAUSE
   824  	SUBL	$1, AX
   825  	JNZ	again
   826  done:
   827  	RET
   828  
   829  
   830  TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   831  	// Stores are already ordered on x86, so this is just a
   832  	// compile barrier.
   833  	RET
   834  
   835  // Save state of caller into g->sched,
   836  // but using fake PC from systemstack_switch.
   837  // Must only be called from functions with frame pointer
   838  // and without locals ($0) or else unwinding from
   839  // systemstack_switch is incorrect.
   840  // Smashes R9.
   841  TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   842  	// Take systemstack_switch PC and add 8 bytes to skip
   843  	// the prologue. The final location does not matter
   844  	// as long as we are between the prologue and the epilogue.
   845  	MOVQ	$runtime·systemstack_switch+8(SB), R9
   846  	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   847  	LEAQ	8(SP), R9
   848  	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   849  	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   850  	// Assert ctxt is zero. See func save.
   851  	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   852  	TESTQ	R9, R9
   853  	JZ	2(PC)
   854  	CALL	runtime·abort(SB)
   855  	RET
   856  
   857  // func asmcgocall_no_g(fn, arg unsafe.Pointer)
   858  // Call fn(arg) aligned appropriately for the gcc ABI.
   859  // Called on a system stack, and there may be no g yet (during needm).
   860  TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   861  	MOVQ	fn+0(FP), AX
   862  	MOVQ	arg+8(FP), BX
   863  	MOVQ	SP, DX
   864  	ANDQ	$~15, SP	// alignment
   865  	MOVQ	DX, 8(SP)
   866  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   867  	MOVQ	BX, CX		// CX = first argument in Win64
   868  	CALL	AX
   869  	MOVQ	8(SP), DX
   870  	MOVQ	DX, SP
   871  	RET
   872  
   873  // asmcgocall_landingpad calls AX with BX as argument.
   874  // Must be called on the system stack.
   875  TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   876  #ifdef GOOS_windows
   877  	// Make sure we have enough room for 4 stack-backed fast-call
   878  	// registers as per Windows amd64 calling convention.
   879  	ADJSP	$32
   880  	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   881  	// thrown in the cgo call. Exceptions that reach this function will be
   882  	// handled by runtime.sehtramp thanks to the SEH metadata added
   883  	// by the compiler.
   884  	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   885  	// because its initial stack pointer can be outside the system stack bounds,
   886  	// and Windows stops the stack unwinding without calling the exception handler
   887  	// when it reaches that point.
   888  	MOVQ	BX, CX		// CX = first argument in Win64
   889  	CALL	AX
   890  	// The exception handler is not called if the next instruction is part of
   891  	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   892  	BYTE	$0x90
   893  	ADJSP	$-32
   894  	RET
   895  #endif
   896  	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   897  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   898  	JMP	AX
   899  
   900  // func asmcgocall(fn, arg unsafe.Pointer) int32
   901  // Call fn(arg) on the scheduler stack,
   902  // aligned appropriately for the gcc ABI.
   903  // See cgocall.go for more details.
   904  TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   905  	MOVQ	fn+0(FP), AX
   906  	MOVQ	arg+8(FP), BX
   907  
   908  	MOVQ	SP, DX
   909  
   910  	// Figure out if we need to switch to m->g0 stack.
   911  	// We get called to create new OS threads too, and those
   912  	// come in on the m->g0 stack already. Or we might already
   913  	// be on the m->gsignal stack.
   914  	get_tls(CX)
   915  	MOVQ	g(CX), DI
   916  	CMPQ	DI, $0
   917  	JEQ	nosave
   918  	MOVQ	g_m(DI), R8
   919  	MOVQ	m_gsignal(R8), SI
   920  	CMPQ	DI, SI
   921  	JEQ	nosave
   922  	MOVQ	m_g0(R8), SI
   923  	CMPQ	DI, SI
   924  	JEQ	nosave
   925  
   926  	// Switch to system stack.
   927  	// The original frame pointer is stored in BP,
   928  	// which is useful for stack unwinding.
   929  	CALL	gosave_systemstack_switch<>(SB)
   930  	MOVQ	SI, g(CX)
   931  	MOVQ	(g_sched+gobuf_sp)(SI), SP
   932  
   933  	// Now on a scheduling stack (a pthread-created stack).
   934  	SUBQ	$16, SP
   935  	ANDQ	$~15, SP	// alignment for gcc ABI
   936  	MOVQ	DI, 8(SP)	// save g
   937  	MOVQ	(g_stack+stack_hi)(DI), DI
   938  	SUBQ	DX, DI
   939  	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   940  	CALL	runtime·asmcgocall_landingpad(SB)
   941  
   942  	// Restore registers, g, stack pointer.
   943  	get_tls(CX)
   944  	MOVQ	8(SP), DI
   945  	MOVQ	(g_stack+stack_hi)(DI), SI
   946  	SUBQ	0(SP), SI
   947  	MOVQ	DI, g(CX)
   948  	MOVQ	SI, SP
   949  
   950  	MOVL	AX, ret+16(FP)
   951  	RET
   952  
   953  nosave:
   954  	// Running on a system stack, perhaps even without a g.
   955  	// Having no g can happen during thread creation or thread teardown
   956  	// (see needm/dropm on Solaris, for example).
   957  	// This code is like the above sequence but without saving/restoring g
   958  	// and without worrying about the stack moving out from under us
   959  	// (because we're on a system stack, not a goroutine stack).
   960  	// The above code could be used directly if already on a system stack,
   961  	// but then the only path through this code would be a rare case on Solaris.
   962  	// Using this code for all "already on system stack" calls exercises it more,
   963  	// which should help keep it correct.
   964  	SUBQ	$16, SP
   965  	ANDQ	$~15, SP
   966  	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   967  	MOVQ	DX, 0(SP)	// save original stack pointer
   968  	CALL	runtime·asmcgocall_landingpad(SB)
   969  	MOVQ	0(SP), SI	// restore original stack pointer
   970  	MOVQ	SI, SP
   971  	MOVL	AX, ret+16(FP)
   972  	RET
   973  
   974  #ifdef GOOS_windows
   975  // Dummy TLS that's used on Windows so that we don't crash trying
   976  // to restore the G register in needm. needm and its callees are
   977  // very careful never to actually use the G, the TLS just can't be
   978  // unset since we're in Go code.
   979  GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   980  #endif
   981  
   982  // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   983  // See cgocall.go for more details.
   984  TEXT ·cgocallback(SB),NOSPLIT,$24-24
   985  	NO_LOCAL_POINTERS
   986  
   987  	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   988  	// It is used to dropm while thread is exiting.
   989  	MOVQ	fn+0(FP), AX
   990  	CMPQ	AX, $0
   991  	JNE	loadg
   992  	// Restore the g from frame.
   993  	get_tls(CX)
   994  	MOVQ	frame+8(FP), BX
   995  	MOVQ	BX, g(CX)
   996  	JMP	dropm
   997  
   998  loadg:
   999  	// If g is nil, Go did not create the current thread,
  1000  	// or if this thread never called into Go on pthread platforms.
  1001  	// Call needm to obtain one m for temporary use.
  1002  	// In this case, we're running on the thread stack, so there's
  1003  	// lots of space, but the linker doesn't know. Hide the call from
  1004  	// the linker analysis by using an indirect call through AX.
  1005  	get_tls(CX)
  1006  #ifdef GOOS_windows
  1007  	MOVL	$0, BX
  1008  	CMPQ	CX, $0
  1009  	JEQ	2(PC)
  1010  #endif
  1011  	MOVQ	g(CX), BX
  1012  	CMPQ	BX, $0
  1013  	JEQ	needm
  1014  	MOVQ	g_m(BX), BX
  1015  	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
  1016  	JMP	havem
  1017  needm:
  1018  #ifdef GOOS_windows
  1019  	// Set up a dummy TLS value. needm is careful not to use it,
  1020  	// but it needs to be there to prevent autogenerated code from
  1021  	// crashing when it loads from it.
  1022  	// We don't need to clear it or anything later because needm
  1023  	// will set up TLS properly.
  1024  	MOVQ	$zeroTLS<>(SB), DI
  1025  	CALL	runtime·settls(SB)
  1026  #endif
  1027  	// On some platforms (Windows) we cannot call needm through
  1028  	// an ABI wrapper because there's no TLS set up, and the ABI
  1029  	// wrapper will try to restore the G register (R14) from TLS.
  1030  	// Clear X15 because Go expects it and we're not calling
  1031  	// through a wrapper, but otherwise avoid setting the G
  1032  	// register in the wrapper and call needm directly. It
  1033  	// takes no arguments and doesn't return any values so
  1034  	// there's no need to handle that. Clear R14 so that there's
  1035  	// a bad value in there, in case needm tries to use it.
  1036  	XORPS	X15, X15
  1037  	XORQ    R14, R14
  1038  	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1039  	CALL	AX
  1040  	MOVQ	$0, savedm-8(SP)
  1041  	get_tls(CX)
  1042  	MOVQ	g(CX), BX
  1043  	MOVQ	g_m(BX), BX
  1044  
  1045  	// Set m->sched.sp = SP, so that if a panic happens
  1046  	// during the function we are about to execute, it will
  1047  	// have a valid SP to run on the g0 stack.
  1048  	// The next few lines (after the havem label)
  1049  	// will save this SP onto the stack and then write
  1050  	// the same SP back to m->sched.sp. That seems redundant,
  1051  	// but if an unrecovered panic happens, unwindm will
  1052  	// restore the g->sched.sp from the stack location
  1053  	// and then systemstack will try to use it. If we don't set it here,
  1054  	// that restored SP will be uninitialized (typically 0) and
  1055  	// will not be usable.
  1056  	MOVQ	m_g0(BX), SI
  1057  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1058  
  1059  havem:
  1060  	// Now there's a valid m, and we're running on its m->g0.
  1061  	// Save current m->g0->sched.sp on stack and then set it to SP.
  1062  	// Save current sp in m->g0->sched.sp in preparation for
  1063  	// switch back to m->curg stack.
  1064  	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1065  	MOVQ	m_g0(BX), SI
  1066  	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1067  	MOVQ	AX, 0(SP)
  1068  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1069  
  1070  	// Switch to m->curg stack and call runtime.cgocallbackg.
  1071  	// Because we are taking over the execution of m->curg
  1072  	// but *not* resuming what had been running, we need to
  1073  	// save that information (m->curg->sched) so we can restore it.
  1074  	// We can restore m->curg->sched.sp easily, because calling
  1075  	// runtime.cgocallbackg leaves SP unchanged upon return.
  1076  	// To save m->curg->sched.pc, we push it onto the curg stack and
  1077  	// open a frame the same size as cgocallback's g0 frame.
  1078  	// Once we switch to the curg stack, the pushed PC will appear
  1079  	// to be the return PC of cgocallback, so that the traceback
  1080  	// will seamlessly trace back into the earlier calls.
  1081  	MOVQ	m_curg(BX), SI
  1082  	MOVQ	SI, g(CX)
  1083  	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1084  	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1085  	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1086  	// Gather our arguments into registers.
  1087  	MOVQ	fn+0(FP), BX
  1088  	MOVQ	frame+8(FP), CX
  1089  	MOVQ	ctxt+16(FP), DX
  1090  	// Compute the size of the frame, including return PC and, if
  1091  	// GOEXPERIMENT=framepointer, the saved base pointer
  1092  	LEAQ	fn+0(FP), AX
  1093  	SUBQ	SP, AX   // AX is our actual frame size
  1094  	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1095  	MOVQ	DI, SP
  1096  
  1097  	MOVQ	BX, 0(SP)
  1098  	MOVQ	CX, 8(SP)
  1099  	MOVQ	DX, 16(SP)
  1100  	MOVQ	$runtime·cgocallbackg(SB), AX
  1101  	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1102  
  1103  	// Compute the size of the frame again. FP and SP have
  1104  	// completely different values here than they did above,
  1105  	// but only their difference matters.
  1106  	LEAQ	fn+0(FP), AX
  1107  	SUBQ	SP, AX
  1108  
  1109  	// Restore g->sched (== m->curg->sched) from saved values.
  1110  	get_tls(CX)
  1111  	MOVQ	g(CX), SI
  1112  	MOVQ	SP, DI
  1113  	ADDQ	AX, DI
  1114  	MOVQ	-8(DI), BX
  1115  	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1116  	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1117  
  1118  	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1119  	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1120  	// so we do not have to restore it.)
  1121  	MOVQ	g(CX), BX
  1122  	MOVQ	g_m(BX), BX
  1123  	MOVQ	m_g0(BX), SI
  1124  	MOVQ	SI, g(CX)
  1125  	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1126  	MOVQ	0(SP), AX
  1127  	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1128  
  1129  	// If the m on entry was nil, we called needm above to borrow an m,
  1130  	// 1. for the duration of the call on non-pthread platforms,
  1131  	// 2. or the duration of the C thread alive on pthread platforms.
  1132  	// If the m on entry wasn't nil,
  1133  	// 1. the thread might be a Go thread,
  1134  	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1135  	//    since then we skip dropm to reuse the m in the first call.
  1136  	MOVQ	savedm-8(SP), BX
  1137  	CMPQ	BX, $0
  1138  	JNE	done
  1139  
  1140  	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1141  	MOVQ	_cgo_pthread_key_created(SB), AX
  1142  	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1143  	CMPQ	AX, $0
  1144  	JEQ	dropm
  1145  	CMPQ	(AX), $0
  1146  	JNE	done
  1147  
  1148  dropm:
  1149  	MOVQ	$runtime·dropm(SB), AX
  1150  	CALL	AX
  1151  #ifdef GOOS_windows
  1152  	// We need to clear the TLS pointer in case the next
  1153  	// thread that comes into Go tries to reuse that space
  1154  	// but uses the same M.
  1155  	XORQ	DI, DI
  1156  	CALL	runtime·settls(SB)
  1157  #endif
  1158  done:
  1159  
  1160  	// Done!
  1161  	RET
  1162  
  1163  // func setg(gg *g)
  1164  // set g. for use by needm.
  1165  TEXT runtime·setg(SB), NOSPLIT, $0-8
  1166  	MOVQ	gg+0(FP), BX
  1167  	get_tls(CX)
  1168  	MOVQ	BX, g(CX)
  1169  	RET
  1170  
  1171  // void setg_gcc(G*); set g called from gcc.
  1172  TEXT setg_gcc<>(SB),NOSPLIT,$0
  1173  	get_tls(AX)
  1174  	MOVQ	DI, g(AX)
  1175  	MOVQ	DI, R14 // set the g register
  1176  	RET
  1177  
  1178  TEXT runtime·abort(SB),NOSPLIT,$0-0
  1179  	INT	$3
  1180  loop:
  1181  	JMP	loop
  1182  
  1183  // check that SP is in range [g->stack.lo, g->stack.hi)
  1184  TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1185  	get_tls(CX)
  1186  	MOVQ	g(CX), AX
  1187  	CMPQ	(g_stack+stack_hi)(AX), SP
  1188  	JHI	2(PC)
  1189  	CALL	runtime·abort(SB)
  1190  	CMPQ	SP, (g_stack+stack_lo)(AX)
  1191  	JHI	2(PC)
  1192  	CALL	runtime·abort(SB)
  1193  	RET
  1194  
  1195  // func cputicks() int64
  1196  TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1197  	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1198  	JNE	fences
  1199  	// Instruction stream serializing RDTSCP is supported.
  1200  	// RDTSCP is supported by Intel Nehalem (2008) and
  1201  	// AMD K8 Rev. F (2006) and newer.
  1202  	RDTSCP
  1203  done:
  1204  	SHLQ	$32, DX
  1205  	ADDQ	DX, AX
  1206  	MOVQ	AX, ret+0(FP)
  1207  	RET
  1208  fences:
  1209  	// MFENCE is instruction stream serializing and flushes the
  1210  	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1211  	// are dependent on MSR C001_1029 and CPU generation.
  1212  	// LFENCE on Intel does wait for all previous instructions to have executed.
  1213  	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1214  	// previous instructions executed and all previous loads and stores to globally visible.
  1215  	// Using MFENCE;LFENCE here aligns the serializing properties without
  1216  	// runtime detection of CPU manufacturer.
  1217  	MFENCE
  1218  	LFENCE
  1219  	RDTSC
  1220  	JMP done
  1221  
  1222  // func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1223  // hash function using AES hardware instructions
  1224  TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1225  	// AX = ptr to data
  1226  	// BX = seed
  1227  	// CX = size
  1228  	CMPB	runtime·useAeshash(SB), $0
  1229  	JEQ	noaes
  1230  	JMP	aeshashbody<>(SB)
  1231  noaes:
  1232  	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1233  
  1234  // func strhash(p unsafe.Pointer, h uintptr) uintptr
  1235  TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1236  	// AX = ptr to string struct
  1237  	// BX = seed
  1238  	CMPB	runtime·useAeshash(SB), $0
  1239  	JEQ	noaes
  1240  	MOVQ	8(AX), CX	// length of string
  1241  	MOVQ	(AX), AX	// string data
  1242  	JMP	aeshashbody<>(SB)
  1243  noaes:
  1244  	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1245  
  1246  // AX: data
  1247  // BX: hash seed
  1248  // CX: length
  1249  // At return: AX = return value
  1250  TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1251  	// Fill an SSE register with our seeds.
  1252  	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1253  	PINSRW	$4, CX, X0			// 16 bits of length
  1254  	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1255  	MOVO	X0, X1				// save unscrambled seed
  1256  	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1257  	AESENC	X0, X0				// scramble seed
  1258  
  1259  	CMPQ	CX, $16
  1260  	JB	aes0to15
  1261  	JE	aes16
  1262  	CMPQ	CX, $32
  1263  	JBE	aes17to32
  1264  	CMPQ	CX, $64
  1265  	JBE	aes33to64
  1266  	CMPQ	CX, $128
  1267  	JBE	aes65to128
  1268  	JMP	aes129plus
  1269  
  1270  aes0to15:
  1271  	TESTQ	CX, CX
  1272  	JE	aes0
  1273  
  1274  	ADDQ	$16, AX
  1275  	TESTW	$0xff0, AX
  1276  	JE	endofpage
  1277  
  1278  	// 16 bytes loaded at this address won't cross
  1279  	// a page boundary, so we can load it directly.
  1280  	MOVOU	-16(AX), X1
  1281  	ADDQ	CX, CX
  1282  	MOVQ	$masks<>(SB), AX
  1283  	PAND	(AX)(CX*8), X1
  1284  final1:
  1285  	PXOR	X0, X1	// xor data with seed
  1286  	AESENC	X1, X1	// scramble combo 3 times
  1287  	AESENC	X1, X1
  1288  	AESENC	X1, X1
  1289  	MOVQ	X1, AX	// return X1
  1290  	RET
  1291  
  1292  endofpage:
  1293  	// address ends in 1111xxxx. Might be up against
  1294  	// a page boundary, so load ending at last byte.
  1295  	// Then shift bytes down using pshufb.
  1296  	MOVOU	-32(AX)(CX*1), X1
  1297  	ADDQ	CX, CX
  1298  	MOVQ	$shifts<>(SB), AX
  1299  	PSHUFB	(AX)(CX*8), X1
  1300  	JMP	final1
  1301  
  1302  aes0:
  1303  	// Return scrambled input seed
  1304  	AESENC	X0, X0
  1305  	MOVQ	X0, AX	// return X0
  1306  	RET
  1307  
  1308  aes16:
  1309  	MOVOU	(AX), X1
  1310  	JMP	final1
  1311  
  1312  aes17to32:
  1313  	// make second starting seed
  1314  	PXOR	runtime·aeskeysched+16(SB), X1
  1315  	AESENC	X1, X1
  1316  
  1317  	// load data to be hashed
  1318  	MOVOU	(AX), X2
  1319  	MOVOU	-16(AX)(CX*1), X3
  1320  
  1321  	// xor with seed
  1322  	PXOR	X0, X2
  1323  	PXOR	X1, X3
  1324  
  1325  	// scramble 3 times
  1326  	AESENC	X2, X2
  1327  	AESENC	X3, X3
  1328  	AESENC	X2, X2
  1329  	AESENC	X3, X3
  1330  	AESENC	X2, X2
  1331  	AESENC	X3, X3
  1332  
  1333  	// combine results
  1334  	PXOR	X3, X2
  1335  	MOVQ	X2, AX	// return X2
  1336  	RET
  1337  
  1338  aes33to64:
  1339  	// make 3 more starting seeds
  1340  	MOVO	X1, X2
  1341  	MOVO	X1, X3
  1342  	PXOR	runtime·aeskeysched+16(SB), X1
  1343  	PXOR	runtime·aeskeysched+32(SB), X2
  1344  	PXOR	runtime·aeskeysched+48(SB), X3
  1345  	AESENC	X1, X1
  1346  	AESENC	X2, X2
  1347  	AESENC	X3, X3
  1348  
  1349  	MOVOU	(AX), X4
  1350  	MOVOU	16(AX), X5
  1351  	MOVOU	-32(AX)(CX*1), X6
  1352  	MOVOU	-16(AX)(CX*1), X7
  1353  
  1354  	PXOR	X0, X4
  1355  	PXOR	X1, X5
  1356  	PXOR	X2, X6
  1357  	PXOR	X3, X7
  1358  
  1359  	AESENC	X4, X4
  1360  	AESENC	X5, X5
  1361  	AESENC	X6, X6
  1362  	AESENC	X7, X7
  1363  
  1364  	AESENC	X4, X4
  1365  	AESENC	X5, X5
  1366  	AESENC	X6, X6
  1367  	AESENC	X7, X7
  1368  
  1369  	AESENC	X4, X4
  1370  	AESENC	X5, X5
  1371  	AESENC	X6, X6
  1372  	AESENC	X7, X7
  1373  
  1374  	PXOR	X6, X4
  1375  	PXOR	X7, X5
  1376  	PXOR	X5, X4
  1377  	MOVQ	X4, AX	// return X4
  1378  	RET
  1379  
  1380  aes65to128:
  1381  	// make 7 more starting seeds
  1382  	MOVO	X1, X2
  1383  	MOVO	X1, X3
  1384  	MOVO	X1, X4
  1385  	MOVO	X1, X5
  1386  	MOVO	X1, X6
  1387  	MOVO	X1, X7
  1388  	PXOR	runtime·aeskeysched+16(SB), X1
  1389  	PXOR	runtime·aeskeysched+32(SB), X2
  1390  	PXOR	runtime·aeskeysched+48(SB), X3
  1391  	PXOR	runtime·aeskeysched+64(SB), X4
  1392  	PXOR	runtime·aeskeysched+80(SB), X5
  1393  	PXOR	runtime·aeskeysched+96(SB), X6
  1394  	PXOR	runtime·aeskeysched+112(SB), X7
  1395  	AESENC	X1, X1
  1396  	AESENC	X2, X2
  1397  	AESENC	X3, X3
  1398  	AESENC	X4, X4
  1399  	AESENC	X5, X5
  1400  	AESENC	X6, X6
  1401  	AESENC	X7, X7
  1402  
  1403  	// load data
  1404  	MOVOU	(AX), X8
  1405  	MOVOU	16(AX), X9
  1406  	MOVOU	32(AX), X10
  1407  	MOVOU	48(AX), X11
  1408  	MOVOU	-64(AX)(CX*1), X12
  1409  	MOVOU	-48(AX)(CX*1), X13
  1410  	MOVOU	-32(AX)(CX*1), X14
  1411  	MOVOU	-16(AX)(CX*1), X15
  1412  
  1413  	// xor with seed
  1414  	PXOR	X0, X8
  1415  	PXOR	X1, X9
  1416  	PXOR	X2, X10
  1417  	PXOR	X3, X11
  1418  	PXOR	X4, X12
  1419  	PXOR	X5, X13
  1420  	PXOR	X6, X14
  1421  	PXOR	X7, X15
  1422  
  1423  	// scramble 3 times
  1424  	AESENC	X8, X8
  1425  	AESENC	X9, X9
  1426  	AESENC	X10, X10
  1427  	AESENC	X11, X11
  1428  	AESENC	X12, X12
  1429  	AESENC	X13, X13
  1430  	AESENC	X14, X14
  1431  	AESENC	X15, X15
  1432  
  1433  	AESENC	X8, X8
  1434  	AESENC	X9, X9
  1435  	AESENC	X10, X10
  1436  	AESENC	X11, X11
  1437  	AESENC	X12, X12
  1438  	AESENC	X13, X13
  1439  	AESENC	X14, X14
  1440  	AESENC	X15, X15
  1441  
  1442  	AESENC	X8, X8
  1443  	AESENC	X9, X9
  1444  	AESENC	X10, X10
  1445  	AESENC	X11, X11
  1446  	AESENC	X12, X12
  1447  	AESENC	X13, X13
  1448  	AESENC	X14, X14
  1449  	AESENC	X15, X15
  1450  
  1451  	// combine results
  1452  	PXOR	X12, X8
  1453  	PXOR	X13, X9
  1454  	PXOR	X14, X10
  1455  	PXOR	X15, X11
  1456  	PXOR	X10, X8
  1457  	PXOR	X11, X9
  1458  	PXOR	X9, X8
  1459  	// X15 must be zero on return
  1460  	PXOR	X15, X15
  1461  	MOVQ	X8, AX	// return X8
  1462  	RET
  1463  
  1464  aes129plus:
  1465  	// make 7 more starting seeds
  1466  	MOVO	X1, X2
  1467  	MOVO	X1, X3
  1468  	MOVO	X1, X4
  1469  	MOVO	X1, X5
  1470  	MOVO	X1, X6
  1471  	MOVO	X1, X7
  1472  	PXOR	runtime·aeskeysched+16(SB), X1
  1473  	PXOR	runtime·aeskeysched+32(SB), X2
  1474  	PXOR	runtime·aeskeysched+48(SB), X3
  1475  	PXOR	runtime·aeskeysched+64(SB), X4
  1476  	PXOR	runtime·aeskeysched+80(SB), X5
  1477  	PXOR	runtime·aeskeysched+96(SB), X6
  1478  	PXOR	runtime·aeskeysched+112(SB), X7
  1479  	AESENC	X1, X1
  1480  	AESENC	X2, X2
  1481  	AESENC	X3, X3
  1482  	AESENC	X4, X4
  1483  	AESENC	X5, X5
  1484  	AESENC	X6, X6
  1485  	AESENC	X7, X7
  1486  
  1487  	// start with last (possibly overlapping) block
  1488  	MOVOU	-128(AX)(CX*1), X8
  1489  	MOVOU	-112(AX)(CX*1), X9
  1490  	MOVOU	-96(AX)(CX*1), X10
  1491  	MOVOU	-80(AX)(CX*1), X11
  1492  	MOVOU	-64(AX)(CX*1), X12
  1493  	MOVOU	-48(AX)(CX*1), X13
  1494  	MOVOU	-32(AX)(CX*1), X14
  1495  	MOVOU	-16(AX)(CX*1), X15
  1496  
  1497  	// xor in seed
  1498  	PXOR	X0, X8
  1499  	PXOR	X1, X9
  1500  	PXOR	X2, X10
  1501  	PXOR	X3, X11
  1502  	PXOR	X4, X12
  1503  	PXOR	X5, X13
  1504  	PXOR	X6, X14
  1505  	PXOR	X7, X15
  1506  
  1507  	// compute number of remaining 128-byte blocks
  1508  	DECQ	CX
  1509  	SHRQ	$7, CX
  1510  
  1511  	PCALIGN $16
  1512  aesloop:
  1513  	// scramble state
  1514  	AESENC	X8, X8
  1515  	AESENC	X9, X9
  1516  	AESENC	X10, X10
  1517  	AESENC	X11, X11
  1518  	AESENC	X12, X12
  1519  	AESENC	X13, X13
  1520  	AESENC	X14, X14
  1521  	AESENC	X15, X15
  1522  
  1523  	// scramble state, xor in a block
  1524  	MOVOU	(AX), X0
  1525  	MOVOU	16(AX), X1
  1526  	MOVOU	32(AX), X2
  1527  	MOVOU	48(AX), X3
  1528  	AESENC	X0, X8
  1529  	AESENC	X1, X9
  1530  	AESENC	X2, X10
  1531  	AESENC	X3, X11
  1532  	MOVOU	64(AX), X4
  1533  	MOVOU	80(AX), X5
  1534  	MOVOU	96(AX), X6
  1535  	MOVOU	112(AX), X7
  1536  	AESENC	X4, X12
  1537  	AESENC	X5, X13
  1538  	AESENC	X6, X14
  1539  	AESENC	X7, X15
  1540  
  1541  	ADDQ	$128, AX
  1542  	DECQ	CX
  1543  	JNE	aesloop
  1544  
  1545  	// 3 more scrambles to finish
  1546  	AESENC	X8, X8
  1547  	AESENC	X9, X9
  1548  	AESENC	X10, X10
  1549  	AESENC	X11, X11
  1550  	AESENC	X12, X12
  1551  	AESENC	X13, X13
  1552  	AESENC	X14, X14
  1553  	AESENC	X15, X15
  1554  	AESENC	X8, X8
  1555  	AESENC	X9, X9
  1556  	AESENC	X10, X10
  1557  	AESENC	X11, X11
  1558  	AESENC	X12, X12
  1559  	AESENC	X13, X13
  1560  	AESENC	X14, X14
  1561  	AESENC	X15, X15
  1562  	AESENC	X8, X8
  1563  	AESENC	X9, X9
  1564  	AESENC	X10, X10
  1565  	AESENC	X11, X11
  1566  	AESENC	X12, X12
  1567  	AESENC	X13, X13
  1568  	AESENC	X14, X14
  1569  	AESENC	X15, X15
  1570  
  1571  	PXOR	X12, X8
  1572  	PXOR	X13, X9
  1573  	PXOR	X14, X10
  1574  	PXOR	X15, X11
  1575  	PXOR	X10, X8
  1576  	PXOR	X11, X9
  1577  	PXOR	X9, X8
  1578  	// X15 must be zero on return
  1579  	PXOR	X15, X15
  1580  	MOVQ	X8, AX	// return X8
  1581  	RET
  1582  
  1583  // func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1584  // ABIInternal for performance.
  1585  TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1586  	// AX = ptr to data
  1587  	// BX = seed
  1588  	CMPB	runtime·useAeshash(SB), $0
  1589  	JEQ	noaes
  1590  	MOVQ	BX, X0	// X0 = seed
  1591  	PINSRD	$2, (AX), X0	// data
  1592  	AESENC	runtime·aeskeysched+0(SB), X0
  1593  	AESENC	runtime·aeskeysched+16(SB), X0
  1594  	AESENC	runtime·aeskeysched+32(SB), X0
  1595  	MOVQ	X0, AX	// return X0
  1596  	RET
  1597  noaes:
  1598  	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1599  
  1600  // func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1601  // ABIInternal for performance.
  1602  TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1603  	// AX = ptr to data
  1604  	// BX = seed
  1605  	CMPB	runtime·useAeshash(SB), $0
  1606  	JEQ	noaes
  1607  	MOVQ	BX, X0	// X0 = seed
  1608  	PINSRQ	$1, (AX), X0	// data
  1609  	AESENC	runtime·aeskeysched+0(SB), X0
  1610  	AESENC	runtime·aeskeysched+16(SB), X0
  1611  	AESENC	runtime·aeskeysched+32(SB), X0
  1612  	MOVQ	X0, AX	// return X0
  1613  	RET
  1614  noaes:
  1615  	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1616  
  1617  // simple mask to get rid of data in the high part of the register.
  1618  DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1619  DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1620  DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1621  DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1622  DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1623  DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1624  DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1625  DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1626  DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1627  DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1628  DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1629  DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1630  DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1631  DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1632  DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1633  DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1634  DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1635  DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1636  DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1637  DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1638  DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1639  DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1640  DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1641  DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1642  DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1643  DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1644  DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1645  DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1646  DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1647  DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1648  DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1649  DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1650  GLOBL masks<>(SB),RODATA,$256
  1651  
  1652  // func checkASM() bool
  1653  TEXT ·checkASM(SB),NOSPLIT,$0-1
  1654  	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1655  	MOVQ	$masks<>(SB), AX
  1656  	MOVQ	$shifts<>(SB), BX
  1657  	ORQ	BX, AX
  1658  	TESTQ	$15, AX
  1659  	SETEQ	ret+0(FP)
  1660  	RET
  1661  
  1662  // these are arguments to pshufb. They move data down from
  1663  // the high bytes of the register to the low bytes of the register.
  1664  // index is how many bytes to move.
  1665  DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1666  DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1667  DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1668  DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1669  DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1670  DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1671  DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1672  DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1673  DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1674  DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1675  DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1676  DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1677  DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1678  DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1679  DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1680  DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1681  DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1682  DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1683  DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1684  DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1685  DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1686  DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1687  DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1688  DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1689  DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1690  DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1691  DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1692  DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1693  DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1694  DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1695  DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1696  DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1697  GLOBL shifts<>(SB),RODATA,$256
  1698  
  1699  // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1700  // Must obey the gcc calling convention.
  1701  TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1702  	get_tls(CX)
  1703  	MOVQ	g(CX), AX
  1704  	MOVQ	g_m(AX), AX
  1705  	MOVQ	m_curg(AX), AX
  1706  	MOVQ	(g_stack+stack_hi)(AX), AX
  1707  	RET
  1708  
  1709  // The top-most function running on a goroutine
  1710  // returns to goexit+PCQuantum.
  1711  TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1712  	BYTE	$0x90	// NOP
  1713  	CALL	runtime·goexit1(SB)	// does not return
  1714  	// traceback from goexit1 must hit code range of goexit
  1715  	BYTE	$0x90	// NOP
  1716  
  1717  // This is called from .init_array and follows the platform, not Go, ABI.
  1718  TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1719  	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1720  	MOVQ	runtime·lastmoduledatap(SB), AX
  1721  	MOVQ	DI, moduledata_next(AX)
  1722  	MOVQ	DI, runtime·lastmoduledatap(SB)
  1723  	POPQ	R15
  1724  	RET
  1725  
  1726  // Initialize special registers then jump to sigpanic.
  1727  // This function is injected from the signal handler for panicking
  1728  // signals. It is quite painful to set X15 in the signal context,
  1729  // so we do it here.
  1730  TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1731  	get_tls(R14)
  1732  	MOVQ	g(R14), R14
  1733  	XORPS	X15, X15
  1734  	JMP	·sigpanic<ABIInternal>(SB)
  1735  
  1736  // gcWriteBarrier informs the GC about heap pointer writes.
  1737  //
  1738  // gcWriteBarrier returns space in a write barrier buffer which
  1739  // should be filled in by the caller.
  1740  // gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1741  // number of bytes of buffer needed in R11, and returns a pointer
  1742  // to the buffer space in R11.
  1743  // It clobbers FLAGS. It does not clobber any general-purpose registers,
  1744  // but may clobber others (e.g., SSE registers).
  1745  // Typical use would be, when doing *(CX+88) = AX
  1746  //     CMPL    $0, runtime.writeBarrier(SB)
  1747  //     JEQ     dowrite
  1748  //     CALL    runtime.gcBatchBarrier2(SB)
  1749  //     MOVQ    AX, (R11)
  1750  //     MOVQ    88(CX), DX
  1751  //     MOVQ    DX, 8(R11)
  1752  // dowrite:
  1753  //     MOVQ    AX, 88(CX)
  1754  TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1755  	// Save the registers clobbered by the fast path. This is slightly
  1756  	// faster than having the caller spill these.
  1757  	MOVQ	R12, 96(SP)
  1758  	MOVQ	R13, 104(SP)
  1759  retry:
  1760  	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1761  	// across a sequence of write barriers.
  1762  	MOVQ	g_m(R14), R13
  1763  	MOVQ	m_p(R13), R13
  1764  	// Get current buffer write position.
  1765  	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1766  	ADDQ	R11, R12			// new next position
  1767  	// Is the buffer full?
  1768  	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1769  	JA	flush
  1770  	// Commit to the larger buffer.
  1771  	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1772  	// Make return value (the original next position)
  1773  	SUBQ	R11, R12
  1774  	MOVQ	R12, R11
  1775  	// Restore registers.
  1776  	MOVQ	96(SP), R12
  1777  	MOVQ	104(SP), R13
  1778  	RET
  1779  
  1780  flush:
  1781  	// Save all general purpose registers since these could be
  1782  	// clobbered by wbBufFlush and were not saved by the caller.
  1783  	// It is possible for wbBufFlush to clobber other registers
  1784  	// (e.g., SSE registers), but the compiler takes care of saving
  1785  	// those in the caller if necessary. This strikes a balance
  1786  	// with registers that are likely to be used.
  1787  	//
  1788  	// We don't have type information for these, but all code under
  1789  	// here is NOSPLIT, so nothing will observe these.
  1790  	//
  1791  	// TODO: We could strike a different balance; e.g., saving X0
  1792  	// and not saving GP registers that are less likely to be used.
  1793  	MOVQ	DI, 0(SP)
  1794  	MOVQ	AX, 8(SP)
  1795  	MOVQ	BX, 16(SP)
  1796  	MOVQ	CX, 24(SP)
  1797  	MOVQ	DX, 32(SP)
  1798  	// DI already saved
  1799  	MOVQ	SI, 40(SP)
  1800  	MOVQ	BP, 48(SP)
  1801  	MOVQ	R8, 56(SP)
  1802  	MOVQ	R9, 64(SP)
  1803  	MOVQ	R10, 72(SP)
  1804  	MOVQ	R11, 80(SP)
  1805  	// R12 already saved
  1806  	// R13 already saved
  1807  	// R14 is g
  1808  	MOVQ	R15, 88(SP)
  1809  
  1810  	CALL	runtime·wbBufFlush(SB)
  1811  
  1812  	MOVQ	0(SP), DI
  1813  	MOVQ	8(SP), AX
  1814  	MOVQ	16(SP), BX
  1815  	MOVQ	24(SP), CX
  1816  	MOVQ	32(SP), DX
  1817  	MOVQ	40(SP), SI
  1818  	MOVQ	48(SP), BP
  1819  	MOVQ	56(SP), R8
  1820  	MOVQ	64(SP), R9
  1821  	MOVQ	72(SP), R10
  1822  	MOVQ	80(SP), R11
  1823  	MOVQ	88(SP), R15
  1824  	JMP	retry
  1825  
  1826  TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1827  	MOVL   $8, R11
  1828  	JMP     gcWriteBarrier<>(SB)
  1829  TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1830  	MOVL   $16, R11
  1831  	JMP     gcWriteBarrier<>(SB)
  1832  TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1833  	MOVL   $24, R11
  1834  	JMP     gcWriteBarrier<>(SB)
  1835  TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1836  	MOVL   $32, R11
  1837  	JMP     gcWriteBarrier<>(SB)
  1838  TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1839  	MOVL   $40, R11
  1840  	JMP     gcWriteBarrier<>(SB)
  1841  TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1842  	MOVL   $48, R11
  1843  	JMP     gcWriteBarrier<>(SB)
  1844  TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1845  	MOVL   $56, R11
  1846  	JMP     gcWriteBarrier<>(SB)
  1847  TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1848  	MOVL   $64, R11
  1849  	JMP     gcWriteBarrier<>(SB)
  1850  
  1851  DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1852  GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1853  
  1854  // debugCallV2 is the entry point for debugger-injected function
  1855  // calls on running goroutines. It informs the runtime that a
  1856  // debug call has been injected and creates a call frame for the
  1857  // debugger to fill in.
  1858  //
  1859  // To inject a function call, a debugger should:
  1860  // 1. Check that the goroutine is in state _Grunning and that
  1861  //    there are at least 256 bytes free on the stack.
  1862  // 2. Push the current PC on the stack (updating SP).
  1863  // 3. Write the desired argument frame size at SP-16 (using the SP
  1864  //    after step 2).
  1865  // 4. Save all machine registers (including flags and XMM registers)
  1866  //    so they can be restored later by the debugger.
  1867  // 5. Set the PC to debugCallV2 and resume execution.
  1868  //
  1869  // If the goroutine is in state _Grunnable, then it's not generally
  1870  // safe to inject a call because it may return out via other runtime
  1871  // operations. Instead, the debugger should unwind the stack to find
  1872  // the return to non-runtime code, add a temporary breakpoint there,
  1873  // and inject the call once that breakpoint is hit.
  1874  //
  1875  // If the goroutine is in any other state, it's not safe to inject a call.
  1876  //
  1877  // This function communicates back to the debugger by setting R12 and
  1878  // invoking INT3 to raise a breakpoint signal. See the comments in the
  1879  // implementation for the protocol the debugger is expected to
  1880  // follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1881  //
  1882  // The debugger must ensure that any pointers passed to the function
  1883  // obey escape analysis requirements. Specifically, it must not pass
  1884  // a stack pointer to an escaping argument. debugCallV2 cannot check
  1885  // this invariant.
  1886  //
  1887  // This is ABIInternal because Go code injects its PC directly into new
  1888  // goroutine stacks.
  1889  TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1890  	// Save all registers that may contain pointers so they can be
  1891  	// conservatively scanned.
  1892  	//
  1893  	// We can't do anything that might clobber any of these
  1894  	// registers before this.
  1895  	MOVQ	R15, r15-(14*8+8)(SP)
  1896  	MOVQ	R14, r14-(13*8+8)(SP)
  1897  	MOVQ	R13, r13-(12*8+8)(SP)
  1898  	MOVQ	R12, r12-(11*8+8)(SP)
  1899  	MOVQ	R11, r11-(10*8+8)(SP)
  1900  	MOVQ	R10, r10-(9*8+8)(SP)
  1901  	MOVQ	R9, r9-(8*8+8)(SP)
  1902  	MOVQ	R8, r8-(7*8+8)(SP)
  1903  	MOVQ	DI, di-(6*8+8)(SP)
  1904  	MOVQ	SI, si-(5*8+8)(SP)
  1905  	MOVQ	BP, bp-(4*8+8)(SP)
  1906  	MOVQ	BX, bx-(3*8+8)(SP)
  1907  	MOVQ	DX, dx-(2*8+8)(SP)
  1908  	// Save the frame size before we clobber it. Either of the last
  1909  	// saves could clobber this depending on whether there's a saved BP.
  1910  	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1911  	MOVQ	CX, cx-(1*8+8)(SP)
  1912  	MOVQ	AX, ax-(0*8+8)(SP)
  1913  
  1914  	// Save the argument frame size.
  1915  	MOVQ	DX, frameSize-128(SP)
  1916  
  1917  	// Perform a safe-point check.
  1918  	MOVQ	retpc-8(FP), AX	// Caller's PC
  1919  	MOVQ	AX, 0(SP)
  1920  	CALL	runtime·debugCallCheck(SB)
  1921  	MOVQ	8(SP), AX
  1922  	TESTQ	AX, AX
  1923  	JZ	good
  1924  	// The safety check failed. Put the reason string at the top
  1925  	// of the stack.
  1926  	MOVQ	AX, 0(SP)
  1927  	MOVQ	16(SP), AX
  1928  	MOVQ	AX, 8(SP)
  1929  	// Set R12 to 8 and invoke INT3. The debugger should get the
  1930  	// reason a call can't be injected from the top of the stack
  1931  	// and resume execution.
  1932  	MOVQ	$8, R12
  1933  	BYTE	$0xcc
  1934  	JMP	restore
  1935  
  1936  good:
  1937  	// Registers are saved and it's safe to make a call.
  1938  	// Open up a call frame, moving the stack if necessary.
  1939  	//
  1940  	// Once the frame is allocated, this will set R12 to 0 and
  1941  	// invoke INT3. The debugger should write the argument
  1942  	// frame for the call at SP, set up argument registers, push
  1943  	// the trapping PC on the stack, set the PC to the function to
  1944  	// call, set RDX to point to the closure (if a closure call),
  1945  	// and resume execution.
  1946  	//
  1947  	// If the function returns, this will set R12 to 1 and invoke
  1948  	// INT3. The debugger can then inspect any return value saved
  1949  	// on the stack at SP and in registers and resume execution again.
  1950  	//
  1951  	// If the function panics, this will set R12 to 2 and invoke INT3.
  1952  	// The interface{} value of the panic will be at SP. The debugger
  1953  	// can inspect the panic value and resume execution again.
  1954  #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1955  	CMPQ	AX, $MAXSIZE;			\
  1956  	JA	5(PC);				\
  1957  	MOVQ	$NAME(SB), AX;			\
  1958  	MOVQ	AX, 0(SP);			\
  1959  	CALL	runtime·debugCallWrap(SB);	\
  1960  	JMP	restore
  1961  
  1962  	MOVQ	frameSize-128(SP), AX
  1963  	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1964  	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1965  	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1966  	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1967  	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1968  	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1969  	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1970  	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1971  	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1972  	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1973  	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1974  	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1975  	// The frame size is too large. Report the error.
  1976  	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1977  	MOVQ	AX, 0(SP)
  1978  	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1979  	MOVQ	$8, R12
  1980  	BYTE	$0xcc
  1981  	JMP	restore
  1982  
  1983  restore:
  1984  	// Calls and failures resume here.
  1985  	//
  1986  	// Set R12 to 16 and invoke INT3. The debugger should restore
  1987  	// all registers except RIP and RSP and resume execution.
  1988  	MOVQ	$16, R12
  1989  	BYTE	$0xcc
  1990  	// We must not modify flags after this point.
  1991  
  1992  	// Restore pointer-containing registers, which may have been
  1993  	// modified from the debugger's copy by stack copying.
  1994  	MOVQ	ax-(0*8+8)(SP), AX
  1995  	MOVQ	cx-(1*8+8)(SP), CX
  1996  	MOVQ	dx-(2*8+8)(SP), DX
  1997  	MOVQ	bx-(3*8+8)(SP), BX
  1998  	MOVQ	bp-(4*8+8)(SP), BP
  1999  	MOVQ	si-(5*8+8)(SP), SI
  2000  	MOVQ	di-(6*8+8)(SP), DI
  2001  	MOVQ	r8-(7*8+8)(SP), R8
  2002  	MOVQ	r9-(8*8+8)(SP), R9
  2003  	MOVQ	r10-(9*8+8)(SP), R10
  2004  	MOVQ	r11-(10*8+8)(SP), R11
  2005  	MOVQ	r12-(11*8+8)(SP), R12
  2006  	MOVQ	r13-(12*8+8)(SP), R13
  2007  	MOVQ	r14-(13*8+8)(SP), R14
  2008  	MOVQ	r15-(14*8+8)(SP), R15
  2009  
  2010  	RET
  2011  
  2012  // runtime.debugCallCheck assumes that functions defined with the
  2013  // DEBUG_CALL_FN macro are safe points to inject calls.
  2014  #define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  2015  TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  2016  	NO_LOCAL_POINTERS;			\
  2017  	MOVQ	$0, R12;				\
  2018  	BYTE	$0xcc;				\
  2019  	MOVQ	$1, R12;				\
  2020  	BYTE	$0xcc;				\
  2021  	RET
  2022  DEBUG_CALL_FN(debugCall32<>, 32)
  2023  DEBUG_CALL_FN(debugCall64<>, 64)
  2024  DEBUG_CALL_FN(debugCall128<>, 128)
  2025  DEBUG_CALL_FN(debugCall256<>, 256)
  2026  DEBUG_CALL_FN(debugCall512<>, 512)
  2027  DEBUG_CALL_FN(debugCall1024<>, 1024)
  2028  DEBUG_CALL_FN(debugCall2048<>, 2048)
  2029  DEBUG_CALL_FN(debugCall4096<>, 4096)
  2030  DEBUG_CALL_FN(debugCall8192<>, 8192)
  2031  DEBUG_CALL_FN(debugCall16384<>, 16384)
  2032  DEBUG_CALL_FN(debugCall32768<>, 32768)
  2033  DEBUG_CALL_FN(debugCall65536<>, 65536)
  2034  
  2035  // func debugCallPanicked(val interface{})
  2036  TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2037  	// Copy the panic value to the top of stack.
  2038  	MOVQ	val_type+0(FP), AX
  2039  	MOVQ	AX, 0(SP)
  2040  	MOVQ	val_data+8(FP), AX
  2041  	MOVQ	AX, 8(SP)
  2042  	MOVQ	$2, R12
  2043  	BYTE	$0xcc
  2044  	RET
  2045  
  2046  TEXT runtime·panicBounds<ABIInternal>(SB),NOSPLIT,$144-0
  2047  	NO_LOCAL_POINTERS
  2048  	// Save all 14 int registers that could have an index in them.
  2049  	// They may be pointers, but if they are they are dead.
  2050  	MOVQ	AX, 16(SP)
  2051  	MOVQ	CX, 24(SP)
  2052  	MOVQ	DX, 32(SP)
  2053  	MOVQ	BX, 40(SP)
  2054  	// skip SP @ 48(SP)
  2055  	MOVQ	BP, 56(SP)
  2056  	MOVQ	SI, 64(SP)
  2057  	MOVQ	DI, 72(SP)
  2058  	MOVQ	R8, 80(SP)
  2059  	MOVQ	R9, 88(SP)
  2060  	MOVQ	R10, 96(SP)
  2061  	MOVQ	R11, 104(SP)
  2062  	MOVQ	R12, 112(SP)
  2063  	MOVQ	R13, 120(SP)
  2064  	// skip R14 @ 128(SP) (aka G)
  2065  	MOVQ	R15, 136(SP)
  2066  
  2067  	MOVQ	SP, AX		// hide SP read from vet
  2068  	MOVQ	152(AX), AX	// PC immediately after call to panicBounds
  2069  	LEAQ	16(SP), BX
  2070  	CALL	runtime·panicBounds64<ABIInternal>(SB)
  2071  	RET
  2072  
  2073  #ifdef GOOS_android
  2074  // Use the free TLS_SLOT_APP slot #2 on Android Q.
  2075  // Earlier androids are set up in gcc_android.c.
  2076  DATA runtime·tls_g+0(SB)/8, $16
  2077  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2078  #endif
  2079  #ifdef GOOS_windows
  2080  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2081  #endif
  2082  
  2083  // The compiler and assembler's -spectre=ret mode rewrites
  2084  // all indirect CALL AX / JMP AX instructions to be
  2085  // CALL retpolineAX / JMP retpolineAX.
  2086  // See https://support.google.com/faqs/answer/7625886.
  2087  #define RETPOLINE(reg) \
  2088  	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2089  	/* nospec: */									\
  2090  	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2091  	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2092  	/* setup: */									\
  2093  	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2094  	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2095  	/*   RET */             BYTE $0xC3
  2096  
  2097  TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2098  TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2099  TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2100  TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2101  /* SP is 4, can't happen / magic encodings */
  2102  TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2103  TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2104  TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2105  TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2106  TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2107  TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2108  TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2109  TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2110  TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2111  TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2112  TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2113  
  2114  TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2115  	MOVQ BP, AX
  2116  	RET
  2117  

View as plain text