Source file src/runtime/mprof.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Malloc profiling.
     6  // Patterned after tcmalloc's algorithms; shorter code.
     7  
     8  package runtime
     9  
    10  import (
    11  	"internal/abi"
    12  	"internal/runtime/atomic"
    13  	"runtime/internal/sys"
    14  	"unsafe"
    15  )
    16  
    17  // NOTE(rsc): Everything here could use cas if contention became an issue.
    18  var (
    19  	// profInsertLock protects changes to the start of all *bucket linked lists
    20  	profInsertLock mutex
    21  	// profBlockLock protects the contents of every blockRecord struct
    22  	profBlockLock mutex
    23  	// profMemActiveLock protects the active field of every memRecord struct
    24  	profMemActiveLock mutex
    25  	// profMemFutureLock is a set of locks that protect the respective elements
    26  	// of the future array of every memRecord struct
    27  	profMemFutureLock [len(memRecord{}.future)]mutex
    28  )
    29  
    30  // All memory allocations are local and do not escape outside of the profiler.
    31  // The profiler is forbidden from referring to garbage-collected memory.
    32  
    33  const (
    34  	// profile types
    35  	memProfile bucketType = 1 + iota
    36  	blockProfile
    37  	mutexProfile
    38  
    39  	// size of bucket hash table
    40  	buckHashSize = 179999
    41  
    42  	// maxStack is the max depth of stack to record in bucket.
    43  	// Note that it's only used internally as a guard against
    44  	// wildly out-of-bounds slicing of the PCs that come after
    45  	// a bucket struct, and it could increase in the future.
    46  	// The "+ 1" is to account for the first stack entry being
    47  	// taken up by a "skip" sentinel value for profilers which
    48  	// defer inline frame expansion until the profile is reported.
    49  	maxStack = 32 + 1
    50  )
    51  
    52  type bucketType int
    53  
    54  // A bucket holds per-call-stack profiling information.
    55  // The representation is a bit sleazy, inherited from C.
    56  // This struct defines the bucket header. It is followed in
    57  // memory by the stack words and then the actual record
    58  // data, either a memRecord or a blockRecord.
    59  //
    60  // Per-call-stack profiling information.
    61  // Lookup by hashing call stack into a linked-list hash table.
    62  //
    63  // None of the fields in this bucket header are modified after
    64  // creation, including its next and allnext links.
    65  //
    66  // No heap pointers.
    67  type bucket struct {
    68  	_       sys.NotInHeap
    69  	next    *bucket
    70  	allnext *bucket
    71  	typ     bucketType // memBucket or blockBucket (includes mutexProfile)
    72  	hash    uintptr
    73  	size    uintptr
    74  	nstk    uintptr
    75  }
    76  
    77  // A memRecord is the bucket data for a bucket of type memProfile,
    78  // part of the memory profile.
    79  type memRecord struct {
    80  	// The following complex 3-stage scheme of stats accumulation
    81  	// is required to obtain a consistent picture of mallocs and frees
    82  	// for some point in time.
    83  	// The problem is that mallocs come in real time, while frees
    84  	// come only after a GC during concurrent sweeping. So if we would
    85  	// naively count them, we would get a skew toward mallocs.
    86  	//
    87  	// Hence, we delay information to get consistent snapshots as
    88  	// of mark termination. Allocations count toward the next mark
    89  	// termination's snapshot, while sweep frees count toward the
    90  	// previous mark termination's snapshot:
    91  	//
    92  	//              MT          MT          MT          MT
    93  	//             .·|         .·|         .·|         .·|
    94  	//          .·˙  |      .·˙  |      .·˙  |      .·˙  |
    95  	//       .·˙     |   .·˙     |   .·˙     |   .·˙     |
    96  	//    .·˙        |.·˙        |.·˙        |.·˙        |
    97  	//
    98  	//       alloc → ▲ ← free
    99  	//               ┠┅┅┅┅┅┅┅┅┅┅┅P
   100  	//       C+2     →    C+1    →  C
   101  	//
   102  	//                   alloc → ▲ ← free
   103  	//                           ┠┅┅┅┅┅┅┅┅┅┅┅P
   104  	//                   C+2     →    C+1    →  C
   105  	//
   106  	// Since we can't publish a consistent snapshot until all of
   107  	// the sweep frees are accounted for, we wait until the next
   108  	// mark termination ("MT" above) to publish the previous mark
   109  	// termination's snapshot ("P" above). To do this, allocation
   110  	// and free events are accounted to *future* heap profile
   111  	// cycles ("C+n" above) and we only publish a cycle once all
   112  	// of the events from that cycle must be done. Specifically:
   113  	//
   114  	// Mallocs are accounted to cycle C+2.
   115  	// Explicit frees are accounted to cycle C+2.
   116  	// GC frees (done during sweeping) are accounted to cycle C+1.
   117  	//
   118  	// After mark termination, we increment the global heap
   119  	// profile cycle counter and accumulate the stats from cycle C
   120  	// into the active profile.
   121  
   122  	// active is the currently published profile. A profiling
   123  	// cycle can be accumulated into active once its complete.
   124  	active memRecordCycle
   125  
   126  	// future records the profile events we're counting for cycles
   127  	// that have not yet been published. This is ring buffer
   128  	// indexed by the global heap profile cycle C and stores
   129  	// cycles C, C+1, and C+2. Unlike active, these counts are
   130  	// only for a single cycle; they are not cumulative across
   131  	// cycles.
   132  	//
   133  	// We store cycle C here because there's a window between when
   134  	// C becomes the active cycle and when we've flushed it to
   135  	// active.
   136  	future [3]memRecordCycle
   137  }
   138  
   139  // memRecordCycle
   140  type memRecordCycle struct {
   141  	allocs, frees           uintptr
   142  	alloc_bytes, free_bytes uintptr
   143  }
   144  
   145  // add accumulates b into a. It does not zero b.
   146  func (a *memRecordCycle) add(b *memRecordCycle) {
   147  	a.allocs += b.allocs
   148  	a.frees += b.frees
   149  	a.alloc_bytes += b.alloc_bytes
   150  	a.free_bytes += b.free_bytes
   151  }
   152  
   153  // A blockRecord is the bucket data for a bucket of type blockProfile,
   154  // which is used in blocking and mutex profiles.
   155  type blockRecord struct {
   156  	count  float64
   157  	cycles int64
   158  }
   159  
   160  var (
   161  	mbuckets atomic.UnsafePointer // *bucket, memory profile buckets
   162  	bbuckets atomic.UnsafePointer // *bucket, blocking profile buckets
   163  	xbuckets atomic.UnsafePointer // *bucket, mutex profile buckets
   164  	buckhash atomic.UnsafePointer // *buckhashArray
   165  
   166  	mProfCycle mProfCycleHolder
   167  )
   168  
   169  type buckhashArray [buckHashSize]atomic.UnsafePointer // *bucket
   170  
   171  const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
   172  
   173  // mProfCycleHolder holds the global heap profile cycle number (wrapped at
   174  // mProfCycleWrap, stored starting at bit 1), and a flag (stored at bit 0) to
   175  // indicate whether future[cycle] in all buckets has been queued to flush into
   176  // the active profile.
   177  type mProfCycleHolder struct {
   178  	value atomic.Uint32
   179  }
   180  
   181  // read returns the current cycle count.
   182  func (c *mProfCycleHolder) read() (cycle uint32) {
   183  	v := c.value.Load()
   184  	cycle = v >> 1
   185  	return cycle
   186  }
   187  
   188  // setFlushed sets the flushed flag. It returns the current cycle count and the
   189  // previous value of the flushed flag.
   190  func (c *mProfCycleHolder) setFlushed() (cycle uint32, alreadyFlushed bool) {
   191  	for {
   192  		prev := c.value.Load()
   193  		cycle = prev >> 1
   194  		alreadyFlushed = (prev & 0x1) != 0
   195  		next := prev | 0x1
   196  		if c.value.CompareAndSwap(prev, next) {
   197  			return cycle, alreadyFlushed
   198  		}
   199  	}
   200  }
   201  
   202  // increment increases the cycle count by one, wrapping the value at
   203  // mProfCycleWrap. It clears the flushed flag.
   204  func (c *mProfCycleHolder) increment() {
   205  	// We explicitly wrap mProfCycle rather than depending on
   206  	// uint wraparound because the memRecord.future ring does not
   207  	// itself wrap at a power of two.
   208  	for {
   209  		prev := c.value.Load()
   210  		cycle := prev >> 1
   211  		cycle = (cycle + 1) % mProfCycleWrap
   212  		next := cycle << 1
   213  		if c.value.CompareAndSwap(prev, next) {
   214  			break
   215  		}
   216  	}
   217  }
   218  
   219  // newBucket allocates a bucket with the given type and number of stack entries.
   220  func newBucket(typ bucketType, nstk int) *bucket {
   221  	size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(uintptr(0))
   222  	switch typ {
   223  	default:
   224  		throw("invalid profile bucket type")
   225  	case memProfile:
   226  		size += unsafe.Sizeof(memRecord{})
   227  	case blockProfile, mutexProfile:
   228  		size += unsafe.Sizeof(blockRecord{})
   229  	}
   230  
   231  	b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
   232  	b.typ = typ
   233  	b.nstk = uintptr(nstk)
   234  	return b
   235  }
   236  
   237  // stk returns the slice in b holding the stack.
   238  func (b *bucket) stk() []uintptr {
   239  	stk := (*[maxStack]uintptr)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
   240  	if b.nstk > maxStack {
   241  		// prove that slicing works; otherwise a failure requires a P
   242  		throw("bad profile stack count")
   243  	}
   244  	return stk[:b.nstk:b.nstk]
   245  }
   246  
   247  // mp returns the memRecord associated with the memProfile bucket b.
   248  func (b *bucket) mp() *memRecord {
   249  	if b.typ != memProfile {
   250  		throw("bad use of bucket.mp")
   251  	}
   252  	data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
   253  	return (*memRecord)(data)
   254  }
   255  
   256  // bp returns the blockRecord associated with the blockProfile bucket b.
   257  func (b *bucket) bp() *blockRecord {
   258  	if b.typ != blockProfile && b.typ != mutexProfile {
   259  		throw("bad use of bucket.bp")
   260  	}
   261  	data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(uintptr(0)))
   262  	return (*blockRecord)(data)
   263  }
   264  
   265  // Return the bucket for stk[0:nstk], allocating new bucket if needed.
   266  func stkbucket(typ bucketType, size uintptr, stk []uintptr, alloc bool) *bucket {
   267  	bh := (*buckhashArray)(buckhash.Load())
   268  	if bh == nil {
   269  		lock(&profInsertLock)
   270  		// check again under the lock
   271  		bh = (*buckhashArray)(buckhash.Load())
   272  		if bh == nil {
   273  			bh = (*buckhashArray)(sysAlloc(unsafe.Sizeof(buckhashArray{}), &memstats.buckhash_sys))
   274  			if bh == nil {
   275  				throw("runtime: cannot allocate memory")
   276  			}
   277  			buckhash.StoreNoWB(unsafe.Pointer(bh))
   278  		}
   279  		unlock(&profInsertLock)
   280  	}
   281  
   282  	// Hash stack.
   283  	var h uintptr
   284  	for _, pc := range stk {
   285  		h += pc
   286  		h += h << 10
   287  		h ^= h >> 6
   288  	}
   289  	// hash in size
   290  	h += size
   291  	h += h << 10
   292  	h ^= h >> 6
   293  	// finalize
   294  	h += h << 3
   295  	h ^= h >> 11
   296  
   297  	i := int(h % buckHashSize)
   298  	// first check optimistically, without the lock
   299  	for b := (*bucket)(bh[i].Load()); b != nil; b = b.next {
   300  		if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
   301  			return b
   302  		}
   303  	}
   304  
   305  	if !alloc {
   306  		return nil
   307  	}
   308  
   309  	lock(&profInsertLock)
   310  	// check again under the insertion lock
   311  	for b := (*bucket)(bh[i].Load()); b != nil; b = b.next {
   312  		if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
   313  			unlock(&profInsertLock)
   314  			return b
   315  		}
   316  	}
   317  
   318  	// Create new bucket.
   319  	b := newBucket(typ, len(stk))
   320  	copy(b.stk(), stk)
   321  	b.hash = h
   322  	b.size = size
   323  
   324  	var allnext *atomic.UnsafePointer
   325  	if typ == memProfile {
   326  		allnext = &mbuckets
   327  	} else if typ == mutexProfile {
   328  		allnext = &xbuckets
   329  	} else {
   330  		allnext = &bbuckets
   331  	}
   332  
   333  	b.next = (*bucket)(bh[i].Load())
   334  	b.allnext = (*bucket)(allnext.Load())
   335  
   336  	bh[i].StoreNoWB(unsafe.Pointer(b))
   337  	allnext.StoreNoWB(unsafe.Pointer(b))
   338  
   339  	unlock(&profInsertLock)
   340  	return b
   341  }
   342  
   343  func eqslice(x, y []uintptr) bool {
   344  	if len(x) != len(y) {
   345  		return false
   346  	}
   347  	for i, xi := range x {
   348  		if xi != y[i] {
   349  			return false
   350  		}
   351  	}
   352  	return true
   353  }
   354  
   355  // mProf_NextCycle publishes the next heap profile cycle and creates a
   356  // fresh heap profile cycle. This operation is fast and can be done
   357  // during STW. The caller must call mProf_Flush before calling
   358  // mProf_NextCycle again.
   359  //
   360  // This is called by mark termination during STW so allocations and
   361  // frees after the world is started again count towards a new heap
   362  // profiling cycle.
   363  func mProf_NextCycle() {
   364  	mProfCycle.increment()
   365  }
   366  
   367  // mProf_Flush flushes the events from the current heap profiling
   368  // cycle into the active profile. After this it is safe to start a new
   369  // heap profiling cycle with mProf_NextCycle.
   370  //
   371  // This is called by GC after mark termination starts the world. In
   372  // contrast with mProf_NextCycle, this is somewhat expensive, but safe
   373  // to do concurrently.
   374  func mProf_Flush() {
   375  	cycle, alreadyFlushed := mProfCycle.setFlushed()
   376  	if alreadyFlushed {
   377  		return
   378  	}
   379  
   380  	index := cycle % uint32(len(memRecord{}.future))
   381  	lock(&profMemActiveLock)
   382  	lock(&profMemFutureLock[index])
   383  	mProf_FlushLocked(index)
   384  	unlock(&profMemFutureLock[index])
   385  	unlock(&profMemActiveLock)
   386  }
   387  
   388  // mProf_FlushLocked flushes the events from the heap profiling cycle at index
   389  // into the active profile. The caller must hold the lock for the active profile
   390  // (profMemActiveLock) and for the profiling cycle at index
   391  // (profMemFutureLock[index]).
   392  func mProf_FlushLocked(index uint32) {
   393  	assertLockHeld(&profMemActiveLock)
   394  	assertLockHeld(&profMemFutureLock[index])
   395  	head := (*bucket)(mbuckets.Load())
   396  	for b := head; b != nil; b = b.allnext {
   397  		mp := b.mp()
   398  
   399  		// Flush cycle C into the published profile and clear
   400  		// it for reuse.
   401  		mpc := &mp.future[index]
   402  		mp.active.add(mpc)
   403  		*mpc = memRecordCycle{}
   404  	}
   405  }
   406  
   407  // mProf_PostSweep records that all sweep frees for this GC cycle have
   408  // completed. This has the effect of publishing the heap profile
   409  // snapshot as of the last mark termination without advancing the heap
   410  // profile cycle.
   411  func mProf_PostSweep() {
   412  	// Flush cycle C+1 to the active profile so everything as of
   413  	// the last mark termination becomes visible. *Don't* advance
   414  	// the cycle, since we're still accumulating allocs in cycle
   415  	// C+2, which have to become C+1 in the next mark termination
   416  	// and so on.
   417  	cycle := mProfCycle.read() + 1
   418  
   419  	index := cycle % uint32(len(memRecord{}.future))
   420  	lock(&profMemActiveLock)
   421  	lock(&profMemFutureLock[index])
   422  	mProf_FlushLocked(index)
   423  	unlock(&profMemFutureLock[index])
   424  	unlock(&profMemActiveLock)
   425  }
   426  
   427  // Called by malloc to record a profiled block.
   428  func mProf_Malloc(mp *m, p unsafe.Pointer, size uintptr) {
   429  	nstk := callers(4, mp.profStack)
   430  	index := (mProfCycle.read() + 2) % uint32(len(memRecord{}.future))
   431  
   432  	b := stkbucket(memProfile, size, mp.profStack[:nstk], true)
   433  	mr := b.mp()
   434  	mpc := &mr.future[index]
   435  
   436  	lock(&profMemFutureLock[index])
   437  	mpc.allocs++
   438  	mpc.alloc_bytes += size
   439  	unlock(&profMemFutureLock[index])
   440  
   441  	// Setprofilebucket locks a bunch of other mutexes, so we call it outside of
   442  	// the profiler locks. This reduces potential contention and chances of
   443  	// deadlocks. Since the object must be alive during the call to
   444  	// mProf_Malloc, it's fine to do this non-atomically.
   445  	systemstack(func() {
   446  		setprofilebucket(p, b)
   447  	})
   448  }
   449  
   450  // Called when freeing a profiled block.
   451  func mProf_Free(b *bucket, size uintptr) {
   452  	index := (mProfCycle.read() + 1) % uint32(len(memRecord{}.future))
   453  
   454  	mp := b.mp()
   455  	mpc := &mp.future[index]
   456  
   457  	lock(&profMemFutureLock[index])
   458  	mpc.frees++
   459  	mpc.free_bytes += size
   460  	unlock(&profMemFutureLock[index])
   461  }
   462  
   463  var blockprofilerate uint64 // in CPU ticks
   464  
   465  // SetBlockProfileRate controls the fraction of goroutine blocking events
   466  // that are reported in the blocking profile. The profiler aims to sample
   467  // an average of one blocking event per rate nanoseconds spent blocked.
   468  //
   469  // To include every blocking event in the profile, pass rate = 1.
   470  // To turn off profiling entirely, pass rate <= 0.
   471  func SetBlockProfileRate(rate int) {
   472  	var r int64
   473  	if rate <= 0 {
   474  		r = 0 // disable profiling
   475  	} else if rate == 1 {
   476  		r = 1 // profile everything
   477  	} else {
   478  		// convert ns to cycles, use float64 to prevent overflow during multiplication
   479  		r = int64(float64(rate) * float64(ticksPerSecond()) / (1000 * 1000 * 1000))
   480  		if r == 0 {
   481  			r = 1
   482  		}
   483  	}
   484  
   485  	atomic.Store64(&blockprofilerate, uint64(r))
   486  }
   487  
   488  func blockevent(cycles int64, skip int) {
   489  	if cycles <= 0 {
   490  		cycles = 1
   491  	}
   492  
   493  	rate := int64(atomic.Load64(&blockprofilerate))
   494  	if blocksampled(cycles, rate) {
   495  		saveblockevent(cycles, rate, skip+1, blockProfile)
   496  	}
   497  }
   498  
   499  // blocksampled returns true for all events where cycles >= rate. Shorter
   500  // events have a cycles/rate random chance of returning true.
   501  func blocksampled(cycles, rate int64) bool {
   502  	if rate <= 0 || (rate > cycles && cheaprand64()%rate > cycles) {
   503  		return false
   504  	}
   505  	return true
   506  }
   507  
   508  // saveblockevent records a profile event of the type specified by which.
   509  // cycles is the quantity associated with this event and rate is the sampling rate,
   510  // used to adjust the cycles value in the manner determined by the profile type.
   511  // skip is the number of frames to omit from the traceback associated with the event.
   512  // The traceback will be recorded from the stack of the goroutine associated with the current m.
   513  // skip should be positive if this event is recorded from the current stack
   514  // (e.g. when this is not called from a system stack)
   515  func saveblockevent(cycles, rate int64, skip int, which bucketType) {
   516  	gp := getg()
   517  	mp := acquirem() // we must not be preempted while accessing profstack
   518  	nstk := 1
   519  	if tracefpunwindoff() || gp.m.hasCgoOnStack() {
   520  		mp.profStack[0] = logicalStackSentinel
   521  		if gp.m.curg == nil || gp.m.curg == gp {
   522  			nstk = callers(skip, mp.profStack[1:])
   523  		} else {
   524  			nstk = gcallers(gp.m.curg, skip, mp.profStack[1:])
   525  		}
   526  	} else {
   527  		mp.profStack[0] = uintptr(skip)
   528  		if gp.m.curg == nil || gp.m.curg == gp {
   529  			if skip > 0 {
   530  				// We skip one fewer frame than the provided value for frame
   531  				// pointer unwinding because the skip value includes the current
   532  				// frame, whereas the saved frame pointer will give us the
   533  				// caller's return address first (so, not including
   534  				// saveblockevent)
   535  				mp.profStack[0] -= 1
   536  			}
   537  			nstk += fpTracebackPCs(unsafe.Pointer(getfp()), mp.profStack[1:])
   538  		} else {
   539  			mp.profStack[1] = gp.m.curg.sched.pc
   540  			nstk += 1 + fpTracebackPCs(unsafe.Pointer(gp.m.curg.sched.bp), mp.profStack[2:])
   541  		}
   542  	}
   543  
   544  	saveBlockEventStack(cycles, rate, mp.profStack[:nstk], which)
   545  	releasem(mp)
   546  }
   547  
   548  // lockTimer assists with profiling contention on runtime-internal locks.
   549  //
   550  // There are several steps between the time that an M experiences contention and
   551  // when that contention may be added to the profile. This comes from our
   552  // constraints: We need to keep the critical section of each lock small,
   553  // especially when those locks are contended. The reporting code cannot acquire
   554  // new locks until the M has released all other locks, which means no memory
   555  // allocations and encourages use of (temporary) M-local storage.
   556  //
   557  // The M will have space for storing one call stack that caused contention, and
   558  // for the magnitude of that contention. It will also have space to store the
   559  // magnitude of additional contention the M caused, since it only has space to
   560  // remember one call stack and might encounter several contention events before
   561  // it releases all of its locks and is thus able to transfer the local buffer
   562  // into the profile.
   563  //
   564  // The M will collect the call stack when it unlocks the contended lock. That
   565  // minimizes the impact on the critical section of the contended lock, and
   566  // matches the mutex profile's behavior for contention in sync.Mutex: measured
   567  // at the Unlock method.
   568  //
   569  // The profile for contention on sync.Mutex blames the caller of Unlock for the
   570  // amount of contention experienced by the callers of Lock which had to wait.
   571  // When there are several critical sections, this allows identifying which of
   572  // them is responsible.
   573  //
   574  // Matching that behavior for runtime-internal locks will require identifying
   575  // which Ms are blocked on the mutex. The semaphore-based implementation is
   576  // ready to allow that, but the futex-based implementation will require a bit
   577  // more work. Until then, we report contention on runtime-internal locks with a
   578  // call stack taken from the unlock call (like the rest of the user-space
   579  // "mutex" profile), but assign it a duration value based on how long the
   580  // previous lock call took (like the user-space "block" profile).
   581  //
   582  // Thus, reporting the call stacks of runtime-internal lock contention is
   583  // guarded by GODEBUG for now. Set GODEBUG=runtimecontentionstacks=1 to enable.
   584  //
   585  // TODO(rhysh): plumb through the delay duration, remove GODEBUG, update comment
   586  //
   587  // The M will track this by storing a pointer to the lock; lock/unlock pairs for
   588  // runtime-internal locks are always on the same M.
   589  //
   590  // Together, that demands several steps for recording contention. First, when
   591  // finally acquiring a contended lock, the M decides whether it should plan to
   592  // profile that event by storing a pointer to the lock in its "to be profiled
   593  // upon unlock" field. If that field is already set, it uses the relative
   594  // magnitudes to weight a random choice between itself and the other lock, with
   595  // the loser's time being added to the "additional contention" field. Otherwise
   596  // if the M's call stack buffer is occupied, it does the comparison against that
   597  // sample's magnitude.
   598  //
   599  // Second, having unlocked a mutex the M checks to see if it should capture the
   600  // call stack into its local buffer. Finally, when the M unlocks its last mutex,
   601  // it transfers the local buffer into the profile. As part of that step, it also
   602  // transfers any "additional contention" time to the profile. Any lock
   603  // contention that it experiences while adding samples to the profile will be
   604  // recorded later as "additional contention" and not include a call stack, to
   605  // avoid an echo.
   606  type lockTimer struct {
   607  	lock      *mutex
   608  	timeRate  int64
   609  	timeStart int64
   610  	tickStart int64
   611  }
   612  
   613  func (lt *lockTimer) begin() {
   614  	rate := int64(atomic.Load64(&mutexprofilerate))
   615  
   616  	lt.timeRate = gTrackingPeriod
   617  	if rate != 0 && rate < lt.timeRate {
   618  		lt.timeRate = rate
   619  	}
   620  	if int64(cheaprand())%lt.timeRate == 0 {
   621  		lt.timeStart = nanotime()
   622  	}
   623  
   624  	if rate > 0 && int64(cheaprand())%rate == 0 {
   625  		lt.tickStart = cputicks()
   626  	}
   627  }
   628  
   629  func (lt *lockTimer) end() {
   630  	gp := getg()
   631  
   632  	if lt.timeStart != 0 {
   633  		nowTime := nanotime()
   634  		gp.m.mLockProfile.waitTime.Add((nowTime - lt.timeStart) * lt.timeRate)
   635  	}
   636  
   637  	if lt.tickStart != 0 {
   638  		nowTick := cputicks()
   639  		gp.m.mLockProfile.recordLock(nowTick-lt.tickStart, lt.lock)
   640  	}
   641  }
   642  
   643  type mLockProfile struct {
   644  	waitTime   atomic.Int64 // total nanoseconds spent waiting in runtime.lockWithRank
   645  	stack      []uintptr    // stack that experienced contention in runtime.lockWithRank
   646  	pending    uintptr      // *mutex that experienced contention (to be traceback-ed)
   647  	cycles     int64        // cycles attributable to "pending" (if set), otherwise to "stack"
   648  	cyclesLost int64        // contention for which we weren't able to record a call stack
   649  	disabled   bool         // attribute all time to "lost"
   650  }
   651  
   652  func (prof *mLockProfile) recordLock(cycles int64, l *mutex) {
   653  	if cycles <= 0 {
   654  		return
   655  	}
   656  
   657  	if prof.disabled {
   658  		// We're experiencing contention while attempting to report contention.
   659  		// Make a note of its magnitude, but don't allow it to be the sole cause
   660  		// of another contention report.
   661  		prof.cyclesLost += cycles
   662  		return
   663  	}
   664  
   665  	if uintptr(unsafe.Pointer(l)) == prof.pending {
   666  		// Optimization: we'd already planned to profile this same lock (though
   667  		// possibly from a different unlock site).
   668  		prof.cycles += cycles
   669  		return
   670  	}
   671  
   672  	if prev := prof.cycles; prev > 0 {
   673  		// We can only store one call stack for runtime-internal lock contention
   674  		// on this M, and we've already got one. Decide which should stay, and
   675  		// add the other to the report for runtime._LostContendedRuntimeLock.
   676  		prevScore := uint64(cheaprand64()) % uint64(prev)
   677  		thisScore := uint64(cheaprand64()) % uint64(cycles)
   678  		if prevScore > thisScore {
   679  			prof.cyclesLost += cycles
   680  			return
   681  		} else {
   682  			prof.cyclesLost += prev
   683  		}
   684  	}
   685  	// Saving the *mutex as a uintptr is safe because:
   686  	//  - lockrank_on.go does this too, which gives it regular exercise
   687  	//  - the lock would only move if it's stack allocated, which means it
   688  	//      cannot experience multi-M contention
   689  	prof.pending = uintptr(unsafe.Pointer(l))
   690  	prof.cycles = cycles
   691  }
   692  
   693  // From unlock2, we might not be holding a p in this code.
   694  //
   695  //go:nowritebarrierrec
   696  func (prof *mLockProfile) recordUnlock(l *mutex) {
   697  	if uintptr(unsafe.Pointer(l)) == prof.pending {
   698  		prof.captureStack()
   699  	}
   700  	if gp := getg(); gp.m.locks == 1 && gp.m.mLockProfile.cycles != 0 {
   701  		prof.store()
   702  	}
   703  }
   704  
   705  func (prof *mLockProfile) captureStack() {
   706  	skip := 3 // runtime.(*mLockProfile).recordUnlock runtime.unlock2 runtime.unlockWithRank
   707  	if staticLockRanking {
   708  		// When static lock ranking is enabled, we'll always be on the system
   709  		// stack at this point. There will be a runtime.unlockWithRank.func1
   710  		// frame, and if the call to runtime.unlock took place on a user stack
   711  		// then there'll also be a runtime.systemstack frame. To keep stack
   712  		// traces somewhat consistent whether or not static lock ranking is
   713  		// enabled, we'd like to skip those. But it's hard to tell how long
   714  		// we've been on the system stack so accept an extra frame in that case,
   715  		// with a leaf of "runtime.unlockWithRank runtime.unlock" instead of
   716  		// "runtime.unlock".
   717  		skip += 1 // runtime.unlockWithRank.func1
   718  	}
   719  	prof.pending = 0
   720  
   721  	prof.stack[0] = logicalStackSentinel
   722  	if debug.runtimeContentionStacks.Load() == 0 {
   723  		prof.stack[1] = abi.FuncPCABIInternal(_LostContendedRuntimeLock) + sys.PCQuantum
   724  		prof.stack[2] = 0
   725  		return
   726  	}
   727  
   728  	var nstk int
   729  	gp := getg()
   730  	sp := getcallersp()
   731  	pc := getcallerpc()
   732  	systemstack(func() {
   733  		var u unwinder
   734  		u.initAt(pc, sp, 0, gp, unwindSilentErrors|unwindJumpStack)
   735  		nstk = 1 + tracebackPCs(&u, skip, prof.stack[1:])
   736  	})
   737  	if nstk < len(prof.stack) {
   738  		prof.stack[nstk] = 0
   739  	}
   740  }
   741  
   742  func (prof *mLockProfile) store() {
   743  	// Report any contention we experience within this function as "lost"; it's
   744  	// important that the act of reporting a contention event not lead to a
   745  	// reportable contention event. This also means we can use prof.stack
   746  	// without copying, since it won't change during this function.
   747  	mp := acquirem()
   748  	prof.disabled = true
   749  
   750  	nstk := maxStack
   751  	for i := 0; i < nstk; i++ {
   752  		if pc := prof.stack[i]; pc == 0 {
   753  			nstk = i
   754  			break
   755  		}
   756  	}
   757  
   758  	cycles, lost := prof.cycles, prof.cyclesLost
   759  	prof.cycles, prof.cyclesLost = 0, 0
   760  
   761  	rate := int64(atomic.Load64(&mutexprofilerate))
   762  	saveBlockEventStack(cycles, rate, prof.stack[:nstk], mutexProfile)
   763  	if lost > 0 {
   764  		lostStk := [...]uintptr{
   765  			logicalStackSentinel,
   766  			abi.FuncPCABIInternal(_LostContendedRuntimeLock) + sys.PCQuantum,
   767  		}
   768  		saveBlockEventStack(lost, rate, lostStk[:], mutexProfile)
   769  	}
   770  
   771  	prof.disabled = false
   772  	releasem(mp)
   773  }
   774  
   775  func saveBlockEventStack(cycles, rate int64, stk []uintptr, which bucketType) {
   776  	b := stkbucket(which, 0, stk, true)
   777  	bp := b.bp()
   778  
   779  	lock(&profBlockLock)
   780  	// We want to up-scale the count and cycles according to the
   781  	// probability that the event was sampled. For block profile events,
   782  	// the sample probability is 1 if cycles >= rate, and cycles / rate
   783  	// otherwise. For mutex profile events, the sample probability is 1 / rate.
   784  	// We scale the events by 1 / (probability the event was sampled).
   785  	if which == blockProfile && cycles < rate {
   786  		// Remove sampling bias, see discussion on http://golang.org/cl/299991.
   787  		bp.count += float64(rate) / float64(cycles)
   788  		bp.cycles += rate
   789  	} else if which == mutexProfile {
   790  		bp.count += float64(rate)
   791  		bp.cycles += rate * cycles
   792  	} else {
   793  		bp.count++
   794  		bp.cycles += cycles
   795  	}
   796  	unlock(&profBlockLock)
   797  }
   798  
   799  var mutexprofilerate uint64 // fraction sampled
   800  
   801  // SetMutexProfileFraction controls the fraction of mutex contention events
   802  // that are reported in the mutex profile. On average 1/rate events are
   803  // reported. The previous rate is returned.
   804  //
   805  // To turn off profiling entirely, pass rate 0.
   806  // To just read the current rate, pass rate < 0.
   807  // (For n>1 the details of sampling may change.)
   808  func SetMutexProfileFraction(rate int) int {
   809  	if rate < 0 {
   810  		return int(mutexprofilerate)
   811  	}
   812  	old := mutexprofilerate
   813  	atomic.Store64(&mutexprofilerate, uint64(rate))
   814  	return int(old)
   815  }
   816  
   817  //go:linkname mutexevent sync.event
   818  func mutexevent(cycles int64, skip int) {
   819  	if cycles < 0 {
   820  		cycles = 0
   821  	}
   822  	rate := int64(atomic.Load64(&mutexprofilerate))
   823  	if rate > 0 && cheaprand64()%rate == 0 {
   824  		saveblockevent(cycles, rate, skip+1, mutexProfile)
   825  	}
   826  }
   827  
   828  // Go interface to profile data.
   829  
   830  // A StackRecord describes a single execution stack.
   831  type StackRecord struct {
   832  	Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
   833  }
   834  
   835  // Stack returns the stack trace associated with the record,
   836  // a prefix of r.Stack0.
   837  func (r *StackRecord) Stack() []uintptr {
   838  	for i, v := range r.Stack0 {
   839  		if v == 0 {
   840  			return r.Stack0[0:i]
   841  		}
   842  	}
   843  	return r.Stack0[0:]
   844  }
   845  
   846  // MemProfileRate controls the fraction of memory allocations
   847  // that are recorded and reported in the memory profile.
   848  // The profiler aims to sample an average of
   849  // one allocation per MemProfileRate bytes allocated.
   850  //
   851  // To include every allocated block in the profile, set MemProfileRate to 1.
   852  // To turn off profiling entirely, set MemProfileRate to 0.
   853  //
   854  // The tools that process the memory profiles assume that the
   855  // profile rate is constant across the lifetime of the program
   856  // and equal to the current value. Programs that change the
   857  // memory profiling rate should do so just once, as early as
   858  // possible in the execution of the program (for example,
   859  // at the beginning of main).
   860  var MemProfileRate int = 512 * 1024
   861  
   862  // disableMemoryProfiling is set by the linker if runtime.MemProfile
   863  // is not used and the link type guarantees nobody else could use it
   864  // elsewhere.
   865  var disableMemoryProfiling bool
   866  
   867  // A MemProfileRecord describes the live objects allocated
   868  // by a particular call sequence (stack trace).
   869  type MemProfileRecord struct {
   870  	AllocBytes, FreeBytes     int64       // number of bytes allocated, freed
   871  	AllocObjects, FreeObjects int64       // number of objects allocated, freed
   872  	Stack0                    [32]uintptr // stack trace for this record; ends at first 0 entry
   873  }
   874  
   875  // InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
   876  func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
   877  
   878  // InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
   879  func (r *MemProfileRecord) InUseObjects() int64 {
   880  	return r.AllocObjects - r.FreeObjects
   881  }
   882  
   883  // Stack returns the stack trace associated with the record,
   884  // a prefix of r.Stack0.
   885  func (r *MemProfileRecord) Stack() []uintptr {
   886  	for i, v := range r.Stack0 {
   887  		if v == 0 {
   888  			return r.Stack0[0:i]
   889  		}
   890  	}
   891  	return r.Stack0[0:]
   892  }
   893  
   894  // MemProfile returns a profile of memory allocated and freed per allocation
   895  // site.
   896  //
   897  // MemProfile returns n, the number of records in the current memory profile.
   898  // If len(p) >= n, MemProfile copies the profile into p and returns n, true.
   899  // If len(p) < n, MemProfile does not change p and returns n, false.
   900  //
   901  // If inuseZero is true, the profile includes allocation records
   902  // where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
   903  // These are sites where memory was allocated, but it has all
   904  // been released back to the runtime.
   905  //
   906  // The returned profile may be up to two garbage collection cycles old.
   907  // This is to avoid skewing the profile toward allocations; because
   908  // allocations happen in real time but frees are delayed until the garbage
   909  // collector performs sweeping, the profile only accounts for allocations
   910  // that have had a chance to be freed by the garbage collector.
   911  //
   912  // Most clients should use the runtime/pprof package or
   913  // the testing package's -test.memprofile flag instead
   914  // of calling MemProfile directly.
   915  func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {
   916  	cycle := mProfCycle.read()
   917  	// If we're between mProf_NextCycle and mProf_Flush, take care
   918  	// of flushing to the active profile so we only have to look
   919  	// at the active profile below.
   920  	index := cycle % uint32(len(memRecord{}.future))
   921  	lock(&profMemActiveLock)
   922  	lock(&profMemFutureLock[index])
   923  	mProf_FlushLocked(index)
   924  	unlock(&profMemFutureLock[index])
   925  	clear := true
   926  	head := (*bucket)(mbuckets.Load())
   927  	for b := head; b != nil; b = b.allnext {
   928  		mp := b.mp()
   929  		if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
   930  			n++
   931  		}
   932  		if mp.active.allocs != 0 || mp.active.frees != 0 {
   933  			clear = false
   934  		}
   935  	}
   936  	if clear {
   937  		// Absolutely no data, suggesting that a garbage collection
   938  		// has not yet happened. In order to allow profiling when
   939  		// garbage collection is disabled from the beginning of execution,
   940  		// accumulate all of the cycles, and recount buckets.
   941  		n = 0
   942  		for b := head; b != nil; b = b.allnext {
   943  			mp := b.mp()
   944  			for c := range mp.future {
   945  				lock(&profMemFutureLock[c])
   946  				mp.active.add(&mp.future[c])
   947  				mp.future[c] = memRecordCycle{}
   948  				unlock(&profMemFutureLock[c])
   949  			}
   950  			if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
   951  				n++
   952  			}
   953  		}
   954  	}
   955  	if n <= len(p) {
   956  		ok = true
   957  		idx := 0
   958  		for b := head; b != nil; b = b.allnext {
   959  			mp := b.mp()
   960  			if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
   961  				record(&p[idx], b)
   962  				idx++
   963  			}
   964  		}
   965  	}
   966  	unlock(&profMemActiveLock)
   967  	return
   968  }
   969  
   970  // Write b's data to r.
   971  func record(r *MemProfileRecord, b *bucket) {
   972  	mp := b.mp()
   973  	r.AllocBytes = int64(mp.active.alloc_bytes)
   974  	r.FreeBytes = int64(mp.active.free_bytes)
   975  	r.AllocObjects = int64(mp.active.allocs)
   976  	r.FreeObjects = int64(mp.active.frees)
   977  	if raceenabled {
   978  		racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(MemProfile))
   979  	}
   980  	if msanenabled {
   981  		msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
   982  	}
   983  	if asanenabled {
   984  		asanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
   985  	}
   986  	i := copy(r.Stack0[:], b.stk())
   987  	clear(r.Stack0[i:])
   988  }
   989  
   990  func iterate_memprof(fn func(*bucket, uintptr, *uintptr, uintptr, uintptr, uintptr)) {
   991  	lock(&profMemActiveLock)
   992  	head := (*bucket)(mbuckets.Load())
   993  	for b := head; b != nil; b = b.allnext {
   994  		mp := b.mp()
   995  		fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees)
   996  	}
   997  	unlock(&profMemActiveLock)
   998  }
   999  
  1000  // BlockProfileRecord describes blocking events originated
  1001  // at a particular call sequence (stack trace).
  1002  type BlockProfileRecord struct {
  1003  	Count  int64
  1004  	Cycles int64
  1005  	StackRecord
  1006  }
  1007  
  1008  // BlockProfile returns n, the number of records in the current blocking profile.
  1009  // If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
  1010  // If len(p) < n, BlockProfile does not change p and returns n, false.
  1011  //
  1012  // Most clients should use the [runtime/pprof] package or
  1013  // the [testing] package's -test.blockprofile flag instead
  1014  // of calling BlockProfile directly.
  1015  func BlockProfile(p []BlockProfileRecord) (n int, ok bool) {
  1016  	lock(&profBlockLock)
  1017  	head := (*bucket)(bbuckets.Load())
  1018  	for b := head; b != nil; b = b.allnext {
  1019  		n++
  1020  	}
  1021  	if n <= len(p) {
  1022  		ok = true
  1023  		for b := head; b != nil; b = b.allnext {
  1024  			bp := b.bp()
  1025  			r := &p[0]
  1026  			r.Count = int64(bp.count)
  1027  			// Prevent callers from having to worry about division by zero errors.
  1028  			// See discussion on http://golang.org/cl/299991.
  1029  			if r.Count == 0 {
  1030  				r.Count = 1
  1031  			}
  1032  			r.Cycles = bp.cycles
  1033  			if raceenabled {
  1034  				racewriterangepc(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0), getcallerpc(), abi.FuncPCABIInternal(BlockProfile))
  1035  			}
  1036  			if msanenabled {
  1037  				msanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
  1038  			}
  1039  			if asanenabled {
  1040  				asanwrite(unsafe.Pointer(&r.Stack0[0]), unsafe.Sizeof(r.Stack0))
  1041  			}
  1042  			i := fpunwindExpand(r.Stack0[:], b.stk())
  1043  			clear(r.Stack0[i:])
  1044  			p = p[1:]
  1045  		}
  1046  	}
  1047  	unlock(&profBlockLock)
  1048  	return
  1049  }
  1050  
  1051  // MutexProfile returns n, the number of records in the current mutex profile.
  1052  // If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
  1053  // Otherwise, MutexProfile does not change p, and returns n, false.
  1054  //
  1055  // Most clients should use the [runtime/pprof] package
  1056  // instead of calling MutexProfile directly.
  1057  func MutexProfile(p []BlockProfileRecord) (n int, ok bool) {
  1058  	lock(&profBlockLock)
  1059  	head := (*bucket)(xbuckets.Load())
  1060  	for b := head; b != nil; b = b.allnext {
  1061  		n++
  1062  	}
  1063  	if n <= len(p) {
  1064  		ok = true
  1065  		for b := head; b != nil; b = b.allnext {
  1066  			bp := b.bp()
  1067  			r := &p[0]
  1068  			r.Count = int64(bp.count)
  1069  			r.Cycles = bp.cycles
  1070  			i := fpunwindExpand(r.Stack0[:], b.stk())
  1071  			clear(r.Stack0[i:])
  1072  			p = p[1:]
  1073  		}
  1074  	}
  1075  	unlock(&profBlockLock)
  1076  	return
  1077  }
  1078  
  1079  // ThreadCreateProfile returns n, the number of records in the thread creation profile.
  1080  // If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
  1081  // If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
  1082  //
  1083  // Most clients should use the runtime/pprof package instead
  1084  // of calling ThreadCreateProfile directly.
  1085  func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
  1086  	first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
  1087  	for mp := first; mp != nil; mp = mp.alllink {
  1088  		n++
  1089  	}
  1090  	if n <= len(p) {
  1091  		ok = true
  1092  		i := 0
  1093  		for mp := first; mp != nil; mp = mp.alllink {
  1094  			p[i].Stack0 = mp.createstack
  1095  			i++
  1096  		}
  1097  	}
  1098  	return
  1099  }
  1100  
  1101  //go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels
  1102  func runtime_goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
  1103  	return goroutineProfileWithLabels(p, labels)
  1104  }
  1105  
  1106  // labels may be nil. If labels is non-nil, it must have the same length as p.
  1107  func goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
  1108  	if labels != nil && len(labels) != len(p) {
  1109  		labels = nil
  1110  	}
  1111  
  1112  	return goroutineProfileWithLabelsConcurrent(p, labels)
  1113  }
  1114  
  1115  var goroutineProfile = struct {
  1116  	sema    uint32
  1117  	active  bool
  1118  	offset  atomic.Int64
  1119  	records []StackRecord
  1120  	labels  []unsafe.Pointer
  1121  }{
  1122  	sema: 1,
  1123  }
  1124  
  1125  // goroutineProfileState indicates the status of a goroutine's stack for the
  1126  // current in-progress goroutine profile. Goroutines' stacks are initially
  1127  // "Absent" from the profile, and end up "Satisfied" by the time the profile is
  1128  // complete. While a goroutine's stack is being captured, its
  1129  // goroutineProfileState will be "InProgress" and it will not be able to run
  1130  // until the capture completes and the state moves to "Satisfied".
  1131  //
  1132  // Some goroutines (the finalizer goroutine, which at various times can be
  1133  // either a "system" or a "user" goroutine, and the goroutine that is
  1134  // coordinating the profile, any goroutines created during the profile) move
  1135  // directly to the "Satisfied" state.
  1136  type goroutineProfileState uint32
  1137  
  1138  const (
  1139  	goroutineProfileAbsent goroutineProfileState = iota
  1140  	goroutineProfileInProgress
  1141  	goroutineProfileSatisfied
  1142  )
  1143  
  1144  type goroutineProfileStateHolder atomic.Uint32
  1145  
  1146  func (p *goroutineProfileStateHolder) Load() goroutineProfileState {
  1147  	return goroutineProfileState((*atomic.Uint32)(p).Load())
  1148  }
  1149  
  1150  func (p *goroutineProfileStateHolder) Store(value goroutineProfileState) {
  1151  	(*atomic.Uint32)(p).Store(uint32(value))
  1152  }
  1153  
  1154  func (p *goroutineProfileStateHolder) CompareAndSwap(old, new goroutineProfileState) bool {
  1155  	return (*atomic.Uint32)(p).CompareAndSwap(uint32(old), uint32(new))
  1156  }
  1157  
  1158  func goroutineProfileWithLabelsConcurrent(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
  1159  	if len(p) == 0 {
  1160  		// An empty slice is obviously too small. Return a rough
  1161  		// allocation estimate without bothering to STW. As long as
  1162  		// this is close, then we'll only need to STW once (on the next
  1163  		// call).
  1164  		return int(gcount()), false
  1165  	}
  1166  
  1167  	semacquire(&goroutineProfile.sema)
  1168  
  1169  	ourg := getg()
  1170  
  1171  	stw := stopTheWorld(stwGoroutineProfile)
  1172  	// Using gcount while the world is stopped should give us a consistent view
  1173  	// of the number of live goroutines, minus the number of goroutines that are
  1174  	// alive and permanently marked as "system". But to make this count agree
  1175  	// with what we'd get from isSystemGoroutine, we need special handling for
  1176  	// goroutines that can vary between user and system to ensure that the count
  1177  	// doesn't change during the collection. So, check the finalizer goroutine
  1178  	// in particular.
  1179  	n = int(gcount())
  1180  	if fingStatus.Load()&fingRunningFinalizer != 0 {
  1181  		n++
  1182  	}
  1183  
  1184  	if n > len(p) {
  1185  		// There's not enough space in p to store the whole profile, so (per the
  1186  		// contract of runtime.GoroutineProfile) we're not allowed to write to p
  1187  		// at all and must return n, false.
  1188  		startTheWorld(stw)
  1189  		semrelease(&goroutineProfile.sema)
  1190  		return n, false
  1191  	}
  1192  
  1193  	// Save current goroutine.
  1194  	sp := getcallersp()
  1195  	pc := getcallerpc()
  1196  	systemstack(func() {
  1197  		saveg(pc, sp, ourg, &p[0])
  1198  	})
  1199  	if labels != nil {
  1200  		labels[0] = ourg.labels
  1201  	}
  1202  	ourg.goroutineProfiled.Store(goroutineProfileSatisfied)
  1203  	goroutineProfile.offset.Store(1)
  1204  
  1205  	// Prepare for all other goroutines to enter the profile. Aside from ourg,
  1206  	// every goroutine struct in the allgs list has its goroutineProfiled field
  1207  	// cleared. Any goroutine created from this point on (while
  1208  	// goroutineProfile.active is set) will start with its goroutineProfiled
  1209  	// field set to goroutineProfileSatisfied.
  1210  	goroutineProfile.active = true
  1211  	goroutineProfile.records = p
  1212  	goroutineProfile.labels = labels
  1213  	// The finalizer goroutine needs special handling because it can vary over
  1214  	// time between being a user goroutine (eligible for this profile) and a
  1215  	// system goroutine (to be excluded). Pick one before restarting the world.
  1216  	if fing != nil {
  1217  		fing.goroutineProfiled.Store(goroutineProfileSatisfied)
  1218  		if readgstatus(fing) != _Gdead && !isSystemGoroutine(fing, false) {
  1219  			doRecordGoroutineProfile(fing)
  1220  		}
  1221  	}
  1222  	startTheWorld(stw)
  1223  
  1224  	// Visit each goroutine that existed as of the startTheWorld call above.
  1225  	//
  1226  	// New goroutines may not be in this list, but we didn't want to know about
  1227  	// them anyway. If they do appear in this list (via reusing a dead goroutine
  1228  	// struct, or racing to launch between the world restarting and us getting
  1229  	// the list), they will already have their goroutineProfiled field set to
  1230  	// goroutineProfileSatisfied before their state transitions out of _Gdead.
  1231  	//
  1232  	// Any goroutine that the scheduler tries to execute concurrently with this
  1233  	// call will start by adding itself to the profile (before the act of
  1234  	// executing can cause any changes in its stack).
  1235  	forEachGRace(func(gp1 *g) {
  1236  		tryRecordGoroutineProfile(gp1, Gosched)
  1237  	})
  1238  
  1239  	stw = stopTheWorld(stwGoroutineProfileCleanup)
  1240  	endOffset := goroutineProfile.offset.Swap(0)
  1241  	goroutineProfile.active = false
  1242  	goroutineProfile.records = nil
  1243  	goroutineProfile.labels = nil
  1244  	startTheWorld(stw)
  1245  
  1246  	// Restore the invariant that every goroutine struct in allgs has its
  1247  	// goroutineProfiled field cleared.
  1248  	forEachGRace(func(gp1 *g) {
  1249  		gp1.goroutineProfiled.Store(goroutineProfileAbsent)
  1250  	})
  1251  
  1252  	if raceenabled {
  1253  		raceacquire(unsafe.Pointer(&labelSync))
  1254  	}
  1255  
  1256  	if n != int(endOffset) {
  1257  		// It's a big surprise that the number of goroutines changed while we
  1258  		// were collecting the profile. But probably better to return a
  1259  		// truncated profile than to crash the whole process.
  1260  		//
  1261  		// For instance, needm moves a goroutine out of the _Gdead state and so
  1262  		// might be able to change the goroutine count without interacting with
  1263  		// the scheduler. For code like that, the race windows are small and the
  1264  		// combination of features is uncommon, so it's hard to be (and remain)
  1265  		// sure we've caught them all.
  1266  	}
  1267  
  1268  	semrelease(&goroutineProfile.sema)
  1269  	return n, true
  1270  }
  1271  
  1272  // tryRecordGoroutineProfileWB asserts that write barriers are allowed and calls
  1273  // tryRecordGoroutineProfile.
  1274  //
  1275  //go:yeswritebarrierrec
  1276  func tryRecordGoroutineProfileWB(gp1 *g) {
  1277  	if getg().m.p.ptr() == nil {
  1278  		throw("no P available, write barriers are forbidden")
  1279  	}
  1280  	tryRecordGoroutineProfile(gp1, osyield)
  1281  }
  1282  
  1283  // tryRecordGoroutineProfile ensures that gp1 has the appropriate representation
  1284  // in the current goroutine profile: either that it should not be profiled, or
  1285  // that a snapshot of its call stack and labels are now in the profile.
  1286  func tryRecordGoroutineProfile(gp1 *g, yield func()) {
  1287  	if readgstatus(gp1) == _Gdead {
  1288  		// Dead goroutines should not appear in the profile. Goroutines that
  1289  		// start while profile collection is active will get goroutineProfiled
  1290  		// set to goroutineProfileSatisfied before transitioning out of _Gdead,
  1291  		// so here we check _Gdead first.
  1292  		return
  1293  	}
  1294  	if isSystemGoroutine(gp1, true) {
  1295  		// System goroutines should not appear in the profile. (The finalizer
  1296  		// goroutine is marked as "already profiled".)
  1297  		return
  1298  	}
  1299  
  1300  	for {
  1301  		prev := gp1.goroutineProfiled.Load()
  1302  		if prev == goroutineProfileSatisfied {
  1303  			// This goroutine is already in the profile (or is new since the
  1304  			// start of collection, so shouldn't appear in the profile).
  1305  			break
  1306  		}
  1307  		if prev == goroutineProfileInProgress {
  1308  			// Something else is adding gp1 to the goroutine profile right now.
  1309  			// Give that a moment to finish.
  1310  			yield()
  1311  			continue
  1312  		}
  1313  
  1314  		// While we have gp1.goroutineProfiled set to
  1315  		// goroutineProfileInProgress, gp1 may appear _Grunnable but will not
  1316  		// actually be able to run. Disable preemption for ourselves, to make
  1317  		// sure we finish profiling gp1 right away instead of leaving it stuck
  1318  		// in this limbo.
  1319  		mp := acquirem()
  1320  		if gp1.goroutineProfiled.CompareAndSwap(goroutineProfileAbsent, goroutineProfileInProgress) {
  1321  			doRecordGoroutineProfile(gp1)
  1322  			gp1.goroutineProfiled.Store(goroutineProfileSatisfied)
  1323  		}
  1324  		releasem(mp)
  1325  	}
  1326  }
  1327  
  1328  // doRecordGoroutineProfile writes gp1's call stack and labels to an in-progress
  1329  // goroutine profile. Preemption is disabled.
  1330  //
  1331  // This may be called via tryRecordGoroutineProfile in two ways: by the
  1332  // goroutine that is coordinating the goroutine profile (running on its own
  1333  // stack), or from the scheduler in preparation to execute gp1 (running on the
  1334  // system stack).
  1335  func doRecordGoroutineProfile(gp1 *g) {
  1336  	if readgstatus(gp1) == _Grunning {
  1337  		print("doRecordGoroutineProfile gp1=", gp1.goid, "\n")
  1338  		throw("cannot read stack of running goroutine")
  1339  	}
  1340  
  1341  	offset := int(goroutineProfile.offset.Add(1)) - 1
  1342  
  1343  	if offset >= len(goroutineProfile.records) {
  1344  		// Should be impossible, but better to return a truncated profile than
  1345  		// to crash the entire process at this point. Instead, deal with it in
  1346  		// goroutineProfileWithLabelsConcurrent where we have more context.
  1347  		return
  1348  	}
  1349  
  1350  	// saveg calls gentraceback, which may call cgo traceback functions. When
  1351  	// called from the scheduler, this is on the system stack already so
  1352  	// traceback.go:cgoContextPCs will avoid calling back into the scheduler.
  1353  	//
  1354  	// When called from the goroutine coordinating the profile, we still have
  1355  	// set gp1.goroutineProfiled to goroutineProfileInProgress and so are still
  1356  	// preventing it from being truly _Grunnable. So we'll use the system stack
  1357  	// to avoid schedule delays.
  1358  	systemstack(func() { saveg(^uintptr(0), ^uintptr(0), gp1, &goroutineProfile.records[offset]) })
  1359  
  1360  	if goroutineProfile.labels != nil {
  1361  		goroutineProfile.labels[offset] = gp1.labels
  1362  	}
  1363  }
  1364  
  1365  func goroutineProfileWithLabelsSync(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
  1366  	gp := getg()
  1367  
  1368  	isOK := func(gp1 *g) bool {
  1369  		// Checking isSystemGoroutine here makes GoroutineProfile
  1370  		// consistent with both NumGoroutine and Stack.
  1371  		return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1, false)
  1372  	}
  1373  
  1374  	stw := stopTheWorld(stwGoroutineProfile)
  1375  
  1376  	// World is stopped, no locking required.
  1377  	n = 1
  1378  	forEachGRace(func(gp1 *g) {
  1379  		if isOK(gp1) {
  1380  			n++
  1381  		}
  1382  	})
  1383  
  1384  	if n <= len(p) {
  1385  		ok = true
  1386  		r, lbl := p, labels
  1387  
  1388  		// Save current goroutine.
  1389  		sp := getcallersp()
  1390  		pc := getcallerpc()
  1391  		systemstack(func() {
  1392  			saveg(pc, sp, gp, &r[0])
  1393  		})
  1394  		r = r[1:]
  1395  
  1396  		// If we have a place to put our goroutine labelmap, insert it there.
  1397  		if labels != nil {
  1398  			lbl[0] = gp.labels
  1399  			lbl = lbl[1:]
  1400  		}
  1401  
  1402  		// Save other goroutines.
  1403  		forEachGRace(func(gp1 *g) {
  1404  			if !isOK(gp1) {
  1405  				return
  1406  			}
  1407  
  1408  			if len(r) == 0 {
  1409  				// Should be impossible, but better to return a
  1410  				// truncated profile than to crash the entire process.
  1411  				return
  1412  			}
  1413  			// saveg calls gentraceback, which may call cgo traceback functions.
  1414  			// The world is stopped, so it cannot use cgocall (which will be
  1415  			// blocked at exitsyscall). Do it on the system stack so it won't
  1416  			// call into the schedular (see traceback.go:cgoContextPCs).
  1417  			systemstack(func() { saveg(^uintptr(0), ^uintptr(0), gp1, &r[0]) })
  1418  			if labels != nil {
  1419  				lbl[0] = gp1.labels
  1420  				lbl = lbl[1:]
  1421  			}
  1422  			r = r[1:]
  1423  		})
  1424  	}
  1425  
  1426  	if raceenabled {
  1427  		raceacquire(unsafe.Pointer(&labelSync))
  1428  	}
  1429  
  1430  	startTheWorld(stw)
  1431  	return n, ok
  1432  }
  1433  
  1434  // GoroutineProfile returns n, the number of records in the active goroutine stack profile.
  1435  // If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
  1436  // If len(p) < n, GoroutineProfile does not change p and returns n, false.
  1437  //
  1438  // Most clients should use the [runtime/pprof] package instead
  1439  // of calling GoroutineProfile directly.
  1440  func GoroutineProfile(p []StackRecord) (n int, ok bool) {
  1441  
  1442  	return goroutineProfileWithLabels(p, nil)
  1443  }
  1444  
  1445  func saveg(pc, sp uintptr, gp *g, r *StackRecord) {
  1446  	var u unwinder
  1447  	u.initAt(pc, sp, 0, gp, unwindSilentErrors)
  1448  	n := tracebackPCs(&u, 0, r.Stack0[:])
  1449  	if n < len(r.Stack0) {
  1450  		r.Stack0[n] = 0
  1451  	}
  1452  }
  1453  
  1454  // Stack formats a stack trace of the calling goroutine into buf
  1455  // and returns the number of bytes written to buf.
  1456  // If all is true, Stack formats stack traces of all other goroutines
  1457  // into buf after the trace for the current goroutine.
  1458  func Stack(buf []byte, all bool) int {
  1459  	var stw worldStop
  1460  	if all {
  1461  		stw = stopTheWorld(stwAllGoroutinesStack)
  1462  	}
  1463  
  1464  	n := 0
  1465  	if len(buf) > 0 {
  1466  		gp := getg()
  1467  		sp := getcallersp()
  1468  		pc := getcallerpc()
  1469  		systemstack(func() {
  1470  			g0 := getg()
  1471  			// Force traceback=1 to override GOTRACEBACK setting,
  1472  			// so that Stack's results are consistent.
  1473  			// GOTRACEBACK is only about crash dumps.
  1474  			g0.m.traceback = 1
  1475  			g0.writebuf = buf[0:0:len(buf)]
  1476  			goroutineheader(gp)
  1477  			traceback(pc, sp, 0, gp)
  1478  			if all {
  1479  				tracebackothers(gp)
  1480  			}
  1481  			g0.m.traceback = 0
  1482  			n = len(g0.writebuf)
  1483  			g0.writebuf = nil
  1484  		})
  1485  	}
  1486  
  1487  	if all {
  1488  		startTheWorld(stw)
  1489  	}
  1490  	return n
  1491  }
  1492  

View as plain text