Source file src/runtime/time.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Time-related runtime and pieces of package time.
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"internal/runtime/atomic"
    12  	"runtime/internal/sys"
    13  	"unsafe"
    14  )
    15  
    16  // A timer is a potentially repeating trigger for calling t.f(t.arg, t.seq).
    17  // Timers are allocated by client code, often as part of other data structures.
    18  // Each P has a heap of pointers to timers that it manages.
    19  //
    20  // A timer is expected to be used by only one client goroutine at a time,
    21  // but there will be concurrent access by the P managing that timer.
    22  // Timer accesses are protected by the lock t.mu, with a snapshot of
    23  // t's state bits published in t.astate to enable certain fast paths to make
    24  // decisions about a timer without acquiring the lock.
    25  type timer struct {
    26  	// mu protects reads and writes to all fields, with exceptions noted below.
    27  	mu mutex
    28  
    29  	astate  atomic.Uint8 // atomic copy of state bits at last unlock
    30  	state   uint8        // state bits
    31  	isChan  bool         // timer has a channel; immutable; can be read without lock
    32  	blocked uint32       // number of goroutines blocked on timer's channel
    33  
    34  	// Timer wakes up at when, and then at when+period, ... (period > 0 only)
    35  	// each time calling f(arg, seq, delay) in the timer goroutine, so f must be
    36  	// a well-behaved function and not block.
    37  	//
    38  	// The arg and seq are client-specified opaque arguments passed back to f.
    39  	// When used from netpoll, arg and seq have meanings defined by netpoll
    40  	// and are completely opaque to this code; in that context, seq is a sequence
    41  	// number to recognize and squech stale function invocations.
    42  	// When used from package time, arg is a channel (for After, NewTicker)
    43  	// or the function to call (for AfterFunc) and seq is unused (0).
    44  	//
    45  	// Package time does not know about seq, but if this is a channel timer (t.isChan == true),
    46  	// this file uses t.seq as a sequence number to recognize and squelch
    47  	// sends that correspond to an earlier (stale) timer configuration,
    48  	// similar to its use in netpoll. In this usage (that is, when t.isChan == true),
    49  	// writes to seq are protected by both t.mu and t.sendLock,
    50  	// so reads are allowed when holding either of the two mutexes.
    51  	//
    52  	// The delay argument is nanotime() - t.when, meaning the delay in ns between
    53  	// when the timer should have gone off and now. Normally that amount is
    54  	// small enough not to matter, but for channel timers that are fed lazily,
    55  	// the delay can be arbitrarily long; package time subtracts it out to make
    56  	// it look like the send happened earlier than it actually did.
    57  	// (No one looked at the channel since then, or the send would have
    58  	// not happened so late, so no one can tell the difference.)
    59  	when   int64
    60  	period int64
    61  	f      func(arg any, seq uintptr, delay int64)
    62  	arg    any
    63  	seq    uintptr
    64  
    65  	// If non-nil, the timers containing t.
    66  	ts *timers
    67  
    68  	// sendLock protects sends on the timer's channel.
    69  	// Not used for async (pre-Go 1.23) behavior when debug.asynctimerchan.Load() != 0.
    70  	sendLock mutex
    71  }
    72  
    73  // init initializes a newly allocated timer t.
    74  // Any code that allocates a timer must call t.init before using it.
    75  // The arg and f can be set during init, or they can be nil in init
    76  // and set by a future call to t.modify.
    77  func (t *timer) init(f func(arg any, seq uintptr, delay int64), arg any) {
    78  	lockInit(&t.mu, lockRankTimer)
    79  	t.f = f
    80  	t.arg = arg
    81  }
    82  
    83  // A timers is a per-P set of timers.
    84  type timers struct {
    85  	// mu protects timers; timers are per-P, but the scheduler can
    86  	// access the timers of another P, so we have to lock.
    87  	mu mutex
    88  
    89  	// heap is the set of timers, ordered by heap[i].when.
    90  	// Must hold lock to access.
    91  	heap []timerWhen
    92  
    93  	// len is an atomic copy of len(heap).
    94  	len atomic.Uint32
    95  
    96  	// zombies is the number of timers in the heap
    97  	// that are marked for removal.
    98  	zombies atomic.Int32
    99  
   100  	// raceCtx is the race context used while executing timer functions.
   101  	raceCtx uintptr
   102  
   103  	// minWhenHeap is the minimum heap[i].when value (= heap[0].when).
   104  	// The wakeTime method uses minWhenHeap and minWhenModified
   105  	// to determine the next wake time.
   106  	// If minWhenHeap = 0, it means there are no timers in the heap.
   107  	minWhenHeap atomic.Int64
   108  
   109  	// minWhenModified is a lower bound on the minimum
   110  	// heap[i].when over timers with the timerModified bit set.
   111  	// If minWhenModified = 0, it means there are no timerModified timers in the heap.
   112  	minWhenModified atomic.Int64
   113  }
   114  
   115  type timerWhen struct {
   116  	timer *timer
   117  	when  int64
   118  }
   119  
   120  func (ts *timers) lock() {
   121  	lock(&ts.mu)
   122  }
   123  
   124  func (ts *timers) unlock() {
   125  	// Update atomic copy of len(ts.heap).
   126  	// We only update at unlock so that the len is always
   127  	// the most recent unlocked length, not an ephemeral length.
   128  	// This matters if we lock ts, delete the only timer from the heap,
   129  	// add it back, and unlock. We want ts.len.Load to return 1 the
   130  	// entire time, never 0. This is important for pidleput deciding
   131  	// whether ts is empty.
   132  	ts.len.Store(uint32(len(ts.heap)))
   133  
   134  	unlock(&ts.mu)
   135  }
   136  
   137  // Timer state field.
   138  const (
   139  	// timerHeaped is set when the timer is stored in some P's heap.
   140  	timerHeaped uint8 = 1 << iota
   141  
   142  	// timerModified is set when t.when has been modified
   143  	// but the heap's heap[i].when entry still needs to be updated.
   144  	// That change waits until the heap in which
   145  	// the timer appears can be locked and rearranged.
   146  	// timerModified is only set when timerHeaped is also set.
   147  	timerModified
   148  
   149  	// timerZombie is set when the timer has been stopped
   150  	// but is still present in some P's heap.
   151  	// Only set when timerHeaped is also set.
   152  	// It is possible for timerModified and timerZombie to both
   153  	// be set, meaning that the timer was modified and then stopped.
   154  	// A timer sending to a channel may be placed in timerZombie
   155  	// to take it out of the heap even though the timer is not stopped,
   156  	// as long as nothing is reading from the channel.
   157  	timerZombie
   158  )
   159  
   160  // timerDebug enables printing a textual debug trace of all timer operations to stderr.
   161  const timerDebug = false
   162  
   163  func (t *timer) trace(op string) {
   164  	if timerDebug {
   165  		t.trace1(op)
   166  	}
   167  }
   168  
   169  func (t *timer) trace1(op string) {
   170  	if !timerDebug {
   171  		return
   172  	}
   173  	bits := [4]string{"h", "m", "z", "c"}
   174  	for i := range 3 {
   175  		if t.state&(1<<i) == 0 {
   176  			bits[i] = "-"
   177  		}
   178  	}
   179  	if !t.isChan {
   180  		bits[3] = "-"
   181  	}
   182  	print("T ", t, " ", bits[0], bits[1], bits[2], bits[3], " b=", t.blocked, " ", op, "\n")
   183  }
   184  
   185  func (ts *timers) trace(op string) {
   186  	if timerDebug {
   187  		println("TS", ts, op)
   188  	}
   189  }
   190  
   191  // lock locks the timer, allowing reading or writing any of the timer fields.
   192  func (t *timer) lock() {
   193  	lock(&t.mu)
   194  	t.trace("lock")
   195  }
   196  
   197  // unlock updates t.astate and unlocks the timer.
   198  func (t *timer) unlock() {
   199  	t.trace("unlock")
   200  	// Let heap fast paths know whether heap[i].when is accurate.
   201  	// Also let maybeRunChan know whether channel is in heap.
   202  	t.astate.Store(t.state)
   203  	unlock(&t.mu)
   204  }
   205  
   206  // hchan returns the channel in t.arg.
   207  // t must be a timer with a channel.
   208  func (t *timer) hchan() *hchan {
   209  	if !t.isChan {
   210  		badTimer()
   211  	}
   212  	// Note: t.arg is a chan time.Time,
   213  	// and runtime cannot refer to that type,
   214  	// so we cannot use a type assertion.
   215  	return (*hchan)(efaceOf(&t.arg).data)
   216  }
   217  
   218  // updateHeap updates t as directed by t.state, updating t.state
   219  // and returning a bool indicating whether the state (and ts.heap[0].when) changed.
   220  // The caller must hold t's lock, or the world can be stopped instead.
   221  // The timer set t.ts must be non-nil and locked, t must be t.ts.heap[0], and updateHeap
   222  // takes care of moving t within the timers heap to preserve the heap invariants.
   223  // If ts == nil, then t must not be in a heap (or is in a heap that is
   224  // temporarily not maintaining its invariant, such as during timers.adjust).
   225  func (t *timer) updateHeap() (updated bool) {
   226  	assertWorldStoppedOrLockHeld(&t.mu)
   227  	t.trace("updateHeap")
   228  	ts := t.ts
   229  	if ts == nil || t != ts.heap[0].timer {
   230  		badTimer()
   231  	}
   232  	assertLockHeld(&ts.mu)
   233  	if t.state&timerZombie != 0 {
   234  		// Take timer out of heap.
   235  		t.state &^= timerHeaped | timerZombie | timerModified
   236  		ts.zombies.Add(-1)
   237  		ts.deleteMin()
   238  		return true
   239  	}
   240  
   241  	if t.state&timerModified != 0 {
   242  		// Update ts.heap[0].when and move within heap.
   243  		t.state &^= timerModified
   244  		ts.heap[0].when = t.when
   245  		ts.siftDown(0)
   246  		ts.updateMinWhenHeap()
   247  		return true
   248  	}
   249  
   250  	return false
   251  }
   252  
   253  // maxWhen is the maximum value for timer's when field.
   254  const maxWhen = 1<<63 - 1
   255  
   256  // verifyTimers can be set to true to add debugging checks that the
   257  // timer heaps are valid.
   258  const verifyTimers = false
   259  
   260  // Package time APIs.
   261  // Godoc uses the comments in package time, not these.
   262  
   263  // time.now is implemented in assembly.
   264  
   265  // timeSleep puts the current goroutine to sleep for at least ns nanoseconds.
   266  //
   267  //go:linkname timeSleep time.Sleep
   268  func timeSleep(ns int64) {
   269  	if ns <= 0 {
   270  		return
   271  	}
   272  
   273  	gp := getg()
   274  	t := gp.timer
   275  	if t == nil {
   276  		t = new(timer)
   277  		t.init(goroutineReady, gp)
   278  		gp.timer = t
   279  	}
   280  	when := nanotime() + ns
   281  	if when < 0 { // check for overflow.
   282  		when = maxWhen
   283  	}
   284  	gp.sleepWhen = when
   285  	gopark(resetForSleep, nil, waitReasonSleep, traceBlockSleep, 1)
   286  }
   287  
   288  // resetForSleep is called after the goroutine is parked for timeSleep.
   289  // We can't call timer.reset in timeSleep itself because if this is a short
   290  // sleep and there are many goroutines then the P can wind up running the
   291  // timer function, goroutineReady, before the goroutine has been parked.
   292  func resetForSleep(gp *g, _ unsafe.Pointer) bool {
   293  	gp.timer.reset(gp.sleepWhen, 0)
   294  	return true
   295  }
   296  
   297  // A timeTimer is a runtime-allocated time.Timer or time.Ticker
   298  // with the additional runtime state following it.
   299  // The runtime state is inaccessible to package time.
   300  type timeTimer struct {
   301  	c    unsafe.Pointer // <-chan time.Time
   302  	init bool
   303  	timer
   304  }
   305  
   306  // newTimer allocates and returns a new time.Timer or time.Ticker (same layout)
   307  // with the given parameters.
   308  //
   309  //go:linkname newTimer time.newTimer
   310  func newTimer(when, period int64, f func(arg any, seq uintptr, delay int64), arg any, c *hchan) *timeTimer {
   311  	t := new(timeTimer)
   312  	t.timer.init(nil, nil)
   313  	t.trace("new")
   314  	if raceenabled {
   315  		racerelease(unsafe.Pointer(&t.timer))
   316  	}
   317  	if c != nil {
   318  		lockInit(&t.sendLock, lockRankTimerSend)
   319  		t.isChan = true
   320  		c.timer = &t.timer
   321  		if c.dataqsiz == 0 {
   322  			throw("invalid timer channel: no capacity")
   323  		}
   324  	}
   325  	t.modify(when, period, f, arg, 0)
   326  	t.init = true
   327  	return t
   328  }
   329  
   330  // stopTimer stops a timer.
   331  // It reports whether t was stopped before being run.
   332  //
   333  //go:linkname stopTimer time.stopTimer
   334  func stopTimer(t *timeTimer) bool {
   335  	return t.stop()
   336  }
   337  
   338  // resetTimer resets an inactive timer, adding it to the timer heap.
   339  //
   340  // Reports whether the timer was modified before it was run.
   341  //
   342  //go:linkname resetTimer time.resetTimer
   343  func resetTimer(t *timeTimer, when, period int64) bool {
   344  	if raceenabled {
   345  		racerelease(unsafe.Pointer(&t.timer))
   346  	}
   347  	return t.reset(when, period)
   348  }
   349  
   350  // Go runtime.
   351  
   352  // Ready the goroutine arg.
   353  func goroutineReady(arg any, _ uintptr, _ int64) {
   354  	goready(arg.(*g), 0)
   355  }
   356  
   357  // addHeap adds t to the timers heap.
   358  // The caller must hold ts.lock or the world must be stopped.
   359  // The caller must also have checked that t belongs in the heap.
   360  // Callers that are not sure can call t.maybeAdd instead,
   361  // but note that maybeAdd has different locking requirements.
   362  func (ts *timers) addHeap(t *timer) {
   363  	assertWorldStoppedOrLockHeld(&ts.mu)
   364  	// Timers rely on the network poller, so make sure the poller
   365  	// has started.
   366  	if netpollInited.Load() == 0 {
   367  		netpollGenericInit()
   368  	}
   369  
   370  	if t.ts != nil {
   371  		throw("ts set in timer")
   372  	}
   373  	t.ts = ts
   374  	ts.heap = append(ts.heap, timerWhen{t, t.when})
   375  	ts.siftUp(len(ts.heap) - 1)
   376  	if t == ts.heap[0].timer {
   377  		ts.updateMinWhenHeap()
   378  	}
   379  }
   380  
   381  // maybeRunAsync checks whether t needs to be triggered and runs it if so.
   382  // The caller is responsible for locking the timer and for checking that we
   383  // are running timers in async mode. If the timer needs to be run,
   384  // maybeRunAsync will unlock and re-lock it.
   385  // The timer is always locked on return.
   386  func (t *timer) maybeRunAsync() {
   387  	assertLockHeld(&t.mu)
   388  	if t.state&timerHeaped == 0 && t.isChan && t.when > 0 {
   389  		// If timer should have triggered already (but nothing looked at it yet),
   390  		// trigger now, so that a receive after the stop sees the "old" value
   391  		// that should be there.
   392  		// (It is possible to have t.blocked > 0 if there is a racing receive
   393  		// in blockTimerChan, but timerHeaped not being set means
   394  		// it hasn't run t.maybeAdd yet; in that case, running the
   395  		// timer ourselves now is fine.)
   396  		if now := nanotime(); t.when <= now {
   397  			systemstack(func() {
   398  				t.unlockAndRun(now) // resets t.when
   399  			})
   400  			t.lock()
   401  		}
   402  	}
   403  }
   404  
   405  // stop stops the timer t. It may be on some other P, so we can't
   406  // actually remove it from the timers heap. We can only mark it as stopped.
   407  // It will be removed in due course by the P whose heap it is on.
   408  // Reports whether the timer was stopped before it was run.
   409  func (t *timer) stop() bool {
   410  	async := debug.asynctimerchan.Load() != 0
   411  	if !async && t.isChan {
   412  		lock(&t.sendLock)
   413  	}
   414  
   415  	t.lock()
   416  	t.trace("stop")
   417  	if async {
   418  		t.maybeRunAsync()
   419  	}
   420  	if t.state&timerHeaped != 0 {
   421  		t.state |= timerModified
   422  		if t.state&timerZombie == 0 {
   423  			t.state |= timerZombie
   424  			t.ts.zombies.Add(1)
   425  		}
   426  	}
   427  	pending := t.when > 0
   428  	t.when = 0
   429  
   430  	if !async && t.isChan {
   431  		// Stop any future sends with stale values.
   432  		// See timer.unlockAndRun.
   433  		t.seq++
   434  	}
   435  	t.unlock()
   436  	if !async && t.isChan {
   437  		unlock(&t.sendLock)
   438  		if timerchandrain(t.hchan()) {
   439  			pending = true
   440  		}
   441  	}
   442  
   443  	return pending
   444  }
   445  
   446  // deleteMin removes timer 0 from ts.
   447  // ts must be locked.
   448  func (ts *timers) deleteMin() {
   449  	assertLockHeld(&ts.mu)
   450  	t := ts.heap[0].timer
   451  	if t.ts != ts {
   452  		throw("wrong timers")
   453  	}
   454  	t.ts = nil
   455  	last := len(ts.heap) - 1
   456  	if last > 0 {
   457  		ts.heap[0] = ts.heap[last]
   458  	}
   459  	ts.heap[last] = timerWhen{}
   460  	ts.heap = ts.heap[:last]
   461  	if last > 0 {
   462  		ts.siftDown(0)
   463  	}
   464  	ts.updateMinWhenHeap()
   465  	if last == 0 {
   466  		// If there are no timers, then clearly there are no timerModified timers.
   467  		ts.minWhenModified.Store(0)
   468  	}
   469  }
   470  
   471  // modify modifies an existing timer.
   472  // This is called by the netpoll code or time.Ticker.Reset or time.Timer.Reset.
   473  // Reports whether the timer was modified before it was run.
   474  // If f == nil, then t.f, t.arg, and t.seq are not modified.
   475  func (t *timer) modify(when, period int64, f func(arg any, seq uintptr, delay int64), arg any, seq uintptr) bool {
   476  	if when <= 0 {
   477  		throw("timer when must be positive")
   478  	}
   479  	if period < 0 {
   480  		throw("timer period must be non-negative")
   481  	}
   482  	async := debug.asynctimerchan.Load() != 0
   483  
   484  	if !async && t.isChan {
   485  		lock(&t.sendLock)
   486  	}
   487  
   488  	t.lock()
   489  	if async {
   490  		t.maybeRunAsync()
   491  	}
   492  	t.trace("modify")
   493  	t.period = period
   494  	if f != nil {
   495  		t.f = f
   496  		t.arg = arg
   497  		t.seq = seq
   498  	}
   499  
   500  	wake := false
   501  	pending := t.when > 0
   502  	t.when = when
   503  	if t.state&timerHeaped != 0 {
   504  		t.state |= timerModified
   505  		if t.state&timerZombie != 0 {
   506  			// In the heap but marked for removal (by a Stop).
   507  			// Unmark it, since it has been Reset and will be running again.
   508  			t.ts.zombies.Add(-1)
   509  			t.state &^= timerZombie
   510  		}
   511  		// The corresponding heap[i].when is updated later.
   512  		// See comment in type timer above and in timers.adjust below.
   513  		if min := t.ts.minWhenModified.Load(); min == 0 || when < min {
   514  			wake = true
   515  			// Force timerModified bit out to t.astate before updating t.minWhenModified,
   516  			// to synchronize with t.ts.adjust. See comment in adjust.
   517  			t.astate.Store(t.state)
   518  			t.ts.updateMinWhenModified(when)
   519  		}
   520  	}
   521  
   522  	add := t.needsAdd()
   523  
   524  	if !async && t.isChan {
   525  		// Stop any future sends with stale values.
   526  		// See timer.unlockAndRun.
   527  		t.seq++
   528  	}
   529  	t.unlock()
   530  	if !async && t.isChan {
   531  		if timerchandrain(t.hchan()) {
   532  			pending = true
   533  		}
   534  		unlock(&t.sendLock)
   535  	}
   536  
   537  	if add {
   538  		t.maybeAdd()
   539  	}
   540  	if wake {
   541  		wakeNetPoller(when)
   542  	}
   543  
   544  	return pending
   545  }
   546  
   547  // needsAdd reports whether t needs to be added to a timers heap.
   548  // t must be locked.
   549  func (t *timer) needsAdd() bool {
   550  	assertLockHeld(&t.mu)
   551  	need := t.state&timerHeaped == 0 && t.when > 0 && (!t.isChan || t.blocked > 0)
   552  	if need {
   553  		t.trace("needsAdd+")
   554  	} else {
   555  		t.trace("needsAdd-")
   556  	}
   557  	return need
   558  }
   559  
   560  // maybeAdd adds t to the local timers heap if it needs to be in a heap.
   561  // The caller must not hold t's lock nor any timers heap lock.
   562  // The caller probably just unlocked t, but that lock must be dropped
   563  // in order to acquire a ts.lock, to avoid lock inversions.
   564  // (timers.adjust holds ts.lock while acquiring each t's lock,
   565  // so we cannot hold any t's lock while acquiring ts.lock).
   566  //
   567  // Strictly speaking it *might* be okay to hold t.lock and
   568  // acquire ts.lock at the same time, because we know that
   569  // t is not in any ts.heap, so nothing holding a ts.lock would
   570  // be acquiring the t.lock at the same time, meaning there
   571  // isn't a possible deadlock. But it is easier and safer not to be
   572  // too clever and respect the static ordering.
   573  // (If we don't, we have to change the static lock checking of t and ts.)
   574  //
   575  // Concurrent calls to time.Timer.Reset or blockTimerChan
   576  // may result in concurrent calls to t.maybeAdd,
   577  // so we cannot assume that t is not in a heap on entry to t.maybeAdd.
   578  func (t *timer) maybeAdd() {
   579  	// Note: Not holding any locks on entry to t.maybeAdd,
   580  	// so the current g can be rescheduled to a different M and P
   581  	// at any time, including between the ts := assignment and the
   582  	// call to ts.lock. If a reschedule happened then, we would be
   583  	// adding t to some other P's timers, perhaps even a P that the scheduler
   584  	// has marked as idle with no timers, in which case the timer could
   585  	// go unnoticed until long after t.when.
   586  	// Calling acquirem instead of using getg().m makes sure that
   587  	// we end up locking and inserting into the current P's timers.
   588  	mp := acquirem()
   589  	ts := &mp.p.ptr().timers
   590  	ts.lock()
   591  	ts.cleanHead()
   592  	t.lock()
   593  	t.trace("maybeAdd")
   594  	when := int64(0)
   595  	wake := false
   596  	if t.needsAdd() {
   597  		t.state |= timerHeaped
   598  		when = t.when
   599  		wakeTime := ts.wakeTime()
   600  		wake = wakeTime == 0 || when < wakeTime
   601  		ts.addHeap(t)
   602  	}
   603  	t.unlock()
   604  	ts.unlock()
   605  	releasem(mp)
   606  	if wake {
   607  		wakeNetPoller(when)
   608  	}
   609  }
   610  
   611  // reset resets the time when a timer should fire.
   612  // If used for an inactive timer, the timer will become active.
   613  // Reports whether the timer was active and was stopped.
   614  func (t *timer) reset(when, period int64) bool {
   615  	return t.modify(when, period, nil, nil, 0)
   616  }
   617  
   618  // cleanHead cleans up the head of the timer queue. This speeds up
   619  // programs that create and delete timers; leaving them in the heap
   620  // slows down heap operations.
   621  // The caller must have locked ts.
   622  func (ts *timers) cleanHead() {
   623  	ts.trace("cleanHead")
   624  	assertLockHeld(&ts.mu)
   625  	gp := getg()
   626  	for {
   627  		if len(ts.heap) == 0 {
   628  			return
   629  		}
   630  
   631  		// This loop can theoretically run for a while, and because
   632  		// it is holding timersLock it cannot be preempted.
   633  		// If someone is trying to preempt us, just return.
   634  		// We can clean the timers later.
   635  		if gp.preemptStop {
   636  			return
   637  		}
   638  
   639  		// Delete zombies from tail of heap. It requires no heap adjustments at all,
   640  		// and doing so increases the chances that when we swap out a zombie
   641  		// in heap[0] for the tail of the heap, we'll get a non-zombie timer,
   642  		// shortening this loop.
   643  		n := len(ts.heap)
   644  		if t := ts.heap[n-1].timer; t.astate.Load()&timerZombie != 0 {
   645  			t.lock()
   646  			if t.state&timerZombie != 0 {
   647  				t.state &^= timerHeaped | timerZombie | timerModified
   648  				t.ts = nil
   649  				ts.zombies.Add(-1)
   650  				ts.heap[n-1] = timerWhen{}
   651  				ts.heap = ts.heap[:n-1]
   652  			}
   653  			t.unlock()
   654  			continue
   655  		}
   656  
   657  		t := ts.heap[0].timer
   658  		if t.ts != ts {
   659  			throw("bad ts")
   660  		}
   661  
   662  		if t.astate.Load()&(timerModified|timerZombie) == 0 {
   663  			// Fast path: head of timers does not need adjustment.
   664  			return
   665  		}
   666  
   667  		t.lock()
   668  		updated := t.updateHeap()
   669  		t.unlock()
   670  		if !updated {
   671  			// Head of timers does not need adjustment.
   672  			return
   673  		}
   674  	}
   675  }
   676  
   677  // take moves any timers from src into ts
   678  // and then clears the timer state from src,
   679  // because src is being destroyed.
   680  // The caller must not have locked either timers.
   681  // For now this is only called when the world is stopped.
   682  func (ts *timers) take(src *timers) {
   683  	ts.trace("take")
   684  	assertWorldStopped()
   685  	if len(src.heap) > 0 {
   686  		// The world is stopped, so we ignore the locking of ts and src here.
   687  		// That would introduce a sched < timers lock ordering,
   688  		// which we'd rather avoid in the static ranking.
   689  		for _, tw := range src.heap {
   690  			t := tw.timer
   691  			t.ts = nil
   692  			if t.state&timerZombie != 0 {
   693  				t.state &^= timerHeaped | timerZombie | timerModified
   694  			} else {
   695  				t.state &^= timerModified
   696  				ts.addHeap(t)
   697  			}
   698  		}
   699  		src.heap = nil
   700  		src.zombies.Store(0)
   701  		src.minWhenHeap.Store(0)
   702  		src.minWhenModified.Store(0)
   703  		src.len.Store(0)
   704  		ts.len.Store(uint32(len(ts.heap)))
   705  	}
   706  }
   707  
   708  // adjust looks through the timers in ts.heap for
   709  // any timers that have been modified to run earlier, and puts them in
   710  // the correct place in the heap. While looking for those timers,
   711  // it also moves timers that have been modified to run later,
   712  // and removes deleted timers. The caller must have locked ts.
   713  func (ts *timers) adjust(now int64, force bool) {
   714  	ts.trace("adjust")
   715  	assertLockHeld(&ts.mu)
   716  	// If we haven't yet reached the time of the earliest modified
   717  	// timer, don't do anything. This speeds up programs that adjust
   718  	// a lot of timers back and forth if the timers rarely expire.
   719  	// We'll postpone looking through all the adjusted timers until
   720  	// one would actually expire.
   721  	if !force {
   722  		first := ts.minWhenModified.Load()
   723  		if first == 0 || first > now {
   724  			if verifyTimers {
   725  				ts.verify()
   726  			}
   727  			return
   728  		}
   729  	}
   730  
   731  	// minWhenModified is a lower bound on the earliest t.when
   732  	// among the timerModified timers. We want to make it more precise:
   733  	// we are going to scan the heap and clean out all the timerModified bits,
   734  	// at which point minWhenModified can be set to 0 (indicating none at all).
   735  	//
   736  	// Other P's can be calling ts.wakeTime concurrently, and we'd like to
   737  	// keep ts.wakeTime returning an accurate value throughout this entire process.
   738  	//
   739  	// Setting minWhenModified = 0 *before* the scan could make wakeTime
   740  	// return an incorrect value: if minWhenModified < minWhenHeap, then clearing
   741  	// it to 0 will make wakeTime return minWhenHeap (too late) until the scan finishes.
   742  	// To avoid that, we want to set minWhenModified to 0 *after* the scan.
   743  	//
   744  	// Setting minWhenModified = 0 *after* the scan could result in missing
   745  	// concurrent timer modifications in other goroutines; those will lock
   746  	// the specific timer, set the timerModified bit, and set t.when.
   747  	// To avoid that, we want to set minWhenModified to 0 *before* the scan.
   748  	//
   749  	// The way out of this dilemma is to preserve wakeTime a different way.
   750  	// wakeTime is min(minWhenHeap, minWhenModified), and minWhenHeap
   751  	// is protected by ts.lock, which we hold, so we can modify it however we like
   752  	// in service of keeping wakeTime accurate.
   753  	//
   754  	// So we can:
   755  	//
   756  	//	1. Set minWhenHeap = min(minWhenHeap, minWhenModified)
   757  	//	2. Set minWhenModified = 0
   758  	//	   (Other goroutines may modify timers and update minWhenModified now.)
   759  	//	3. Scan timers
   760  	//	4. Set minWhenHeap = heap[0].when
   761  	//
   762  	// That order preserves a correct value of wakeTime throughout the entire
   763  	// operation:
   764  	// Step 1 “locks in” an accurate wakeTime even with minWhenModified cleared.
   765  	// Step 2 makes sure concurrent t.when updates are not lost during the scan.
   766  	// Step 3 processes all modified timer values, justifying minWhenModified = 0.
   767  	// Step 4 corrects minWhenHeap to a precise value.
   768  	//
   769  	// The wakeTime method implementation reads minWhenModified *before* minWhenHeap,
   770  	// so that if the minWhenModified is observed to be 0, that means the minWhenHeap that
   771  	// follows will include the information that was zeroed out of it.
   772  	//
   773  	// Originally Step 3 locked every timer, which made sure any timer update that was
   774  	// already in progress during Steps 1+2 completed and was observed by Step 3.
   775  	// All that locking was too expensive, so now we do an atomic load of t.astate to
   776  	// decide whether we need to do a full lock. To make sure that we still observe any
   777  	// timer update already in progress during Steps 1+2, t.modify sets timerModified
   778  	// in t.astate *before* calling t.updateMinWhenModified. That ensures that the
   779  	// overwrite in Step 2 cannot lose an update: if it does overwrite an update, Step 3
   780  	// will see the timerModified and do a full lock.
   781  	ts.minWhenHeap.Store(ts.wakeTime())
   782  	ts.minWhenModified.Store(0)
   783  
   784  	changed := false
   785  	for i := 0; i < len(ts.heap); i++ {
   786  		tw := &ts.heap[i]
   787  		t := tw.timer
   788  		if t.ts != ts {
   789  			throw("bad ts")
   790  		}
   791  
   792  		if t.astate.Load()&(timerModified|timerZombie) == 0 {
   793  			// Does not need adjustment.
   794  			continue
   795  		}
   796  
   797  		t.lock()
   798  		switch {
   799  		case t.state&timerHeaped == 0:
   800  			badTimer()
   801  
   802  		case t.state&timerZombie != 0:
   803  			ts.zombies.Add(-1)
   804  			t.state &^= timerHeaped | timerZombie | timerModified
   805  			n := len(ts.heap)
   806  			ts.heap[i] = ts.heap[n-1]
   807  			ts.heap[n-1] = timerWhen{}
   808  			ts.heap = ts.heap[:n-1]
   809  			t.ts = nil
   810  			i--
   811  			changed = true
   812  
   813  		case t.state&timerModified != 0:
   814  			tw.when = t.when
   815  			t.state &^= timerModified
   816  			changed = true
   817  		}
   818  		t.unlock()
   819  	}
   820  
   821  	if changed {
   822  		ts.initHeap()
   823  	}
   824  	ts.updateMinWhenHeap()
   825  
   826  	if verifyTimers {
   827  		ts.verify()
   828  	}
   829  }
   830  
   831  // wakeTime looks at ts's timers and returns the time when we
   832  // should wake up the netpoller. It returns 0 if there are no timers.
   833  // This function is invoked when dropping a P, so it must run without
   834  // any write barriers.
   835  //
   836  //go:nowritebarrierrec
   837  func (ts *timers) wakeTime() int64 {
   838  	// Note that the order of these two loads matters:
   839  	// adjust updates minWhen to make it safe to clear minNextWhen.
   840  	// We read minWhen after reading minNextWhen so that
   841  	// if we see a cleared minNextWhen, we are guaranteed to see
   842  	// the updated minWhen.
   843  	nextWhen := ts.minWhenModified.Load()
   844  	when := ts.minWhenHeap.Load()
   845  	if when == 0 || (nextWhen != 0 && nextWhen < when) {
   846  		when = nextWhen
   847  	}
   848  	return when
   849  }
   850  
   851  // check runs any timers in ts that are ready.
   852  // If now is not 0 it is the current time.
   853  // It returns the passed time or the current time if now was passed as 0.
   854  // and the time when the next timer should run or 0 if there is no next timer,
   855  // and reports whether it ran any timers.
   856  // If the time when the next timer should run is not 0,
   857  // it is always larger than the returned time.
   858  // We pass now in and out to avoid extra calls of nanotime.
   859  //
   860  //go:yeswritebarrierrec
   861  func (ts *timers) check(now int64) (rnow, pollUntil int64, ran bool) {
   862  	ts.trace("check")
   863  	// If it's not yet time for the first timer, or the first adjusted
   864  	// timer, then there is nothing to do.
   865  	next := ts.wakeTime()
   866  	if next == 0 {
   867  		// No timers to run or adjust.
   868  		return now, 0, false
   869  	}
   870  
   871  	if now == 0 {
   872  		now = nanotime()
   873  	}
   874  
   875  	// If this is the local P, and there are a lot of deleted timers,
   876  	// clear them out. We only do this for the local P to reduce
   877  	// lock contention on timersLock.
   878  	zombies := ts.zombies.Load()
   879  	if zombies < 0 {
   880  		badTimer()
   881  	}
   882  	force := ts == &getg().m.p.ptr().timers && int(zombies) > int(ts.len.Load())/4
   883  
   884  	if now < next && !force {
   885  		// Next timer is not ready to run, and we don't need to clear deleted timers.
   886  		return now, next, false
   887  	}
   888  
   889  	ts.lock()
   890  	if len(ts.heap) > 0 {
   891  		ts.adjust(now, false)
   892  		for len(ts.heap) > 0 {
   893  			// Note that runtimer may temporarily unlock ts.
   894  			if tw := ts.run(now); tw != 0 {
   895  				if tw > 0 {
   896  					pollUntil = tw
   897  				}
   898  				break
   899  			}
   900  			ran = true
   901  		}
   902  
   903  		// Note: Delaying the forced adjustment until after the ts.run
   904  		// (as opposed to calling ts.adjust(now, force) above)
   905  		// is significantly faster under contention, such as in
   906  		// package time's BenchmarkTimerAdjust10000,
   907  		// though we do not fully understand why.
   908  		force = ts == &getg().m.p.ptr().timers && int(ts.zombies.Load()) > int(ts.len.Load())/4
   909  		if force {
   910  			ts.adjust(now, true)
   911  		}
   912  	}
   913  	ts.unlock()
   914  
   915  	return now, pollUntil, ran
   916  }
   917  
   918  // run examines the first timer in ts. If it is ready based on now,
   919  // it runs the timer and removes or updates it.
   920  // Returns 0 if it ran a timer, -1 if there are no more timers, or the time
   921  // when the first timer should run.
   922  // The caller must have locked ts.
   923  // If a timer is run, this will temporarily unlock ts.
   924  //
   925  //go:systemstack
   926  func (ts *timers) run(now int64) int64 {
   927  	ts.trace("run")
   928  	assertLockHeld(&ts.mu)
   929  Redo:
   930  	if len(ts.heap) == 0 {
   931  		return -1
   932  	}
   933  	tw := ts.heap[0]
   934  	t := tw.timer
   935  	if t.ts != ts {
   936  		throw("bad ts")
   937  	}
   938  
   939  	if t.astate.Load()&(timerModified|timerZombie) == 0 && tw.when > now {
   940  		// Fast path: not ready to run.
   941  		return tw.when
   942  	}
   943  
   944  	t.lock()
   945  	if t.updateHeap() {
   946  		t.unlock()
   947  		goto Redo
   948  	}
   949  
   950  	if t.state&timerHeaped == 0 || t.state&timerModified != 0 {
   951  		badTimer()
   952  	}
   953  
   954  	if t.when > now {
   955  		// Not ready to run.
   956  		t.unlock()
   957  		return t.when
   958  	}
   959  
   960  	t.unlockAndRun(now)
   961  	assertLockHeld(&ts.mu) // t is unlocked now, but not ts
   962  	return 0
   963  }
   964  
   965  // unlockAndRun unlocks and runs the timer t (which must be locked).
   966  // If t is in a timer set (t.ts != nil), the caller must also have locked the timer set,
   967  // and this call will temporarily unlock the timer set while running the timer function.
   968  // unlockAndRun returns with t unlocked and t.ts (re-)locked.
   969  //
   970  //go:systemstack
   971  func (t *timer) unlockAndRun(now int64) {
   972  	t.trace("unlockAndRun")
   973  	assertLockHeld(&t.mu)
   974  	if t.ts != nil {
   975  		assertLockHeld(&t.ts.mu)
   976  	}
   977  	if raceenabled {
   978  		// Note that we are running on a system stack,
   979  		// so there is no chance of getg().m being reassigned
   980  		// out from under us while this function executes.
   981  		tsLocal := &getg().m.p.ptr().timers
   982  		if tsLocal.raceCtx == 0 {
   983  			tsLocal.raceCtx = racegostart(abi.FuncPCABIInternal((*timers).run) + sys.PCQuantum)
   984  		}
   985  		raceacquirectx(tsLocal.raceCtx, unsafe.Pointer(t))
   986  	}
   987  
   988  	if t.state&(timerModified|timerZombie) != 0 {
   989  		badTimer()
   990  	}
   991  
   992  	f := t.f
   993  	arg := t.arg
   994  	seq := t.seq
   995  	var next int64
   996  	delay := now - t.when
   997  	if t.period > 0 {
   998  		// Leave in heap but adjust next time to fire.
   999  		next = t.when + t.period*(1+delay/t.period)
  1000  		if next < 0 { // check for overflow.
  1001  			next = maxWhen
  1002  		}
  1003  	} else {
  1004  		next = 0
  1005  	}
  1006  	ts := t.ts
  1007  	t.when = next
  1008  	if t.state&timerHeaped != 0 {
  1009  		t.state |= timerModified
  1010  		if next == 0 {
  1011  			t.state |= timerZombie
  1012  			t.ts.zombies.Add(1)
  1013  		}
  1014  		t.updateHeap()
  1015  	}
  1016  	t.unlock()
  1017  
  1018  	if raceenabled {
  1019  		// Temporarily use the current P's racectx for g0.
  1020  		gp := getg()
  1021  		if gp.racectx != 0 {
  1022  			throw("unexpected racectx")
  1023  		}
  1024  		gp.racectx = gp.m.p.ptr().timers.raceCtx
  1025  	}
  1026  
  1027  	if ts != nil {
  1028  		ts.unlock()
  1029  	}
  1030  
  1031  	async := debug.asynctimerchan.Load() != 0
  1032  	if !async && t.isChan {
  1033  		// For a timer channel, we want to make sure that no stale sends
  1034  		// happen after a t.stop or t.modify, but we cannot hold t.mu
  1035  		// during the actual send (which f does) due to lock ordering.
  1036  		// It can happen that we are holding t's lock above, we decide
  1037  		// it's time to send a time value (by calling f), grab the parameters,
  1038  		// unlock above, and then a t.stop or t.modify changes the timer
  1039  		// and returns. At that point, the send needs not to happen after all.
  1040  		// The way we arrange for it not to happen is that t.stop and t.modify
  1041  		// both increment t.seq while holding both t.mu and t.sendLock.
  1042  		// We copied the seq value above while holding t.mu.
  1043  		// Now we can acquire t.sendLock (which will be held across the send)
  1044  		// and double-check that t.seq is still the seq value we saw above.
  1045  		// If not, the timer has been updated and we should skip the send.
  1046  		// We skip the send by reassigning f to a no-op function.
  1047  		lock(&t.sendLock)
  1048  		if t.seq != seq {
  1049  			f = func(any, uintptr, int64) {}
  1050  		}
  1051  	}
  1052  
  1053  	f(arg, seq, delay)
  1054  
  1055  	if !async && t.isChan {
  1056  		unlock(&t.sendLock)
  1057  	}
  1058  
  1059  	if ts != nil {
  1060  		ts.lock()
  1061  	}
  1062  
  1063  	if raceenabled {
  1064  		gp := getg()
  1065  		gp.racectx = 0
  1066  	}
  1067  }
  1068  
  1069  // verifyTimerHeap verifies that the timers is in a valid state.
  1070  // This is only for debugging, and is only called if verifyTimers is true.
  1071  // The caller must have locked ts.
  1072  func (ts *timers) verify() {
  1073  	assertLockHeld(&ts.mu)
  1074  	for i, tw := range ts.heap {
  1075  		if i == 0 {
  1076  			// First timer has no parent.
  1077  			continue
  1078  		}
  1079  
  1080  		// The heap is timerHeapN-ary. See siftupTimer and siftdownTimer.
  1081  		p := int(uint(i-1) / timerHeapN)
  1082  		if tw.when < ts.heap[p].when {
  1083  			print("bad timer heap at ", i, ": ", p, ": ", ts.heap[p].when, ", ", i, ": ", tw.when, "\n")
  1084  			throw("bad timer heap")
  1085  		}
  1086  	}
  1087  	if n := int(ts.len.Load()); len(ts.heap) != n {
  1088  		println("timer heap len", len(ts.heap), "!= atomic len", n)
  1089  		throw("bad timer heap len")
  1090  	}
  1091  }
  1092  
  1093  // updateMinWhenHeap sets ts.minWhenHeap to ts.heap[0].when.
  1094  // The caller must have locked ts or the world must be stopped.
  1095  func (ts *timers) updateMinWhenHeap() {
  1096  	assertWorldStoppedOrLockHeld(&ts.mu)
  1097  	if len(ts.heap) == 0 {
  1098  		ts.minWhenHeap.Store(0)
  1099  	} else {
  1100  		ts.minWhenHeap.Store(ts.heap[0].when)
  1101  	}
  1102  }
  1103  
  1104  // updateMinWhenModified updates ts.minWhenModified to be <= when.
  1105  // ts need not be (and usually is not) locked.
  1106  func (ts *timers) updateMinWhenModified(when int64) {
  1107  	for {
  1108  		old := ts.minWhenModified.Load()
  1109  		if old != 0 && old < when {
  1110  			return
  1111  		}
  1112  		if ts.minWhenModified.CompareAndSwap(old, when) {
  1113  			return
  1114  		}
  1115  	}
  1116  }
  1117  
  1118  // timeSleepUntil returns the time when the next timer should fire. Returns
  1119  // maxWhen if there are no timers.
  1120  // This is only called by sysmon and checkdead.
  1121  func timeSleepUntil() int64 {
  1122  	next := int64(maxWhen)
  1123  
  1124  	// Prevent allp slice changes. This is like retake.
  1125  	lock(&allpLock)
  1126  	for _, pp := range allp {
  1127  		if pp == nil {
  1128  			// This can happen if procresize has grown
  1129  			// allp but not yet created new Ps.
  1130  			continue
  1131  		}
  1132  
  1133  		if w := pp.timers.wakeTime(); w != 0 {
  1134  			next = min(next, w)
  1135  		}
  1136  	}
  1137  	unlock(&allpLock)
  1138  
  1139  	return next
  1140  }
  1141  
  1142  const timerHeapN = 4
  1143  
  1144  // Heap maintenance algorithms.
  1145  // These algorithms check for slice index errors manually.
  1146  // Slice index error can happen if the program is using racy
  1147  // access to timers. We don't want to panic here, because
  1148  // it will cause the program to crash with a mysterious
  1149  // "panic holding locks" message. Instead, we panic while not
  1150  // holding a lock.
  1151  
  1152  // siftUp puts the timer at position i in the right place
  1153  // in the heap by moving it up toward the top of the heap.
  1154  func (ts *timers) siftUp(i int) {
  1155  	heap := ts.heap
  1156  	if i >= len(heap) {
  1157  		badTimer()
  1158  	}
  1159  	tw := heap[i]
  1160  	when := tw.when
  1161  	if when <= 0 {
  1162  		badTimer()
  1163  	}
  1164  	for i > 0 {
  1165  		p := int(uint(i-1) / timerHeapN) // parent
  1166  		if when >= heap[p].when {
  1167  			break
  1168  		}
  1169  		heap[i] = heap[p]
  1170  		i = p
  1171  	}
  1172  	if heap[i].timer != tw.timer {
  1173  		heap[i] = tw
  1174  	}
  1175  }
  1176  
  1177  // siftDown puts the timer at position i in the right place
  1178  // in the heap by moving it down toward the bottom of the heap.
  1179  func (ts *timers) siftDown(i int) {
  1180  	heap := ts.heap
  1181  	n := len(heap)
  1182  	if i >= n {
  1183  		badTimer()
  1184  	}
  1185  	if i*timerHeapN+1 >= n {
  1186  		return
  1187  	}
  1188  	tw := heap[i]
  1189  	when := tw.when
  1190  	if when <= 0 {
  1191  		badTimer()
  1192  	}
  1193  	for {
  1194  		leftChild := i*timerHeapN + 1
  1195  		if leftChild >= n {
  1196  			break
  1197  		}
  1198  		w := when
  1199  		c := -1
  1200  		for j, tw := range heap[leftChild:min(leftChild+timerHeapN, n)] {
  1201  			if tw.when < w {
  1202  				w = tw.when
  1203  				c = leftChild + j
  1204  			}
  1205  		}
  1206  		if c < 0 {
  1207  			break
  1208  		}
  1209  		heap[i] = heap[c]
  1210  		i = c
  1211  	}
  1212  	if heap[i].timer != tw.timer {
  1213  		heap[i] = tw
  1214  	}
  1215  }
  1216  
  1217  // initHeap reestablishes the heap order in the slice ts.heap.
  1218  // It takes O(n) time for n=len(ts.heap), not the O(n log n) of n repeated add operations.
  1219  func (ts *timers) initHeap() {
  1220  	// Last possible element that needs sifting down is parent of last element;
  1221  	// last element is len(t)-1; parent of last element is (len(t)-1-1)/timerHeapN.
  1222  	if len(ts.heap) <= 1 {
  1223  		return
  1224  	}
  1225  	for i := int(uint(len(ts.heap)-1-1) / timerHeapN); i >= 0; i-- {
  1226  		ts.siftDown(i)
  1227  	}
  1228  }
  1229  
  1230  // badTimer is called if the timer data structures have been corrupted,
  1231  // presumably due to racy use by the program. We panic here rather than
  1232  // panicking due to invalid slice access while holding locks.
  1233  // See issue #25686.
  1234  func badTimer() {
  1235  	throw("timer data corruption")
  1236  }
  1237  
  1238  // Timer channels.
  1239  
  1240  // maybeRunChan checks whether the timer needs to run
  1241  // to send a value to its associated channel. If so, it does.
  1242  // The timer must not be locked.
  1243  func (t *timer) maybeRunChan() {
  1244  	if t.astate.Load()&timerHeaped != 0 {
  1245  		// If the timer is in the heap, the ordinary timer code
  1246  		// is in charge of sending when appropriate.
  1247  		return
  1248  	}
  1249  
  1250  	t.lock()
  1251  	now := nanotime()
  1252  	if t.state&timerHeaped != 0 || t.when == 0 || t.when > now {
  1253  		t.trace("maybeRunChan-")
  1254  		// Timer in the heap, or not running at all, or not triggered.
  1255  		t.unlock()
  1256  		return
  1257  	}
  1258  	t.trace("maybeRunChan+")
  1259  	systemstack(func() {
  1260  		t.unlockAndRun(now)
  1261  	})
  1262  }
  1263  
  1264  // blockTimerChan is called when a channel op has decided to block on c.
  1265  // The caller holds the channel lock for c and possibly other channels.
  1266  // blockTimerChan makes sure that c is in a timer heap,
  1267  // adding it if needed.
  1268  func blockTimerChan(c *hchan) {
  1269  	t := c.timer
  1270  	t.lock()
  1271  	t.trace("blockTimerChan")
  1272  	if !t.isChan {
  1273  		badTimer()
  1274  	}
  1275  
  1276  	t.blocked++
  1277  
  1278  	// If this is the first enqueue after a recent dequeue,
  1279  	// the timer may still be in the heap but marked as a zombie.
  1280  	// Unmark it in this case, if the timer is still pending.
  1281  	if t.state&timerHeaped != 0 && t.state&timerZombie != 0 && t.when > 0 {
  1282  		t.state &^= timerZombie
  1283  		t.ts.zombies.Add(-1)
  1284  	}
  1285  
  1286  	// t.maybeAdd must be called with t unlocked,
  1287  	// because it needs to lock t.ts before t.
  1288  	// Then it will do nothing if t.needsAdd(state) is false.
  1289  	// Check that now before the unlock,
  1290  	// avoiding the extra lock-lock-unlock-unlock
  1291  	// inside maybeAdd when t does not need to be added.
  1292  	add := t.needsAdd()
  1293  	t.unlock()
  1294  	if add {
  1295  		t.maybeAdd()
  1296  	}
  1297  }
  1298  
  1299  // unblockTimerChan is called when a channel op that was blocked on c
  1300  // is no longer blocked. Every call to blockTimerChan must be paired with
  1301  // a call to unblockTimerChan.
  1302  // The caller holds the channel lock for c and possibly other channels.
  1303  // unblockTimerChan removes c from the timer heap when nothing is
  1304  // blocked on it anymore.
  1305  func unblockTimerChan(c *hchan) {
  1306  	t := c.timer
  1307  	t.lock()
  1308  	t.trace("unblockTimerChan")
  1309  	if !t.isChan || t.blocked == 0 {
  1310  		badTimer()
  1311  	}
  1312  	t.blocked--
  1313  	if t.blocked == 0 && t.state&timerHeaped != 0 && t.state&timerZombie == 0 {
  1314  		// Last goroutine that was blocked on this timer.
  1315  		// Mark for removal from heap but do not clear t.when,
  1316  		// so that we know what time it is still meant to trigger.
  1317  		t.state |= timerZombie
  1318  		t.ts.zombies.Add(1)
  1319  	}
  1320  	t.unlock()
  1321  }
  1322  

View as plain text