1 // Copyright 2015 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Simplifications that apply to all backend architectures. As an example, this
6 // Go source code
7 //
8 // y := 0 * x
9 //
10 // can be translated into y := 0 without losing any information, which saves a
11 // pointless multiplication instruction. Other .rules files in this directory
12 // (for example AMD64.rules) contain rules specific to the architecture in the
13 // filename. The rules here apply to every architecture.
14 //
15 // The code for parsing this file lives in rulegen.go; this file generates
16 // ssa/rewritegeneric.go.
17
18 // values are specified using the following format:
19 // (op <type> [auxint] {aux} arg0 arg1 ...)
20 // the type, aux, and auxint fields are optional
21 // on the matching side
22 // - the type, aux, and auxint fields must match if they are specified.
23 // - the first occurrence of a variable defines that variable. Subsequent
24 // uses must match (be == to) the first use.
25 // - v is defined to be the value matched.
26 // - an additional conditional can be provided after the match pattern with "&&".
27 // on the generated side
28 // - the type of the top-level expression is the same as the one on the left-hand side.
29 // - the type of any subexpressions must be specified explicitly (or
30 // be specified in the op's type field).
31 // - auxint will be 0 if not specified.
32 // - aux will be nil if not specified.
33
34 // blocks are specified using the following format:
35 // (kind controlvalue succ0 succ1 ...)
36 // controlvalue must be "nil" or a value expression
37 // succ* fields must be variables
38 // For now, the generated successors must be a permutation of the matched successors.
39
40 // constant folding
41 (Trunc16to8 (Const16 [c])) => (Const8 [int8(c)])
42 (Trunc32to8 (Const32 [c])) => (Const8 [int8(c)])
43 (Trunc32to16 (Const32 [c])) => (Const16 [int16(c)])
44 (Trunc64to8 (Const64 [c])) => (Const8 [int8(c)])
45 (Trunc64to16 (Const64 [c])) => (Const16 [int16(c)])
46 (Trunc64to32 (Const64 [c])) => (Const32 [int32(c)])
47 (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)])
48 (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)])
49 (Cvt32to32F (Const32 [c])) => (Const32F [float32(c)])
50 (Cvt32to64F (Const32 [c])) => (Const64F [float64(c)])
51 (Cvt64to32F (Const64 [c])) => (Const32F [float32(c)])
52 (Cvt64to64F (Const64 [c])) => (Const64F [float64(c)])
53 (Cvt32Fto32 (Const32F [c])) && c >= -1<<31 && c < 1<<31 => (Const32 [int32(c)])
54 (Cvt32Fto64 (Const32F [c])) && c >= -1<<63 && c < 1<<63 => (Const64 [int64(c)])
55 (Cvt64Fto32 (Const64F [c])) && c >= -1<<31 && c < 1<<31 => (Const32 [int32(c)])
56 (Cvt64Fto64 (Const64F [c])) && c >= -1<<63 && c < 1<<63 => (Const64 [int64(c)])
57 (Round32F x:(Const32F)) => x
58 (Round64F x:(Const64F)) => x
59 (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0])
60 (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1])
61 (BitLen64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len64(uint64(c)))])
62 (BitLen32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len32(uint32(c)))])
63 (BitLen16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len16(uint16(c)))])
64 (BitLen8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len8(uint8(c)))])
65 (BitLen64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len64(uint64(c)))])
66 (BitLen32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len32(uint32(c)))])
67 (BitLen16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len16(uint16(c)))])
68 (BitLen8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len8(uint8(c)))])
69 (PopCount64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount64(uint64(c)))])
70 (PopCount32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount32(uint32(c)))])
71 (PopCount16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount16(uint16(c)))])
72 (PopCount8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount8(uint8(c)))])
73 (PopCount64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount64(uint64(c)))])
74 (PopCount32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount32(uint32(c)))])
75 (PopCount16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount16(uint16(c)))])
76 (PopCount8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount8(uint8(c)))])
77 (Add64carry (Const64 <t> [x]) (Const64 [y]) (Const64 [c])) && c >= 0 && c <= 1 => (MakeTuple (Const64 <t> [bitsAdd64(x, y, c).sum]) (Const64 <t> [bitsAdd64(x, y, c).carry]))
78
79 (Trunc16to8 (ZeroExt8to16 x)) => x
80 (Trunc32to8 (ZeroExt8to32 x)) => x
81 (Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x)
82 (Trunc32to16 (ZeroExt16to32 x)) => x
83 (Trunc64to8 (ZeroExt8to64 x)) => x
84 (Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x)
85 (Trunc64to16 (ZeroExt16to64 x)) => x
86 (Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x)
87 (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x)
88 (Trunc64to32 (ZeroExt32to64 x)) => x
89 (Trunc16to8 (SignExt8to16 x)) => x
90 (Trunc32to8 (SignExt8to32 x)) => x
91 (Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x)
92 (Trunc32to16 (SignExt16to32 x)) => x
93 (Trunc64to8 (SignExt8to64 x)) => x
94 (Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x)
95 (Trunc64to16 (SignExt16to64 x)) => x
96 (Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x)
97 (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x)
98 (Trunc64to32 (SignExt32to64 x)) => x
99
100 (ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))])
101 (ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))])
102 (ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))])
103 (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))])
104 (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))])
105 (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))])
106 (SignExt8to16 (Const8 [c])) => (Const16 [int16(c)])
107 (SignExt8to32 (Const8 [c])) => (Const32 [int32(c)])
108 (SignExt8to64 (Const8 [c])) => (Const64 [int64(c)])
109 (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)])
110 (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)])
111 (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)])
112
113 (Neg8 (Const8 [c])) => (Const8 [-c])
114 (Neg16 (Const16 [c])) => (Const16 [-c])
115 (Neg32 (Const32 [c])) => (Const32 [-c])
116 (Neg64 (Const64 [c])) => (Const64 [-c])
117 (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c])
118 (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c])
119
120 (Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d])
121 (Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d])
122 (Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d])
123 (Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d])
124 (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d])
125 (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d])
126 (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c])
127 (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)])
128
129 (Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d])
130 (Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d])
131 (Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d])
132 (Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d])
133 (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d])
134 (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d])
135
136 (Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d])
137 (Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d])
138 (Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d])
139 (Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d])
140 (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d])
141 (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d])
142 (Mul32uhilo (Const32 [c]) (Const32 [d])) => (MakeTuple (Const32 <typ.UInt32> [bitsMulU32(c, d).hi]) (Const32 <typ.UInt32> [bitsMulU32(c,d).lo]))
143 (Mul64uhilo (Const64 [c]) (Const64 [d])) => (MakeTuple (Const64 <typ.UInt64> [bitsMulU64(c, d).hi]) (Const64 <typ.UInt64> [bitsMulU64(c,d).lo]))
144 (Mul32uover (Const32 [c]) (Const32 [d])) => (MakeTuple (Const32 <typ.UInt32> [bitsMulU32(c, d).lo]) (ConstBool <typ.Bool> [bitsMulU32(c,d).hi != 0]))
145 (Mul64uover (Const64 [c]) (Const64 [d])) => (MakeTuple (Const64 <typ.UInt64> [bitsMulU64(c, d).lo]) (ConstBool <typ.Bool> [bitsMulU64(c,d).hi != 0]))
146
147 (And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d])
148 (And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d])
149 (And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d])
150 (And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d])
151
152 (Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d])
153 (Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d])
154 (Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d])
155 (Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d])
156
157 (Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d])
158 (Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d])
159 (Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d])
160 (Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d])
161
162 (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))])
163 (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))])
164 (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))])
165 (Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))])
166
167 (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))])
168 (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))])
169 (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))])
170 (Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))])
171
172 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d])
173 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d])
174 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d])
175 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d])
176 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))])
177 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))])
178 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))])
179 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))])
180 (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d])
181 (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d])
182 (Div128u <t> (Const64 [0]) lo y) => (MakeTuple (Div64u <t.FieldType(0)> lo y) (Mod64u <t.FieldType(1)> lo y))
183
184 (Not (ConstBool [c])) => (ConstBool [!c])
185
186 (Floor (Const64F [c])) => (Const64F [math.Floor(c)])
187 (Ceil (Const64F [c])) => (Const64F [math.Ceil(c)])
188 (Trunc (Const64F [c])) => (Const64F [math.Trunc(c)])
189 (RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)])
190
191 // Convert x * 1 to x.
192 (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x
193 (Mul(32|64)uover <t> (Const(32|64) [1]) x) => (MakeTuple x (ConstBool <t.FieldType(1)> [false]))
194
195 // Convert x * -1 to -x.
196 (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x)
197
198 // Convert -x * c to x * -c
199 (Mul(8|16|32|64) (Const(8|16|32|64) <t> [c]) (Neg(8|16|32|64) x)) => (Mul(8|16|32|64) x (Const(8|16|32|64) <t> [-c]))
200
201 (Mul(8|16|32|64) (Neg(8|16|32|64) x) (Neg(8|16|32|64) y)) => (Mul(8|16|32|64) x y)
202
203 // simplify negative on mul if possible
204 (Neg(8|16|32|64) (Mul(8|16|32|64) x (Const(8|16|32|64) <t> [c]))) => (Mul(8|16|32|64) x (Const(8|16|32|64) <t> [-c]))
205 (Neg(8|16|32|64) (Mul(8|16|32|64) x (Neg(8|16|32|64) y))) => (Mul(8|16|32|64) x y)
206
207 // DeMorgan's Laws
208 (And(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) <t> x y))
209 (Or(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) <t> x y))
210
211 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d])
212 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d])
213 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d])
214 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d])
215
216 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))])
217 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))])
218 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))])
219 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))])
220
221 (Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)])
222 (Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)])
223 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))])
224 (Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)])
225 (Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)])
226 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))])
227 (Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)])
228 (Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)])
229 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))])
230 (Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)])
231 (Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)])
232 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))])
233
234 // Fold IsInBounds when the range of the index cannot exceed the limit.
235 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true])
236 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true])
237 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true])
238 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true])
239 (IsInBounds x x) => (ConstBool [false])
240 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true])
241 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true])
242 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
243 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
244 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true])
245 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
246 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
247 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true])
248 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
249 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true])
250 (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d])
251 (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d])
252 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
253 (IsInBounds (Mod32u _ y) y) => (ConstBool [true])
254 (IsInBounds (Mod64u _ y) y) => (ConstBool [true])
255 // Right shifting an unsigned number limits its value.
256 (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
257 (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
258 (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
259 (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
260 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
261 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
262 (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
263 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
264 (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
265 (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true])
266
267 (IsSliceInBounds x x) => (ConstBool [true])
268 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true])
269 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true])
270 (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true])
271 (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true])
272 (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d])
273 (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d])
274 (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true])
275
276 (Eq(64|32|16|8) x x) => (ConstBool [true])
277 (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d])
278 (EqB (ConstBool [false]) x) => (Not x)
279 (EqB (ConstBool [true]) x) => x
280
281 (Neq(64|32|16|8) x x) => (ConstBool [false])
282 (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d])
283 (NeqB (ConstBool [false]) x) => x
284 (NeqB (ConstBool [true]) x) => (Not x)
285 (NeqB (Not x) (Not y)) => (NeqB x y)
286
287 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x)
288 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x)
289 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x)
290 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Eq8 (Const8 <t> [c-d]) x)
291
292 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x)
293 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x)
294 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x)
295 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Neq8 (Const8 <t> [c-d]) x)
296
297 (CondSelect x _ (ConstBool [true ])) => x
298 (CondSelect _ y (ConstBool [false])) => y
299 (CondSelect x x _) => x
300
301 // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) )
302 (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
303 (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
304 (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
305 (AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c]))
306
307 // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) )
308 (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
309 (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
310 (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
311 (AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1]))
312
313 // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c )
314 (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
315 (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
316 (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
317 (AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c]))
318
319 // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) )
320 (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
321 (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
322 (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
323 (AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1]))
324
325 // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) )
326 (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
327 (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
328 (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
329 (OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d])))
330
331 // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) )
332 (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
333 (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
334 (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
335 (OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1])))
336
337 // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d )
338 (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
339 (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
340 (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
341 (OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d])))
342
343 // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) )
344 (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
345 (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
346 (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
347 (OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1])))
348
349 // single bit difference: ( x != c && x != d ) -> ( x|(c^d) != c )
350 (AndB (Neq(64|32|16|8) x cv:(Const(64|32|16|8) [c])) (Neq(64|32|16|8) x (Const(64|32|16|8) [d]))) && c|d == c && oneBit(c^d) => (Neq(64|32|16|8) (Or(64|32|16|8) <x.Type> x (Const(64|32|16|8) <x.Type> [c^d])) cv)
351
352 // single bit difference: ( x == c || x == d ) -> ( x|(c^d) == c )
353 (OrB (Eq(64|32|16|8) x cv:(Const(64|32|16|8) [c])) (Eq(64|32|16|8) x (Const(64|32|16|8) [d]))) && c|d == c && oneBit(c^d) => (Eq(64|32|16|8) (Or(64|32|16|8) <x.Type> x (Const(64|32|16|8) <x.Type> [c^d])) cv)
354
355 // NaN check: ( x != x || x (>|>=|<|<=) c ) -> ( !(c (>=|>|<=|<) x) )
356 (OrB (Neq64F x x) ((Less|Leq)64F x y:(Const64F [c]))) => (Not ((Leq|Less)64F y x))
357 (OrB (Neq64F x x) ((Less|Leq)64F y:(Const64F [c]) x)) => (Not ((Leq|Less)64F x y))
358 (OrB (Neq32F x x) ((Less|Leq)32F x y:(Const32F [c]))) => (Not ((Leq|Less)32F y x))
359 (OrB (Neq32F x x) ((Less|Leq)32F y:(Const32F [c]) x)) => (Not ((Leq|Less)32F x y))
360
361 // NaN check: ( x != x || Abs(x) (>|>=|<|<=) c ) -> ( !(c (>=|>|<=|<) Abs(x) )
362 (OrB (Neq64F x x) ((Less|Leq)64F abs:(Abs x) y:(Const64F [c]))) => (Not ((Leq|Less)64F y abs))
363 (OrB (Neq64F x x) ((Less|Leq)64F y:(Const64F [c]) abs:(Abs x))) => (Not ((Leq|Less)64F abs y))
364
365 // NaN check: ( x != x || -x (>|>=|<|<=) c ) -> ( !(c (>=|>|<=|<) -x) )
366 (OrB (Neq64F x x) ((Less|Leq)64F neg:(Neg64F x) y:(Const64F [c]))) => (Not ((Leq|Less)64F y neg))
367 (OrB (Neq64F x x) ((Less|Leq)64F y:(Const64F [c]) neg:(Neg64F x))) => (Not ((Leq|Less)64F neg y))
368 (OrB (Neq32F x x) ((Less|Leq)32F neg:(Neg32F x) y:(Const32F [c]))) => (Not ((Leq|Less)32F y neg))
369 (OrB (Neq32F x x) ((Less|Leq)32F y:(Const32F [c]) neg:(Neg32F x))) => (Not ((Leq|Less)32F neg y))
370
371 // Canonicalize x-const to x+(-const)
372 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x)
373 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x)
374 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x)
375 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 => (Add8 (Const8 <t> [-c]) x)
376
377 // fold negation into comparison operators
378 (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y)
379 (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y)
380
381 (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x)
382 (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x)
383 (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x)
384 (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x)
385
386 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
387 // a[i].b = ...; a[i+1].b = ...
388 // The !isPowerOfTwo is a kludge to keep a[i+1] using an index by a multiply,
389 // which turns into an index by a shift, which can use a shifted operand on ARM systems.
390 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) && !isPowerOfTwo(c) =>
391 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
392 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) && !isPowerOfTwo(c) =>
393 (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x))
394 (Mul16 (Const16 <t> [c]) (Add16 <t> (Const16 <t> [d]) x)) && !isPowerOfTwo(c) =>
395 (Add16 (Const16 <t> [c*d]) (Mul16 <t> (Const16 <t> [c]) x))
396 (Mul8 (Const8 <t> [c]) (Add8 <t> (Const8 <t> [d]) x)) && !isPowerOfTwo(c) =>
397 (Add8 (Const8 <t> [c*d]) (Mul8 <t> (Const8 <t> [c]) x))
398
399 // Rewrite x*y ± x*z to x*(y±z)
400 (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
401 => (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z))
402 (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
403 => (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z))
404
405 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
406 // the number of the other rewrite rules for const shifts
407 (Lsh64x32 <t> x (Const32 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint32(c))]))
408 (Lsh64x16 <t> x (Const16 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint16(c))]))
409 (Lsh64x8 <t> x (Const8 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint8(c))]))
410 (Rsh64x32 <t> x (Const32 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint32(c))]))
411 (Rsh64x16 <t> x (Const16 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint16(c))]))
412 (Rsh64x8 <t> x (Const8 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint8(c))]))
413 (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
414 (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
415 (Rsh64Ux8 <t> x (Const8 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
416
417 (Lsh32x32 <t> x (Const32 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint32(c))]))
418 (Lsh32x16 <t> x (Const16 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint16(c))]))
419 (Lsh32x8 <t> x (Const8 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint8(c))]))
420 (Rsh32x32 <t> x (Const32 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint32(c))]))
421 (Rsh32x16 <t> x (Const16 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint16(c))]))
422 (Rsh32x8 <t> x (Const8 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint8(c))]))
423 (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
424 (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
425 (Rsh32Ux8 <t> x (Const8 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
426
427 (Lsh16x32 <t> x (Const32 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint32(c))]))
428 (Lsh16x16 <t> x (Const16 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint16(c))]))
429 (Lsh16x8 <t> x (Const8 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint8(c))]))
430 (Rsh16x32 <t> x (Const32 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint32(c))]))
431 (Rsh16x16 <t> x (Const16 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint16(c))]))
432 (Rsh16x8 <t> x (Const8 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint8(c))]))
433 (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
434 (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
435 (Rsh16Ux8 <t> x (Const8 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
436
437 (Lsh8x32 <t> x (Const32 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint32(c))]))
438 (Lsh8x16 <t> x (Const16 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint16(c))]))
439 (Lsh8x8 <t> x (Const8 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint8(c))]))
440 (Rsh8x32 <t> x (Const32 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint32(c))]))
441 (Rsh8x16 <t> x (Const16 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint16(c))]))
442 (Rsh8x8 <t> x (Const8 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint8(c))]))
443 (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
444 (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
445 (Rsh8Ux8 <t> x (Const8 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
446
447 // shifts by zero
448 (Lsh(64|32|16|8)x64 x (Const64 [0])) => x
449 (Rsh(64|32|16|8)x64 x (Const64 [0])) => x
450 (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x
451
452 // rotates by multiples of register width
453 (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x
454 (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x
455 (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x
456 (RotateLeft8 x (Const8 [c])) && c%8 == 0 => x
457
458 // zero shifted
459 (Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
460 (Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
461 (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
462 (Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
463 (Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
464 (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
465 (Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
466 (Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
467 (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
468 (Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0])
469 (Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0])
470 (Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0])
471
472 // large left shifts of all values, and right shifts of unsigned values
473 ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0])
474 ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
475 ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
476 ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
477
478 // combine const shifts
479 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d]))
480 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d]))
481 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d]))
482 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 <t> [c+d]))
483
484 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d]))
485 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d]))
486 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d]))
487 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 <t> [c+d]))
488
489 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d]))
490 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d]))
491 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d]))
492 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 <t> [c+d]))
493
494 // Remove signed right shift before an unsigned right shift that extracts the sign bit.
495 (Rsh8Ux64 (Rsh8x64 x _) (Const64 <t> [7] )) => (Rsh8Ux64 x (Const64 <t> [7] ))
496 (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15]))
497 (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31]))
498 (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63]))
499
500 // Convert x>>c<<c to x&^(1<<c-1)
501 (Lsh64x64 i:(Rsh(64|64U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c]))
502 (Lsh32x64 i:(Rsh(32|32U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c]))
503 (Lsh16x64 i:(Rsh(16|16U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c]))
504 (Lsh8x64 i:(Rsh(8|8U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8(-1) << c]))
505 // similarly for x<<c>>c
506 (Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)]))
507 (Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)]))
508 (Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)]))
509 (Rsh8Ux64 i:(Lsh8x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8 (^uint8 (0)>>c)]))
510
511 // ((x >> c1) << c2) >> c3
512 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
513 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
514 => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
515
516 // ((x << c1) >> c2) << c3
517 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
518 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
519 => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
520
521 // (x >> c) & uppermask = 0
522 (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0])
523 (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0])
524 (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0])
525 (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0])
526
527 // (x << c) & lowermask = 0
528 (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0])
529 (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0])
530 (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0])
531 (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0])
532
533 // replace shifts with zero extensions
534 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x))
535 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x))
536 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x))
537 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
538 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
539 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
540
541 // replace shifts with sign extensions
542 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 <typ.Int8> x))
543 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 <typ.Int8> x))
544 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 <typ.Int8> x))
545 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x))
546 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x))
547 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x))
548
549 // ((x >> c) & d) << e
550 (Lsh64x64 (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c])) (Const64 [d])) (Const64 [e])) && c >= e => (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c-e])) (Const64 <t> [d<<e]))
551 (Lsh32x64 (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c])) (Const32 [d])) (Const64 [e])) && c >= e => (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c-e])) (Const32 <t> [d<<e]))
552 (Lsh16x64 (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c])) (Const16 [d])) (Const64 [e])) && c >= e => (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c-e])) (Const16 <t> [d<<e]))
553 (Lsh8x64 (And8 (Rsh(8|8U)x64 <t> x (Const64 <t2> [c])) (Const8 [d])) (Const64 [e])) && c >= e => (And8 (Rsh(8|8U)x64 <t> x (Const64 <t2> [c-e])) (Const8 <t> [d<<e]))
554 (Lsh64x64 (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c])) (Const64 [d])) (Const64 [e])) && c < e => (And64 (Lsh64x64 <t> x (Const64 <t2> [e-c])) (Const64 <t> [d<<e]))
555 (Lsh32x64 (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c])) (Const32 [d])) (Const64 [e])) && c < e => (And32 (Lsh32x64 <t> x (Const64 <t2> [e-c])) (Const32 <t> [d<<e]))
556 (Lsh16x64 (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c])) (Const16 [d])) (Const64 [e])) && c < e => (And16 (Lsh16x64 <t> x (Const64 <t2> [e-c])) (Const16 <t> [d<<e]))
557 (Lsh8x64 (And8 (Rsh(8|8U)x64 <t> x (Const64 <t2> [c])) (Const8 [d])) (Const64 [e])) && c < e => (And8 (Lsh8x64 <t> x (Const64 <t2> [e-c])) (Const8 <t> [d<<e]))
558
559 // constant comparisons
560 (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d])
561 (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d])
562 (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d])
563 (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d])
564
565 (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)])
566 (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)])
567 (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)])
568 (Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)])
569
570 (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)])
571 (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)])
572 (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)])
573 (Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)])
574
575 (Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true])
576 (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true])
577 (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true])
578 (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true])
579
580 (Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
581 (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
582 (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
583 (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
584
585 // prefer equalities with zero
586 (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
587 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
588 (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
589 (Leq(64|32|16|8)U (Const(64|32|16|8) <t> [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
590
591 // prefer comparisons with zero
592 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
593 (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
594 (Leq(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
595 (Less(64|32|16|8) (Const(64|32|16|8) <t> [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
596
597 // constant floating point comparisons
598 (Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d])
599 (Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d])
600 (Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d])
601 (Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d])
602 (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d])
603 (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d])
604 (Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d])
605 (Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d])
606
607 // simplifications
608 (Or(64|32|16|8) x x) => x
609 (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
610 (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1])
611 (Or(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1])
612
613 (And(64|32|16|8) x x) => x
614 (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x
615 (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
616 (And(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [0])
617
618 (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0])
619 (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
620 (Xor(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1])
621
622 (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
623 (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0])
624 (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
625 (Mul(64|32)uover <t> (Const(64|32) [0]) x) => (MakeTuple (Const(64|32) <t.FieldType(0)> [0]) (ConstBool <t.FieldType(1)> [false]))
626
627 (Com(64|32|16|8) (Com(64|32|16|8) x)) => x
628 (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c])
629
630 (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x)
631 (Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y)
632
633 (Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x)
634
635 (Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1])
636 (Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1])
637 (Add(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1])
638
639 // Prove does not simplify this because x + y might overflow into carry,
640 // however if no one care about the carry, let it overflow in a normal add.
641 (Select0 a:(Add64carry x y (Const64 [0]))) && a.Uses == 1 => (Add64 x y)
642
643 // Simplification when involving common integer
644 // (t + x) - (t + y) == x - y
645 // (t + x) - (y + t) == x - y
646 // (x + t) - (y + t) == x - y
647 // (x + t) - (t + y) == x - y
648 // (x - t) + (t + y) == x + y
649 // (x - t) + (y + t) == x + y
650 (Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y)
651 (Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y)
652
653 // ^(x-1) == ^x+1 == -x
654 (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x)
655 (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x)
656
657 // -(-x) == x
658 (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x
659
660 // -^x == x+1
661 (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x)
662
663 (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y)
664 (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y)
665 (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y
666
667 // Fold comparisons with numeric bounds
668 (Less(64|32|16|8)U _ (Const(64|32|16|8) [0])) => (ConstBool [false])
669 (Leq(64|32|16|8)U (Const(64|32|16|8) [0]) _) => (ConstBool [true])
670 (Less(64|32|16|8)U (Const(64|32|16|8) [-1]) _) => (ConstBool [false])
671 (Leq(64|32|16|8)U _ (Const(64|32|16|8) [-1])) => (ConstBool [true])
672 (Less64 _ (Const64 [math.MinInt64])) => (ConstBool [false])
673 (Less32 _ (Const32 [math.MinInt32])) => (ConstBool [false])
674 (Less16 _ (Const16 [math.MinInt16])) => (ConstBool [false])
675 (Less8 _ (Const8 [math.MinInt8 ])) => (ConstBool [false])
676 (Leq64 (Const64 [math.MinInt64]) _) => (ConstBool [true])
677 (Leq32 (Const32 [math.MinInt32]) _) => (ConstBool [true])
678 (Leq16 (Const16 [math.MinInt16]) _) => (ConstBool [true])
679 (Leq8 (Const8 [math.MinInt8 ]) _) => (ConstBool [true])
680 (Less64 (Const64 [math.MaxInt64]) _) => (ConstBool [false])
681 (Less32 (Const32 [math.MaxInt32]) _) => (ConstBool [false])
682 (Less16 (Const16 [math.MaxInt16]) _) => (ConstBool [false])
683 (Less8 (Const8 [math.MaxInt8 ]) _) => (ConstBool [false])
684 (Leq64 _ (Const64 [math.MaxInt64])) => (ConstBool [true])
685 (Leq32 _ (Const32 [math.MaxInt32])) => (ConstBool [true])
686 (Leq16 _ (Const16 [math.MaxInt16])) => (ConstBool [true])
687 (Leq8 _ (Const8 [math.MaxInt8 ])) => (ConstBool [true])
688
689 // Canonicalize <= on numeric bounds and < near numeric bounds to ==
690 (Leq(64|32|16|8)U x c:(Const(64|32|16|8) [0])) => (Eq(64|32|16|8) x c)
691 (Leq(64|32|16|8)U c:(Const(64|32|16|8) [-1]) x) => (Eq(64|32|16|8) x c)
692 (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
693 (Less(64|32|16|8)U (Const(64|32|16|8) <t> [-2]) x) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [-1]))
694 (Leq64 x c:(Const64 [math.MinInt64])) => (Eq64 x c)
695 (Leq32 x c:(Const32 [math.MinInt32])) => (Eq32 x c)
696 (Leq16 x c:(Const16 [math.MinInt16])) => (Eq16 x c)
697 (Leq8 x c:(Const8 [math.MinInt8 ])) => (Eq8 x c)
698 (Leq64 c:(Const64 [math.MaxInt64]) x) => (Eq64 x c)
699 (Leq32 c:(Const32 [math.MaxInt32]) x) => (Eq32 x c)
700 (Leq16 c:(Const16 [math.MaxInt16]) x) => (Eq16 x c)
701 (Leq8 c:(Const8 [math.MaxInt8 ]) x) => (Eq8 x c)
702 (Less64 x (Const64 <t> [math.MinInt64+1])) => (Eq64 x (Const64 <t> [math.MinInt64]))
703 (Less32 x (Const32 <t> [math.MinInt32+1])) => (Eq32 x (Const32 <t> [math.MinInt32]))
704 (Less16 x (Const16 <t> [math.MinInt16+1])) => (Eq16 x (Const16 <t> [math.MinInt16]))
705 (Less8 x (Const8 <t> [math.MinInt8 +1])) => (Eq8 x (Const8 <t> [math.MinInt8 ]))
706 (Less64 (Const64 <t> [math.MaxInt64-1]) x) => (Eq64 x (Const64 <t> [math.MaxInt64]))
707 (Less32 (Const32 <t> [math.MaxInt32-1]) x) => (Eq32 x (Const32 <t> [math.MaxInt32]))
708 (Less16 (Const16 <t> [math.MaxInt16-1]) x) => (Eq16 x (Const16 <t> [math.MaxInt16]))
709 (Less8 (Const8 <t> [math.MaxInt8 -1]) x) => (Eq8 x (Const8 <t> [math.MaxInt8 ]))
710
711 // Ands clear bits. Ors set bits.
712 // If a subsequent Or will set all the bits
713 // that an And cleared, we can skip the And.
714 // This happens in bitmasking code like:
715 // x &^= 3 << shift // clear two old bits
716 // x |= v << shift // set two new bits
717 // when shift is a small constant and v ends up a constant 3.
718 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 <t> [c1]) x)
719 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x)
720 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x)
721 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x)
722
723 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x)
724 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x)
725 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x)
726 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x)
727 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x)
728 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x)
729
730 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x
731 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x
732 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x
733 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x
734 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x
735 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x
736
737 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x
738 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x
739 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x
740 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x
741 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x
742 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x
743
744 (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1])
745 (Slicemask (Const32 [0])) => (Const32 [0])
746 (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1])
747 (Slicemask (Const64 [0])) => (Const64 [0])
748
749 // simplifications often used for lengths. e.g. len(s[i:i+5])==5
750 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y
751 (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x
752 (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y)
753 (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y)
754 (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y
755 (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z)
756
757 // basic phi simplifications
758 (Phi (Const8 [c]) (Const8 [c])) => (Const8 [c])
759 (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c])
760 (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c])
761 (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c])
762
763 // slice and interface comparisons
764 // The frontend ensures that we can only compare against nil,
765 // so we need only compare the first word (interface type or slice ptr).
766 (EqInter x y) => (EqPtr (ITab x) (ITab y))
767 (NeqInter x y) => (NeqPtr (ITab x) (ITab y))
768 (EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y))
769 (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y))
770
771 // Load of store of same address, with compatibly typed value and same size
772 (Load <t1> p1 (Store {t2} p2 x _))
773 && isSamePtr(p1, p2)
774 && copyCompatibleType(t1, x.Type)
775 && t1.Size() == t2.Size()
776 => x
777 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _)))
778 && isSamePtr(p1, p3)
779 && copyCompatibleType(t1, x.Type)
780 && t1.Size() == t3.Size()
781 && disjoint(p3, t3.Size(), p2, t2.Size())
782 => x
783 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _))))
784 && isSamePtr(p1, p4)
785 && copyCompatibleType(t1, x.Type)
786 && t1.Size() == t4.Size()
787 && disjoint(p4, t4.Size(), p2, t2.Size())
788 && disjoint(p4, t4.Size(), p3, t3.Size())
789 => x
790 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _)))))
791 && isSamePtr(p1, p5)
792 && copyCompatibleType(t1, x.Type)
793 && t1.Size() == t5.Size()
794 && disjoint(p5, t5.Size(), p2, t2.Size())
795 && disjoint(p5, t5.Size(), p3, t3.Size())
796 && disjoint(p5, t5.Size(), p4, t4.Size())
797 => x
798
799 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
800 (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))])
801 (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))])
802 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))])
803 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))])
804
805 // Float Loads up to Zeros so they can be constant folded.
806 (Load <t1> op:(OffPtr [o1] p1)
807 (Store {t2} p2 _
808 mem:(Zero [n] p3 _)))
809 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3)
810 && CanSSA(t1)
811 && disjoint(op, t1.Size(), p2, t2.Size())
812 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem)
813 (Load <t1> op:(OffPtr [o1] p1)
814 (Store {t2} p2 _
815 (Store {t3} p3 _
816 mem:(Zero [n] p4 _))))
817 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4)
818 && CanSSA(t1)
819 && disjoint(op, t1.Size(), p2, t2.Size())
820 && disjoint(op, t1.Size(), p3, t3.Size())
821 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem)
822 (Load <t1> op:(OffPtr [o1] p1)
823 (Store {t2} p2 _
824 (Store {t3} p3 _
825 (Store {t4} p4 _
826 mem:(Zero [n] p5 _)))))
827 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5)
828 && CanSSA(t1)
829 && disjoint(op, t1.Size(), p2, t2.Size())
830 && disjoint(op, t1.Size(), p3, t3.Size())
831 && disjoint(op, t1.Size(), p4, t4.Size())
832 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem)
833 (Load <t1> op:(OffPtr [o1] p1)
834 (Store {t2} p2 _
835 (Store {t3} p3 _
836 (Store {t4} p4 _
837 (Store {t5} p5 _
838 mem:(Zero [n] p6 _))))))
839 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6)
840 && CanSSA(t1)
841 && disjoint(op, t1.Size(), p2, t2.Size())
842 && disjoint(op, t1.Size(), p3, t3.Size())
843 && disjoint(op, t1.Size(), p4, t4.Size())
844 && disjoint(op, t1.Size(), p5, t5.Size())
845 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem)
846
847 // Zero to Load forwarding.
848 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
849 && t1.IsBoolean()
850 && isSamePtr(p1, p2)
851 && n >= o + 1
852 => (ConstBool [false])
853 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
854 && is8BitInt(t1)
855 && isSamePtr(p1, p2)
856 && n >= o + 1
857 => (Const8 [0])
858 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
859 && is16BitInt(t1)
860 && isSamePtr(p1, p2)
861 && n >= o + 2
862 => (Const16 [0])
863 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
864 && is32BitInt(t1)
865 && isSamePtr(p1, p2)
866 && n >= o + 4
867 => (Const32 [0])
868 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
869 && is64BitInt(t1)
870 && isSamePtr(p1, p2)
871 && n >= o + 8
872 => (Const64 [0])
873 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
874 && is32BitFloat(t1)
875 && isSamePtr(p1, p2)
876 && n >= o + 4
877 => (Const32F [0])
878 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
879 && is64BitFloat(t1)
880 && isSamePtr(p1, p2)
881 && n >= o + 8
882 => (Const64F [0])
883
884 // Eliminate stores of values that have just been loaded from the same location.
885 // We also handle the common case where there are some intermediate stores.
886 (Store {t1} p1 (Load <t2> p2 mem) mem)
887 && isSamePtr(p1, p2)
888 && t2.Size() == t1.Size()
889 => mem
890 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem))
891 && isSamePtr(p1, p2)
892 && t2.Size() == t1.Size()
893 && disjoint(p1, t1.Size(), p3, t3.Size())
894 => mem
895 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem)))
896 && isSamePtr(p1, p2)
897 && t2.Size() == t1.Size()
898 && disjoint(p1, t1.Size(), p3, t3.Size())
899 && disjoint(p1, t1.Size(), p4, t4.Size())
900 => mem
901 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem))))
902 && isSamePtr(p1, p2)
903 && t2.Size() == t1.Size()
904 && disjoint(p1, t1.Size(), p3, t3.Size())
905 && disjoint(p1, t1.Size(), p4, t4.Size())
906 && disjoint(p1, t1.Size(), p5, t5.Size())
907 => mem
908
909 // Don't Store zeros to cleared variables.
910 (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _))
911 && isConstZero(x)
912 && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2)
913 => mem
914 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _)))
915 && isConstZero(x)
916 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3)
917 && disjoint(op, t1.Size(), p2, t2.Size())
918 => mem
919 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _))))
920 && isConstZero(x)
921 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4)
922 && disjoint(op, t1.Size(), p2, t2.Size())
923 && disjoint(op, t1.Size(), p3, t3.Size())
924 => mem
925 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _)))))
926 && isConstZero(x)
927 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5)
928 && disjoint(op, t1.Size(), p2, t2.Size())
929 && disjoint(op, t1.Size(), p3, t3.Size())
930 && disjoint(op, t1.Size(), p4, t4.Size())
931 => mem
932
933 // Collapse OffPtr
934 (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y])
935 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p
936
937 // indexing operations
938 // Note: bounds check has already been done
939 (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())])))
940 (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()])))
941
942 // struct operations
943 (StructSelect [i] x:(StructMake ___)) => x.Args[i]
944 (Load <t> _ _) && t.IsStruct() && CanSSA(t) && !t.IsSIMD() => rewriteStructLoad(v)
945 (Store _ (StructMake ___) _) => rewriteStructStore(v)
946
947 (StructSelect [i] x:(Load <t> ptr mem)) && !CanSSA(t) =>
948 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
949
950 // Putting struct{*byte} and similar into direct interfaces.
951 (IMake _typ (StructMake ___)) => imakeOfStructMake(v)
952 (StructSelect (IData x)) && v.Type.Size() > 0 => (IData x)
953 (StructSelect (IData x)) && v.Type.Size() == 0 && v.Type.IsStruct() => (StructMake)
954 (StructSelect (IData x)) && v.Type.Size() == 0 && v.Type.IsArray() => (ArrayMake0)
955
956 // un-SSAable values use mem->mem copies
957 (Store {t} dst (Load src mem) mem) && !CanSSA(t) =>
958 (Move {t} [t.Size()] dst src mem)
959 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) =>
960 (Move {t} [t.Size()] dst src (VarDef {x} mem))
961
962 // array ops
963 (ArraySelect (ArrayMake1 x)) => x
964
965 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 =>
966 (ArrayMake0)
967
968 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) =>
969 (ArrayMake1 (Load <t.Elem()> ptr mem))
970
971 (Store _ (ArrayMake0) mem) => mem
972 (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem)
973
974 // Putting [1]*byte and similar into direct interfaces.
975 (IMake _typ (ArrayMake1 val)) => (IMake _typ val)
976 (ArraySelect [0] (IData x)) => (IData x)
977
978 // string ops
979 // Decomposing StringMake and lowering of StringPtr and StringLen
980 // happens in a later pass, dec, so that these operations are available
981 // to other passes for optimizations.
982 (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base)
983 (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c])
984 (ConstString {str}) && config.PtrSize == 4 && str == "" =>
985 (StringMake (ConstNil) (Const32 <typ.Int> [0]))
986 (ConstString {str}) && config.PtrSize == 8 && str == "" =>
987 (StringMake (ConstNil) (Const64 <typ.Int> [0]))
988 (ConstString {str}) && config.PtrSize == 4 && str != "" =>
989 (StringMake
990 (Addr <typ.BytePtr> {fe.StringData(str)}
991 (SB))
992 (Const32 <typ.Int> [int32(len(str))]))
993 (ConstString {str}) && config.PtrSize == 8 && str != "" =>
994 (StringMake
995 (Addr <typ.BytePtr> {fe.StringData(str)}
996 (SB))
997 (Const64 <typ.Int> [int64(len(str))]))
998
999 // slice ops
1000 // Only a few slice rules are provided here. See dec.rules for
1001 // a more comprehensive set.
1002 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c])
1003 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c])
1004 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c])
1005 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c])
1006 (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x)
1007 (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x)
1008 (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x)
1009 (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x)
1010 (ConstSlice) && config.PtrSize == 4 =>
1011 (SliceMake
1012 (ConstNil <v.Type.Elem().PtrTo()>)
1013 (Const32 <typ.Int> [0])
1014 (Const32 <typ.Int> [0]))
1015 (ConstSlice) && config.PtrSize == 8 =>
1016 (SliceMake
1017 (ConstNil <v.Type.Elem().PtrTo()>)
1018 (Const64 <typ.Int> [0])
1019 (Const64 <typ.Int> [0]))
1020
1021 // Special rule to help constant slicing; len > 0 implies cap > 0 implies Slicemask is all 1
1022 (SliceMake (AddPtr <t> x (And64 y (Slicemask _))) w:(Const64 [c]) z) && c > 0 => (SliceMake (AddPtr <t> x y) w z)
1023 (SliceMake (AddPtr <t> x (And32 y (Slicemask _))) w:(Const32 [c]) z) && c > 0 => (SliceMake (AddPtr <t> x y) w z)
1024
1025 // interface ops
1026 (ConstInterface) =>
1027 (IMake
1028 (ConstNil <typ.Uintptr>)
1029 (ConstNil <typ.BytePtr>))
1030
1031 (NilCheck ptr:(GetG mem) mem) => ptr
1032
1033 (If (Not cond) yes no) => (If cond no yes)
1034 (If (ConstBool [c]) yes no) && c => (First yes no)
1035 (If (ConstBool [c]) yes no) && !c => (First no yes)
1036
1037 (Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y))
1038
1039 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
1040 (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off)
1041 (Convert (Convert ptr mem) mem) => ptr
1042 // Note: it is important that the target rewrite is ptr+(off1+off2), not (ptr+off1)+off2.
1043 // We must ensure that no intermediate computations are invalid pointers.
1044 (Convert a:(Add(64|32) (Add(64|32) (Convert ptr mem) off1) off2) mem) => (AddPtr ptr (Add(64|32) <a.Type> off1 off2))
1045
1046 // Simplification of divisions.
1047 // Only trivial, easily analyzed (by prove) rewrites here.
1048 // Strength reduction of div to mul is delayed to divmod.rules.
1049
1050 // Signed divide by a negative constant. Rewrite to divide by a positive constant.
1051 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 <t> n (Const8 <t> [-c])))
1052 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c])))
1053 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c])))
1054 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c])))
1055
1056 // Dividing by the most-negative number. Result is always 0 except
1057 // if the input is also the most-negative number.
1058 // We can detect that using the sign bit of x & -x.
1059 (Div64 x (Const64 [-1<<63])) && isNonNegative(x) => (Const64 [0])
1060 (Div8 <t> x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ]))
1061 (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
1062 (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
1063 (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
1064
1065 // Unsigned divide by power of 2. Strength reduce to a shift.
1066 (Div8u n (Const8 [c])) && isUnsignedPowerOfTwo(uint8(c)) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8u(uint8(c))]))
1067 (Div16u n (Const16 [c])) && isUnsignedPowerOfTwo(uint16(c)) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16u(uint16(c))]))
1068 (Div32u n (Const32 [c])) && isUnsignedPowerOfTwo(uint32(c)) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32u(uint32(c))]))
1069 (Div64u n (Const64 [c])) && isUnsignedPowerOfTwo(uint64(c)) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64u(uint64(c))]))
1070
1071 // Strength reduce multiplication by a power of two to a shift.
1072 // Excluded from early opt so that prove can recognize mod
1073 // by the x - (x/d)*d pattern.
1074 // (Runs during "middle opt" and "late opt".)
1075 (Mul8 <t> x (Const8 [c])) && isPowerOfTwo(c) && v.Block.Func.pass.name != "opt" =>
1076 (Lsh8x64 <t> x (Const64 <typ.UInt64> [log8(c)]))
1077 (Mul16 <t> x (Const16 [c])) && isPowerOfTwo(c) && v.Block.Func.pass.name != "opt" =>
1078 (Lsh16x64 <t> x (Const64 <typ.UInt64> [log16(c)]))
1079 (Mul32 <t> x (Const32 [c])) && isPowerOfTwo(c) && v.Block.Func.pass.name != "opt" =>
1080 (Lsh32x64 <t> x (Const64 <typ.UInt64> [log32(c)]))
1081 (Mul64 <t> x (Const64 [c])) && isPowerOfTwo(c) && v.Block.Func.pass.name != "opt" =>
1082 (Lsh64x64 <t> x (Const64 <typ.UInt64> [log64(c)]))
1083 (Mul8 <t> x (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) && v.Block.Func.pass.name != "opt" =>
1084 (Neg8 (Lsh8x64 <t> x (Const64 <typ.UInt64> [log8(-c)])))
1085 (Mul16 <t> x (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) && v.Block.Func.pass.name != "opt" =>
1086 (Neg16 (Lsh16x64 <t> x (Const64 <typ.UInt64> [log16(-c)])))
1087 (Mul32 <t> x (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) && v.Block.Func.pass.name != "opt" =>
1088 (Neg32 (Lsh32x64 <t> x (Const64 <typ.UInt64> [log32(-c)])))
1089 (Mul64 <t> x (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) && v.Block.Func.pass.name != "opt" =>
1090 (Neg64 (Lsh64x64 <t> x (Const64 <typ.UInt64> [log64(-c)])))
1091
1092 // Strength reduction of mod to div.
1093 // Strength reduction of div to mul is delayed to genericlateopt.rules.
1094
1095 // Unsigned mod by power of 2 constant.
1096 (Mod8u <t> n (Const8 [c])) && isUnsignedPowerOfTwo(uint8(c)) => (And8 n (Const8 <t> [c-1]))
1097 (Mod16u <t> n (Const16 [c])) && isUnsignedPowerOfTwo(uint16(c)) => (And16 n (Const16 <t> [c-1]))
1098 (Mod32u <t> n (Const32 [c])) && isUnsignedPowerOfTwo(uint32(c)) => (And32 n (Const32 <t> [c-1]))
1099 (Mod64u <t> n (Const64 [c])) && isUnsignedPowerOfTwo(uint64(c)) => (And64 n (Const64 <t> [c-1]))
1100
1101 // Signed non-negative mod by power of 2 constant.
1102 // TODO: Replace ModN with ModNu in prove.
1103 (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And8 n (Const8 <t> [c-1]))
1104 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And16 n (Const16 <t> [c-1]))
1105 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And32 n (Const32 <t> [c-1]))
1106 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And64 n (Const64 <t> [c-1]))
1107 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n
1108
1109 // Signed mod by negative constant.
1110 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 <t> n (Const8 <t> [-c]))
1111 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c]))
1112 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c]))
1113 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c]))
1114
1115 // All other mods by constants, do A%B = A-(A/B*B).
1116 // This implements % with two * and a bunch of ancillary ops.
1117 // One of the * is free if the user's code also computes A/B.
1118 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7)
1119 => (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c])))
1120 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
1121 => (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c])))
1122 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
1123 => (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c])))
1124 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
1125 => (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c])))
1126 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c != 0
1127 => (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c])))
1128 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c != 0
1129 => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
1130 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c != 0
1131 => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
1132 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c != 0
1133 => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
1134
1135 // Set up for mod->mul+rot optimization in genericlateopt.rules.
1136 // For architectures without rotates on less than 32-bits, promote to 32-bit.
1137 // TODO: Also != 0 case?
1138 (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) =>
1139 (Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0]))
1140 (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) =>
1141 (Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0]))
1142 (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) =>
1143 (Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
1144 (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) =>
1145 (Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
1146
1147 (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y)
1148 (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y)
1149
1150 // Optimize bitsets
1151 (Eq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [y])) && oneBit(y)
1152 => (Neq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [0]))
1153 (Neq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [y])) && oneBit(y)
1154 => (Eq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [0]))
1155
1156 // Mark newly generated bounded shifts as bounded, for opt passes after prove.
1157 (Lsh64x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 64 => (Lsh64x(8|16|32|64) [true] x con)
1158 (Rsh64x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 64 => (Rsh64x(8|16|32|64) [true] x con)
1159 (Rsh64Ux(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 64 => (Rsh64Ux(8|16|32|64) [true] x con)
1160 (Lsh32x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 32 => (Lsh32x(8|16|32|64) [true] x con)
1161 (Rsh32x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 32 => (Rsh32x(8|16|32|64) [true] x con)
1162 (Rsh32Ux(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 32 => (Rsh32Ux(8|16|32|64) [true] x con)
1163 (Lsh16x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 16 => (Lsh16x(8|16|32|64) [true] x con)
1164 (Rsh16x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 16 => (Rsh16x(8|16|32|64) [true] x con)
1165 (Rsh16Ux(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 16 => (Rsh16Ux(8|16|32|64) [true] x con)
1166 (Lsh8x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 8 => (Lsh8x(8|16|32|64) [true] x con)
1167 (Rsh8x(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 8 => (Rsh8x(8|16|32|64) [true] x con)
1168 (Rsh8Ux(8|16|32|64) [false] x con:(Const(8|16|32|64) [c])) && 0 < c && c < 8 => (Rsh8Ux(8|16|32|64) [true] x con)
1169
1170 // Reassociate expressions involving
1171 // constants such that constants come first,
1172 // exposing obvious constant-folding opportunities.
1173 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
1174 // is constant, which pushes constants to the outside
1175 // of the expression. At that point, any constant-folding
1176 // opportunities should be obvious.
1177 // Note: don't include AddPtr here! In order to maintain the
1178 // invariant that pointers must stay within the pointed-to object,
1179 // we can't pull part of a pointer computation above the AddPtr.
1180 // See issue 37881.
1181 // Note: we don't need to handle any (x-C) cases because we already rewrite
1182 // (x-C) to (x+(-C)).
1183
1184 // x + (C + z) -> C + (x + z)
1185 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x))
1186 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x))
1187 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x))
1188 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 <t> z x))
1189
1190 // x + (C - z) -> C + (x - z)
1191 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z))
1192 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z))
1193 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z))
1194 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> x z))
1195
1196 // x - (C - z) -> x + (z - C) -> (x + z) - C
1197 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i)
1198 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i)
1199 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i)
1200 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 <t> x z) i)
1201
1202 // x - (z + C) -> x + (-z - C) -> (x - z) - C
1203 (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i)
1204 (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i)
1205 (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i)
1206 (Sub8 x (Add8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 <t> x z) i)
1207
1208 // (C - z) - x -> C - (z + x)
1209 (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x))
1210 (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x))
1211 (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x))
1212 (Sub8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 <t> z x))
1213
1214 // (z + C) -x -> C + (z - x)
1215 (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x))
1216 (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x))
1217 (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x))
1218 (Sub8 (Add8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> z x))
1219
1220 // x & (C & z) -> C & (x & z)
1221 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x))
1222 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x))
1223 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x))
1224 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 <t> z x))
1225
1226 // x | (C | z) -> C | (x | z)
1227 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x))
1228 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x))
1229 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x))
1230 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 <t> z x))
1231
1232 // x ^ (C ^ z) -> C ^ (x ^ z)
1233 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x))
1234 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x))
1235 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x))
1236 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 <t> z x))
1237
1238 // x * (D * z) = D * (x * z)
1239 (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z))
1240 (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z))
1241 (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z))
1242 (Mul8 (Mul8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 <t> x z))
1243
1244 // C + (D + x) -> (C + D) + x
1245 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x)
1246 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x)
1247 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x)
1248 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c+d]) x)
1249
1250 // C + (D - x) -> (C + D) - x
1251 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x)
1252 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x)
1253 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x)
1254 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c+d]) x)
1255
1256 // C - (D - x) -> (C - D) + x
1257 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x)
1258 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x)
1259 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x)
1260 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c-d]) x)
1261
1262 // C - (D + x) -> (C - D) - x
1263 (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x)
1264 (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x)
1265 (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x)
1266 (Sub8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c-d]) x)
1267
1268 // C & (D & x) -> (C & D) & x
1269 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x)
1270 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x)
1271 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x)
1272 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) => (And8 (Const8 <t> [c&d]) x)
1273
1274 // C | (D | x) -> (C | D) | x
1275 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x)
1276 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x)
1277 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x)
1278 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) => (Or8 (Const8 <t> [c|d]) x)
1279
1280 // C ^ (D ^ x) -> (C ^ D) ^ x
1281 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x)
1282 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x)
1283 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x)
1284 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) => (Xor8 (Const8 <t> [c^d]) x)
1285
1286 // C * (D * x) = (C * D) * x
1287 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x)
1288 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x)
1289 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x)
1290 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) => (Mul8 (Const8 <t> [c*d]) x)
1291
1292 // floating point optimizations
1293 (Mul(32|64)F x (Const(32|64)F [1])) => x
1294 (Mul32F x (Const32F [-1])) => (Neg32F x)
1295 (Mul64F x (Const64F [-1])) => (Neg64F x)
1296 (Mul32F x (Const32F [2])) => (Add32F x x)
1297 (Mul64F x (Const64F [2])) => (Add64F x x)
1298
1299 (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c]))
1300 (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c]))
1301
1302 // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))"
1303 (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x)
1304
1305 (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)])
1306
1307 // for rewriting constant folded math/bits ops
1308 (Select0 (MakeTuple x y)) => x
1309 (Select1 (MakeTuple x y)) => y
1310
1311 // for rewriting results of some late-expanded rewrites (below)
1312 (SelectN [n] m:(MakeResult ___)) => m.Args[n]
1313
1314 // TODO(matloob): Try out having non-zeroing mallocs for prointerless
1315 // memory, and leaving the zeroing here. Then the compiler can remove
1316 // the zeroing if the user has explicit writes to the whole object.
1317
1318 // for late-expanded calls, recognize newobject and remove zeroing and nilchecks
1319 (Zero (SelectN [0] call:(StaticLECall ___)) mem:(SelectN [1] call))
1320 && isMalloc(call.Aux)
1321 => mem
1322
1323 (Store (SelectN [0] call:(StaticLECall ___)) x mem:(SelectN [1] call))
1324 && isConstZero(x)
1325 && isMalloc(call.Aux)
1326 => mem
1327
1328 (Store (OffPtr (SelectN [0] call:(StaticLECall ___))) x mem:(SelectN [1] call))
1329 && isConstZero(x)
1330 && isMalloc(call.Aux)
1331 => mem
1332
1333 (NilCheck ptr:(SelectN [0] call:(StaticLECall ___)) _)
1334 && isMalloc(call.Aux)
1335 && warnRule(fe.Debug_checknil(), v, "removed nil check")
1336 => ptr
1337
1338 (NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall ___))) _)
1339 && isMalloc(call.Aux)
1340 && warnRule(fe.Debug_checknil(), v, "removed nil check")
1341 => ptr
1342
1343 // Addresses of globals are always non-nil.
1344 (NilCheck ptr:(Addr {_} (SB)) _) => ptr
1345 (NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr
1346
1347 // Addresses of locals are always non-nil.
1348 (NilCheck ptr:(LocalAddr _ _) _)
1349 && warnRule(fe.Debug_checknil(), v, "removed nil check")
1350 => ptr
1351
1352 // .dict args are always non-nil.
1353 (NilCheck ptr:(Arg {sym}) _) && isDictArgSym(sym) => ptr
1354
1355 // Nil checks of nil checks are redundant.
1356 // See comment at the end of https://go-review.googlesource.com/c/go/+/537775.
1357 (NilCheck ptr:(NilCheck _ _) _ ) => ptr
1358
1359 // for late-expanded calls, recognize memequal applied to a single constant byte
1360 // Support is limited by [1-8] byte sizes
1361 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem)
1362 && isSameCall(callAux, "runtime.memequal")
1363 && symIsRO(scon)
1364 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
1365
1366 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem)
1367 && isSameCall(callAux, "runtime.memequal")
1368 && symIsRO(scon)
1369 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
1370
1371 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem)
1372 && isSameCall(callAux, "runtime.memequal")
1373 && symIsRO(scon)
1374 && canLoadUnaligned(config)
1375 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
1376
1377 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem)
1378 && isSameCall(callAux, "runtime.memequal")
1379 && symIsRO(scon)
1380 && canLoadUnaligned(config)
1381 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
1382
1383 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem)
1384 && isSameCall(callAux, "runtime.memequal")
1385 && symIsRO(scon)
1386 && canLoadUnaligned(config)
1387 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
1388
1389 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem)
1390 && isSameCall(callAux, "runtime.memequal")
1391 && symIsRO(scon)
1392 && canLoadUnaligned(config)
1393 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
1394
1395 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem)
1396 && isSameCall(callAux, "runtime.memequal")
1397 && symIsRO(scon)
1398 && canLoadUnaligned(config) && config.PtrSize == 8
1399 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
1400
1401 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem)
1402 && isSameCall(callAux, "runtime.memequal")
1403 && symIsRO(scon)
1404 && canLoadUnaligned(config) && config.PtrSize == 8
1405 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
1406
1407 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [3]) mem)
1408 && isSameCall(callAux, "runtime.memequal")
1409 && symIsRO(scon)
1410 && canLoadUnaligned(config) =>
1411 (MakeResult
1412 (Eq32
1413 (Or32 <typ.Int32>
1414 (ZeroExt16to32 <typ.Int32> (Load <typ.Int16> sptr mem))
1415 (Lsh32x32 <typ.Int32>
1416 (ZeroExt8to32 <typ.Int32> (Load <typ.Int8> (OffPtr <typ.BytePtr> [2] sptr) mem))
1417 (Const32 <typ.Int32> [16])))
1418 (Const32 <typ.Int32> [int32(uint32(read16(scon,0,config.ctxt.Arch.ByteOrder))|(uint32(read8(scon,2))<<16))]))
1419 mem)
1420
1421 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [3]) mem)
1422 && isSameCall(callAux, "runtime.memequal")
1423 && symIsRO(scon)
1424 && canLoadUnaligned(config) =>
1425 (MakeResult
1426 (Eq32
1427 (Or32 <typ.Int32>
1428 (ZeroExt16to32 <typ.Int32> (Load <typ.Int16> sptr mem))
1429 (Lsh32x32 <typ.Int32>
1430 (ZeroExt8to32 <typ.Int32> (Load <typ.Int8> (OffPtr <typ.BytePtr> [2] sptr) mem))
1431 (Const32 <typ.Int32> [16])))
1432 (Const32 <typ.Int32> [int32(uint32(read16(scon,0,config.ctxt.Arch.ByteOrder))|(uint32(read8(scon,2))<<16))]))
1433 mem)
1434
1435 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [5]) mem)
1436 && isSameCall(callAux, "runtime.memequal")
1437 && symIsRO(scon)
1438 && canLoadUnaligned(config) && config.PtrSize == 8 =>
1439 (MakeResult
1440 (Eq64
1441 (Or64 <typ.Int64>
1442 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
1443 (Lsh64x64 <typ.Int64>
1444 (ZeroExt8to64 <typ.Int64> (Load <typ.Int8> (OffPtr <typ.BytePtr> [4] sptr) mem))
1445 (Const64 <typ.Int64> [32])))
1446 (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read8(scon,4))<<32))]))
1447 mem)
1448
1449 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [5]) mem)
1450 && isSameCall(callAux, "runtime.memequal")
1451 && symIsRO(scon)
1452 && canLoadUnaligned(config) && config.PtrSize == 8 =>
1453 (MakeResult
1454 (Eq64
1455 (Or64 <typ.Int64>
1456 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
1457 (Lsh64x64 <typ.Int64>
1458 (ZeroExt8to64 <typ.Int64> (Load <typ.Int8> (OffPtr <typ.BytePtr> [4] sptr) mem))
1459 (Const64 <typ.Int64> [32])))
1460 (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read8(scon,4))<<32))]))
1461 mem)
1462
1463 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [6]) mem)
1464 && isSameCall(callAux, "runtime.memequal")
1465 && symIsRO(scon)
1466 && canLoadUnaligned(config) && config.PtrSize == 8 =>
1467 (MakeResult
1468 (Eq64
1469 (Or64 <typ.Int64>
1470 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
1471 (Lsh64x64 <typ.Int64>
1472 (ZeroExt16to64 <typ.Int64> (Load <typ.Int16> (OffPtr <typ.BytePtr> [4] sptr) mem))
1473 (Const64 <typ.Int64> [32])))
1474 (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read16(scon,4,config.ctxt.Arch.ByteOrder))<<32))]))
1475 mem)
1476
1477 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [6]) mem)
1478 && isSameCall(callAux, "runtime.memequal")
1479 && symIsRO(scon)
1480 && canLoadUnaligned(config) && config.PtrSize == 8 =>
1481 (MakeResult
1482 (Eq64
1483 (Or64 <typ.Int64>
1484 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
1485 (Lsh64x64 <typ.Int64>
1486 (ZeroExt16to64 <typ.Int64> (Load <typ.Int16> (OffPtr <typ.BytePtr> [4] sptr) mem))
1487 (Const64 <typ.Int64> [32])))
1488 (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read16(scon,4,config.ctxt.Arch.ByteOrder))<<32))]))
1489 mem)
1490
1491 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [7]) mem)
1492 && isSameCall(callAux, "runtime.memequal")
1493 && symIsRO(scon)
1494 && canLoadUnaligned(config) && config.PtrSize == 8 =>
1495 (MakeResult
1496 (Eq64
1497 (Or64 <typ.Int64>
1498 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
1499 (Lsh64x64 <typ.Int64>
1500 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> (OffPtr <typ.BytePtr> [3] sptr) mem))
1501 (Const64 <typ.Int64> [32])))
1502 (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read32(scon,3,config.ctxt.Arch.ByteOrder))<<32))]))
1503 mem)
1504
1505 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [7]) mem)
1506 && isSameCall(callAux, "runtime.memequal")
1507 && symIsRO(scon)
1508 && canLoadUnaligned(config) && config.PtrSize == 8 =>
1509 (MakeResult
1510 (Eq64
1511 (Or64 <typ.Int64>
1512 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
1513 (Lsh64x64 <typ.Int64>
1514 (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> (OffPtr <typ.BytePtr> [3] sptr) mem))
1515 (Const64 <typ.Int64> [32])))
1516 (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read32(scon,3,config.ctxt.Arch.ByteOrder))<<32))]))
1517 mem)
1518
1519 (StaticLECall {callAux} _ _ (Const64 [0]) mem)
1520 && isSameCall(callAux, "runtime.memequal")
1521 => (MakeResult (ConstBool <typ.Bool> [true]) mem)
1522
1523 (Static(Call|LECall) {callAux} p q _ mem)
1524 && isSameCall(callAux, "runtime.memequal")
1525 && isSamePtr(p, q)
1526 => (MakeResult (ConstBool <typ.Bool> [true]) mem)
1527
1528 (MemEq sptr tptr (Const64 [1]) mem)
1529 => (Eq8 (Load <typ.Int8> sptr mem) (Load <typ.Int8> tptr mem))
1530
1531 (Load <typ.Int8> sptr:(Addr {scon} (SB)) mem)
1532 && symIsRO(scon)
1533 => (Const8 <typ.Int8> [int8(read8(scon,0))])
1534
1535 (MemEq sptr tptr (Const64 [2]) mem)
1536 && canLoadUnaligned(config)
1537 => (Eq16 (Load <typ.Int16> sptr mem) (Load <typ.Int16> tptr mem))
1538
1539 (Load <typ.Int16> sptr:(Addr {scon} (SB)) mem)
1540 && symIsRO(scon)
1541 => (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])
1542
1543 (MemEq sptr tptr (Const64 [4]) mem)
1544 && canLoadUnaligned(config)
1545 => (Eq32 (Load <typ.Int32> sptr mem) (Load <typ.Int32> tptr mem))
1546
1547 (Load <typ.Int32> sptr:(Addr {scon} (SB)) mem)
1548 && symIsRO(scon)
1549 => (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])
1550
1551 (MemEq sptr tptr (Const64 [8]) mem)
1552 && canLoadUnaligned(config) && config.PtrSize == 8
1553 => (Eq64 (Load <typ.Int64> sptr mem) (Load <typ.Int64> tptr mem))
1554
1555 (Load <typ.Int64> sptr:(Addr {scon} (SB)) mem)
1556 && symIsRO(scon)
1557 => (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])
1558
1559 (MemEq _ _ (Const64 [0]) _) => (ConstBool <typ.Bool> [true])
1560
1561 (MemEq p q _ _) && isSamePtr(p, q) => (ConstBool <typ.Bool> [true])
1562
1563 // Turn known-size calls to memclrNoHeapPointers into a Zero.
1564 // Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details.
1565 (SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem))
1566 && isInlinableMemclr(config, int64(c))
1567 && isSameCall(sym, "runtime.memclrNoHeapPointers")
1568 && call.Uses == 1
1569 && clobber(call)
1570 => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem)
1571
1572 // Recognise make([]T, 0) and replace it with a pointer to the zerobase
1573 (StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem)
1574 && isSameCall(callAux, "runtime.makeslice")
1575 => (MakeResult (Addr <v.Type.FieldType(0)> {ir.Syms.Zerobase} (SB)) mem)
1576
1577 // Evaluate constant address comparisons.
1578 (EqPtr x x) => (ConstBool [true])
1579 (NeqPtr x x) => (ConstBool [false])
1580 (EqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y])
1581 (EqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0])
1582 (EqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2])
1583 (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y])
1584 (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0])
1585 (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2])
1586 (EqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y])
1587 (EqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0])
1588 (EqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2])
1589 (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y])
1590 (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0])
1591 (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2])
1592 (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0])
1593 (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0])
1594 (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2])
1595 (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2])
1596 (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d])
1597 (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d])
1598 (EqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y])
1599 (NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y])
1600
1601 (EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false])
1602 (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false])
1603 (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false])
1604 (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false])
1605 (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true])
1606 (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true])
1607 (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true])
1608 (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true])
1609
1610 // Simplify address comparisons.
1611 (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1))
1612 (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1)
1613 (EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p))
1614 (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p)
1615 (EqPtr (ConstNil) p) => (Not (IsNonNil p))
1616 (NeqPtr (ConstNil) p) => (IsNonNil p)
1617
1618 // Evaluate constant user nil checks.
1619 (IsNonNil (ConstNil)) => (ConstBool [false])
1620 (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0])
1621 (IsNonNil (Addr _) ) => (ConstBool [true])
1622 (IsNonNil (Convert (Addr _) _)) => (ConstBool [true])
1623 (IsNonNil (LocalAddr _ _)) => (ConstBool [true])
1624
1625 // Inline small or disjoint runtime.memmove calls with constant length.
1626 // See the comment in op Move in genericOps.go for discussion of the type.
1627 //
1628 // Note that we've lost any knowledge of the type and alignment requirements
1629 // of the source and destination. We only know the size, and that the type
1630 // contains no pointers.
1631 // The type of the move is not necessarily v.Args[0].Type().Elem()!
1632 // See issue 55122 for details.
1633 //
1634 // Because expand calls runs after prove, constants useful to this pattern may not appear.
1635 // Both versions need to exist; the memory and register variants.
1636 //
1637 // Match post-expansion calls, memory version.
1638 (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))))
1639 && sz >= 0
1640 && isSameCall(sym, "runtime.memmove")
1641 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
1642 && isInlinableMemmove(dst, src, int64(sz), config)
1643 && clobber(s1, s2, s3, call)
1644 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
1645
1646 // Match post-expansion calls, register version.
1647 (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem))
1648 && sz >= 0
1649 && call.Uses == 1 // this will exclude all calls with results
1650 && isSameCall(sym, "runtime.memmove")
1651 && isInlinableMemmove(dst, src, int64(sz), config)
1652 && clobber(call)
1653 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
1654
1655 // Match pre-expansion calls.
1656 (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem))
1657 && sz >= 0
1658 && call.Uses == 1 // this will exclude all calls with results
1659 && isSameCall(sym, "runtime.memmove")
1660 && isInlinableMemmove(dst, src, int64(sz), config)
1661 && clobber(call)
1662 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
1663
1664 // De-virtualize late-expanded interface calls into late-expanded static calls.
1665 (InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym))
1666
1667 // Move and Zero optimizations.
1668 // Move source and destination may overlap.
1669
1670 // Convert Moves into Zeros when the source is known to be zeros.
1671 (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2)
1672 => (Zero {t} [n] dst1 mem)
1673 (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0)
1674 => (Zero {t} [n] dst1 mem)
1675 (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem)
1676
1677 // Don't Store to variables that are about to be overwritten by Move/Zero.
1678 (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem))
1679 && isSamePtr(p1, p2) && store.Uses == 1
1680 && n >= o2 + t2.Size()
1681 && clobber(store)
1682 => (Zero {t1} [n] p1 mem)
1683 (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem))
1684 && isSamePtr(dst1, dst2) && store.Uses == 1
1685 && n >= o2 + t2.Size()
1686 && disjoint(src1, n, op, t2.Size())
1687 && clobber(store)
1688 => (Move {t1} [n] dst1 src1 mem)
1689
1690 // Don't Move to variables that are immediately completely overwritten.
1691 (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem))
1692 && move.Uses == 1
1693 && isSamePtr(dst1, dst2)
1694 && clobber(move)
1695 => (Zero {t} [n] dst1 mem)
1696 (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem))
1697 && move.Uses == 1
1698 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
1699 && clobber(move)
1700 => (Move {t} [n] dst1 src1 mem)
1701 (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
1702 && move.Uses == 1 && vardef.Uses == 1
1703 && isSamePtr(dst1, dst2)
1704 && clobber(move, vardef)
1705 => (Zero {t} [n] dst1 (VarDef {x} mem))
1706 (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
1707 && move.Uses == 1 && vardef.Uses == 1
1708 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
1709 && clobber(move, vardef)
1710 => (Move {t} [n] dst1 src1 (VarDef {x} mem))
1711 (Store {t1} op1:(OffPtr [o1] p1) d1
1712 m2:(Store {t2} op2:(OffPtr [0] p2) d2
1713 m3:(Move [n] p3 _ mem)))
1714 && m2.Uses == 1 && m3.Uses == 1
1715 && o1 == t2.Size()
1716 && n == t2.Size() + t1.Size()
1717 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
1718 && clobber(m2, m3)
1719 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
1720 (Store {t1} op1:(OffPtr [o1] p1) d1
1721 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
1722 m3:(Store {t3} op3:(OffPtr [0] p3) d3
1723 m4:(Move [n] p4 _ mem))))
1724 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
1725 && o2 == t3.Size()
1726 && o1-o2 == t2.Size()
1727 && n == t3.Size() + t2.Size() + t1.Size()
1728 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
1729 && clobber(m2, m3, m4)
1730 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
1731 (Store {t1} op1:(OffPtr [o1] p1) d1
1732 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
1733 m3:(Store {t3} op3:(OffPtr [o3] p3) d3
1734 m4:(Store {t4} op4:(OffPtr [0] p4) d4
1735 m5:(Move [n] p5 _ mem)))))
1736 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
1737 && o3 == t4.Size()
1738 && o2-o3 == t3.Size()
1739 && o1-o2 == t2.Size()
1740 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
1741 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
1742 && clobber(m2, m3, m4, m5)
1743 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
1744
1745 // Don't Zero variables that are immediately completely overwritten
1746 // before being accessed.
1747 (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem))
1748 && zero.Uses == 1
1749 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
1750 && clobber(zero)
1751 => (Move {t} [n] dst1 src1 mem)
1752 (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem)))
1753 && zero.Uses == 1 && vardef.Uses == 1
1754 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
1755 && clobber(zero, vardef)
1756 => (Move {t} [n] dst1 src1 (VarDef {x} mem))
1757 (Store {t1} op1:(OffPtr [o1] p1) d1
1758 m2:(Store {t2} op2:(OffPtr [0] p2) d2
1759 m3:(Zero [n] p3 mem)))
1760 && m2.Uses == 1 && m3.Uses == 1
1761 && o1 == t2.Size()
1762 && n == t2.Size() + t1.Size()
1763 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
1764 && clobber(m2, m3)
1765 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
1766 (Store {t1} op1:(OffPtr [o1] p1) d1
1767 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
1768 m3:(Store {t3} op3:(OffPtr [0] p3) d3
1769 m4:(Zero [n] p4 mem))))
1770 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
1771 && o2 == t3.Size()
1772 && o1-o2 == t2.Size()
1773 && n == t3.Size() + t2.Size() + t1.Size()
1774 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
1775 && clobber(m2, m3, m4)
1776 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
1777 (Store {t1} op1:(OffPtr [o1] p1) d1
1778 m2:(Store {t2} op2:(OffPtr [o2] p2) d2
1779 m3:(Store {t3} op3:(OffPtr [o3] p3) d3
1780 m4:(Store {t4} op4:(OffPtr [0] p4) d4
1781 m5:(Zero [n] p5 mem)))))
1782 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
1783 && o3 == t4.Size()
1784 && o2-o3 == t3.Size()
1785 && o1-o2 == t2.Size()
1786 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
1787 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
1788 && clobber(m2, m3, m4, m5)
1789 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
1790
1791 // Don't Move from memory if the values are likely to already be
1792 // in registers.
1793 (Move {t1} [n] dst p1
1794 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1795 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))
1796 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
1797 && t2.Alignment() <= t1.Alignment()
1798 && t3.Alignment() <= t1.Alignment()
1799 && registerizable(b, t2)
1800 && registerizable(b, t3)
1801 && o2 == t3.Size()
1802 && n == t2.Size() + t3.Size()
1803 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1804 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
1805 (Move {t1} [n] dst p1
1806 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1807 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
1808 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))
1809 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
1810 && t2.Alignment() <= t1.Alignment()
1811 && t3.Alignment() <= t1.Alignment()
1812 && t4.Alignment() <= t1.Alignment()
1813 && registerizable(b, t2)
1814 && registerizable(b, t3)
1815 && registerizable(b, t4)
1816 && o3 == t4.Size()
1817 && o2-o3 == t3.Size()
1818 && n == t2.Size() + t3.Size() + t4.Size()
1819 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1820 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1821 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
1822 (Move {t1} [n] dst p1
1823 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1824 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
1825 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
1826 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))
1827 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
1828 && t2.Alignment() <= t1.Alignment()
1829 && t3.Alignment() <= t1.Alignment()
1830 && t4.Alignment() <= t1.Alignment()
1831 && t5.Alignment() <= t1.Alignment()
1832 && registerizable(b, t2)
1833 && registerizable(b, t3)
1834 && registerizable(b, t4)
1835 && registerizable(b, t5)
1836 && o4 == t5.Size()
1837 && o3-o4 == t4.Size()
1838 && o2-o3 == t3.Size()
1839 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
1840 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1841 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1842 (Store {t4} (OffPtr <tt4> [o4] dst) d3
1843 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
1844
1845 // Same thing but with VarDef in the middle.
1846 (Move {t1} [n] dst p1
1847 mem:(VarDef
1848 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1849 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))))
1850 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
1851 && t2.Alignment() <= t1.Alignment()
1852 && t3.Alignment() <= t1.Alignment()
1853 && registerizable(b, t2)
1854 && registerizable(b, t3)
1855 && o2 == t3.Size()
1856 && n == t2.Size() + t3.Size()
1857 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1858 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
1859 (Move {t1} [n] dst p1
1860 mem:(VarDef
1861 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1862 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
1863 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))))
1864 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
1865 && t2.Alignment() <= t1.Alignment()
1866 && t3.Alignment() <= t1.Alignment()
1867 && t4.Alignment() <= t1.Alignment()
1868 && registerizable(b, t2)
1869 && registerizable(b, t3)
1870 && registerizable(b, t4)
1871 && o3 == t4.Size()
1872 && o2-o3 == t3.Size()
1873 && n == t2.Size() + t3.Size() + t4.Size()
1874 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1875 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1876 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
1877 (Move {t1} [n] dst p1
1878 mem:(VarDef
1879 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1880 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
1881 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
1882 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))))
1883 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
1884 && t2.Alignment() <= t1.Alignment()
1885 && t3.Alignment() <= t1.Alignment()
1886 && t4.Alignment() <= t1.Alignment()
1887 && t5.Alignment() <= t1.Alignment()
1888 && registerizable(b, t2)
1889 && registerizable(b, t3)
1890 && registerizable(b, t4)
1891 && registerizable(b, t5)
1892 && o4 == t5.Size()
1893 && o3-o4 == t4.Size()
1894 && o2-o3 == t3.Size()
1895 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
1896 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1897 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1898 (Store {t4} (OffPtr <tt4> [o4] dst) d3
1899 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
1900
1901 // Prefer to Zero and Store than to Move.
1902 (Move {t1} [n] dst p1
1903 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1904 (Zero {t3} [n] p3 _)))
1905 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
1906 && t2.Alignment() <= t1.Alignment()
1907 && t3.Alignment() <= t1.Alignment()
1908 && registerizable(b, t2)
1909 && n >= o2 + t2.Size()
1910 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1911 (Zero {t1} [n] dst mem))
1912 (Move {t1} [n] dst p1
1913 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
1914 (Store {t3} (OffPtr <tt3> [o3] p3) d2
1915 (Zero {t4} [n] p4 _))))
1916 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
1917 && t2.Alignment() <= t1.Alignment()
1918 && t3.Alignment() <= t1.Alignment()
1919 && t4.Alignment() <= t1.Alignment()
1920 && registerizable(b, t2)
1921 && registerizable(b, t3)
1922 && n >= o2 + t2.Size()
1923 && n >= o3 + t3.Size()
1924 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1925 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1926 (Zero {t1} [n] dst mem)))
1927 (Move {t1} [n] dst p1
1928 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
1929 (Store {t3} (OffPtr <tt3> [o3] p3) d2
1930 (Store {t4} (OffPtr <tt4> [o4] p4) d3
1931 (Zero {t5} [n] p5 _)))))
1932 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
1933 && t2.Alignment() <= t1.Alignment()
1934 && t3.Alignment() <= t1.Alignment()
1935 && t4.Alignment() <= t1.Alignment()
1936 && t5.Alignment() <= t1.Alignment()
1937 && registerizable(b, t2)
1938 && registerizable(b, t3)
1939 && registerizable(b, t4)
1940 && n >= o2 + t2.Size()
1941 && n >= o3 + t3.Size()
1942 && n >= o4 + t4.Size()
1943 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1944 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1945 (Store {t4} (OffPtr <tt4> [o4] dst) d3
1946 (Zero {t1} [n] dst mem))))
1947 (Move {t1} [n] dst p1
1948 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
1949 (Store {t3} (OffPtr <tt3> [o3] p3) d2
1950 (Store {t4} (OffPtr <tt4> [o4] p4) d3
1951 (Store {t5} (OffPtr <tt5> [o5] p5) d4
1952 (Zero {t6} [n] p6 _))))))
1953 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
1954 && t2.Alignment() <= t1.Alignment()
1955 && t3.Alignment() <= t1.Alignment()
1956 && t4.Alignment() <= t1.Alignment()
1957 && t5.Alignment() <= t1.Alignment()
1958 && t6.Alignment() <= t1.Alignment()
1959 && registerizable(b, t2)
1960 && registerizable(b, t3)
1961 && registerizable(b, t4)
1962 && registerizable(b, t5)
1963 && n >= o2 + t2.Size()
1964 && n >= o3 + t3.Size()
1965 && n >= o4 + t4.Size()
1966 && n >= o5 + t5.Size()
1967 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1968 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1969 (Store {t4} (OffPtr <tt4> [o4] dst) d3
1970 (Store {t5} (OffPtr <tt5> [o5] dst) d4
1971 (Zero {t1} [n] dst mem)))))
1972 (Move {t1} [n] dst p1
1973 mem:(VarDef
1974 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
1975 (Zero {t3} [n] p3 _))))
1976 && isSamePtr(p1, p2) && isSamePtr(p2, p3)
1977 && t2.Alignment() <= t1.Alignment()
1978 && t3.Alignment() <= t1.Alignment()
1979 && registerizable(b, t2)
1980 && n >= o2 + t2.Size()
1981 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1982 (Zero {t1} [n] dst mem))
1983 (Move {t1} [n] dst p1
1984 mem:(VarDef
1985 (Store {t2} (OffPtr <tt2> [o2] p2) d1
1986 (Store {t3} (OffPtr <tt3> [o3] p3) d2
1987 (Zero {t4} [n] p4 _)))))
1988 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
1989 && t2.Alignment() <= t1.Alignment()
1990 && t3.Alignment() <= t1.Alignment()
1991 && t4.Alignment() <= t1.Alignment()
1992 && registerizable(b, t2)
1993 && registerizable(b, t3)
1994 && n >= o2 + t2.Size()
1995 && n >= o3 + t3.Size()
1996 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
1997 (Store {t3} (OffPtr <tt3> [o3] dst) d2
1998 (Zero {t1} [n] dst mem)))
1999 (Move {t1} [n] dst p1
2000 mem:(VarDef
2001 (Store {t2} (OffPtr <tt2> [o2] p2) d1
2002 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2003 (Store {t4} (OffPtr <tt4> [o4] p4) d3
2004 (Zero {t5} [n] p5 _))))))
2005 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
2006 && t2.Alignment() <= t1.Alignment()
2007 && t3.Alignment() <= t1.Alignment()
2008 && t4.Alignment() <= t1.Alignment()
2009 && t5.Alignment() <= t1.Alignment()
2010 && registerizable(b, t2)
2011 && registerizable(b, t3)
2012 && registerizable(b, t4)
2013 && n >= o2 + t2.Size()
2014 && n >= o3 + t3.Size()
2015 && n >= o4 + t4.Size()
2016 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2017 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2018 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2019 (Zero {t1} [n] dst mem))))
2020 (Move {t1} [n] dst p1
2021 mem:(VarDef
2022 (Store {t2} (OffPtr <tt2> [o2] p2) d1
2023 (Store {t3} (OffPtr <tt3> [o3] p3) d2
2024 (Store {t4} (OffPtr <tt4> [o4] p4) d3
2025 (Store {t5} (OffPtr <tt5> [o5] p5) d4
2026 (Zero {t6} [n] p6 _)))))))
2027 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
2028 && t2.Alignment() <= t1.Alignment()
2029 && t3.Alignment() <= t1.Alignment()
2030 && t4.Alignment() <= t1.Alignment()
2031 && t5.Alignment() <= t1.Alignment()
2032 && t6.Alignment() <= t1.Alignment()
2033 && registerizable(b, t2)
2034 && registerizable(b, t3)
2035 && registerizable(b, t4)
2036 && registerizable(b, t5)
2037 && n >= o2 + t2.Size()
2038 && n >= o3 + t3.Size()
2039 && n >= o4 + t4.Size()
2040 && n >= o5 + t5.Size()
2041 => (Store {t2} (OffPtr <tt2> [o2] dst) d1
2042 (Store {t3} (OffPtr <tt3> [o3] dst) d2
2043 (Store {t4} (OffPtr <tt4> [o4] dst) d3
2044 (Store {t5} (OffPtr <tt5> [o5] dst) d4
2045 (Zero {t1} [n] dst mem)))))
2046
2047 (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x
2048 (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x
2049
2050 // When rewriting append to growslice, we use as the new length the result of
2051 // growslice so that we don't have to spill/restore the new length around the growslice call.
2052 // The exception here is that if the new length is a constant, avoiding spilling it
2053 // is pointless and its constantness is sometimes useful for subsequent optimizations.
2054 // See issue 56440.
2055 // Note there are 2 rules here, one for the pre-decomposed []T result and one for
2056 // the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.)
2057 // TODO(thepudds): we probably need the new growsliceBuf and growsliceBufNoAlias here as well?
2058 (SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _)))
2059 && (isSameCall(sym, "runtime.growslice") || isSameCall(sym, "runtime.growsliceNoAlias"))
2060 => newLen
2061 (SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger()
2062 && (isSameCall(sym, "runtime.growslice") || isSameCall(sym, "runtime.growsliceNoAlias"))
2063 => newLen
2064
2065 // Collapse moving A -> B -> C into just A -> C.
2066 // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible.
2067 // This happens most commonly when B is an autotmp inserted earlier
2068 // during compilation to ensure correctness.
2069 // Take care that overlapping moves are preserved.
2070 // Restrict this optimization to the stack, to avoid duplicating loads from the heap;
2071 // see CL 145208 for discussion.
2072 (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _))
2073 && t1.Compare(t2) == types.CMPeq
2074 && isSamePtr(tmp1, tmp2)
2075 && isStackPtr(src) && !isVolatile(src)
2076 && disjoint(src, s, tmp2, s)
2077 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
2078 => (Move {t1} [s] dst src midmem)
2079
2080 // Same, but for large types that require VarDefs.
2081 (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _)))
2082 && t1.Compare(t2) == types.CMPeq
2083 && isSamePtr(tmp1, tmp2)
2084 && isStackPtr(src) && !isVolatile(src)
2085 && disjoint(src, s, tmp2, s)
2086 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
2087 => (Move {t1} [s] dst src midmem)
2088
2089 // Don't zero the same bits twice.
2090 (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero
2091 (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef
2092
2093 // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go).
2094 // However, this rule is needed to prevent the previous rule from looping forever in such cases.
2095 (Move dst src mem) && isSamePtr(dst, src) => mem
2096
2097 // Constant rotate detection.
2098 ((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z)
2099 ((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z)
2100 ((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z)
2101 ((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z)
2102
2103 // Non-constant rotate detection.
2104 // We use shiftIsBounded to make sure that neither of the shifts are >64.
2105 // Note: these rules are subtle when the shift amounts are 0/64, as Go shifts
2106 // are different from most native shifts. But it works out.
2107 ((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2108 ((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2109 ((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2110 ((Add64|Or64|Xor64) left:(Lsh64x8 x y) right:(Rsh64Ux8 x (Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
2111
2112 ((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2113 ((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2114 ((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2115 ((Add64|Or64|Xor64) right:(Rsh64Ux8 x y) left:(Lsh64x8 x z:(Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
2116
2117 ((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2118 ((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2119 ((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2120 ((Add32|Or32|Xor32) left:(Lsh32x8 x y) right:(Rsh32Ux8 x (Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
2121
2122 ((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2123 ((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2124 ((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2125 ((Add32|Or32|Xor32) right:(Rsh32Ux8 x y) left:(Lsh32x8 x z:(Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
2126
2127 ((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2128 ((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2129 ((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2130 ((Add16|Or16|Xor16) left:(Lsh16x8 x y) right:(Rsh16Ux8 x (Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
2131
2132 ((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2133 ((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2134 ((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2135 ((Add16|Or16|Xor16) right:(Rsh16Ux8 x y) left:(Lsh16x8 x z:(Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
2136
2137 ((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2138 ((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2139 ((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2140 ((Add8|Or8|Xor8) left:(Lsh8x8 x y) right:(Rsh8Ux8 x (Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
2141
2142 ((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2143 ((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2144 ((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2145 ((Add8|Or8|Xor8) right:(Rsh8Ux8 x y) left:(Lsh8x8 x z:(Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
2146
2147 // Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y.
2148 (RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y)
2149 (RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y)
2150 (RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y)
2151 (RotateLeft8 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 7 => (RotateLeft8 x y)
2152
2153 // Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y.
2154 (RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
2155 (RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
2156 (RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
2157 (RotateLeft8 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7 == 7 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y))
2158
2159 // Rotating by y+c, with c a multiple of the value width, is the same as rotating by y.
2160 (RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y)
2161 (RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y)
2162 (RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y)
2163 (RotateLeft8 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 0 => (RotateLeft8 x y)
2164
2165 // Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y.
2166 (RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
2167 (RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
2168 (RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
2169 (RotateLeft8 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7 == 0 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y))
2170
2171 // Ensure we don't do Const64 rotates in a 32-bit system.
2172 (RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)]))
2173 (RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)]))
2174 (RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)]))
2175 (RotateLeft8 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8 x (Const32 <t> [int32(c)]))
2176
2177 // Rotating by c, then by d, is the same as rotating by c+d.
2178 // We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants.
2179 // This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width.
2180 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d))
2181 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d))
2182 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d))
2183 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 <c.Type> c d))
2184
2185 // Loading fixed addresses and constants.
2186 (Load (Addr {s} sb) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
2187 (Load (Convert (Addr {s} sb) _) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
2188 (Load (ITab (IMake (Addr {s} sb) _)) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
2189 (Load (ITab (IMake (Convert (Addr {s} sb) _) _)) _) && isFixedLoad(v, s, 0) => rewriteFixedLoad(v, s, sb, 0)
2190 (Load (OffPtr [off] (Addr {s} sb) ) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
2191 (Load (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
2192 (Load (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
2193 (Load (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
2194
2195 // Calling cmpstring a second time with the same arguments in the
2196 // same memory state can reuse the results of the first call.
2197 // See issue 61725.
2198 // Note that this could pretty easily generalize to any pure function.
2199 (SelectN [0] (StaticLECall {f} x y (SelectN [1] c:(StaticLECall {g} x y mem))))
2200 && isSameCall(f, "runtime.cmpstring")
2201 && isSameCall(g, "runtime.cmpstring")
2202 => @c.Block (SelectN [0] <typ.Int> c)
2203
2204 // If we don't use the result of cmpstring, might as well not call it.
2205 // Note that this could pretty easily generalize to any pure function.
2206 (SelectN [1] c:(StaticLECall {f} _ _ mem)) && c.Uses == 1 && isSameCall(f, "runtime.cmpstring") && clobber(c) => mem
2207
2208 // We can easily compute the result of efaceeq if
2209 // we know the underlying type is pointer-ish.
2210 (StaticLECall {f} typ_ x y mem)
2211 && isSameCall(f, "runtime.efaceeq")
2212 && isDirectAndComparableType(typ_)
2213 && clobber(v)
2214 => (MakeResult (EqPtr x y) mem)
2215
2216 // We can easily compute the result of ifaceeq if
2217 // we know the underlying type is pointer-ish.
2218 (StaticLECall {f} itab x y mem)
2219 && isSameCall(f, "runtime.ifaceeq")
2220 && isDirectAndComparableIface(itab)
2221 && clobber(v)
2222 => (MakeResult (EqPtr x y) mem)
2223
2224 // If we use the result of slicebytetostring in a map lookup operation,
2225 // then we don't need to actually do the []byte->string conversion.
2226 // We can just use the ptr/len of the byte slice directly as a (temporary) string.
2227 //
2228 // Note that this does not handle some obscure cases like
2229 // m[[2]string{string(b1), string(b2)}]. There is code in ../walk/order.go
2230 // which handles some of those cases.
2231 (StaticLECall {f} [argsize] typ_ map_ key:(SelectN [0] sbts:(StaticLECall {g} _ ptr len mem)) m:(SelectN [1] sbts))
2232 && (isSameCall(f, "runtime.mapaccess1_faststr")
2233 || isSameCall(f, "runtime.mapaccess2_faststr")
2234 || isSameCall(f, "runtime.mapdelete_faststr"))
2235 && isSameCall(g, "runtime.slicebytetostring")
2236 && key.Uses == 1
2237 && sbts.Uses == 2
2238 && resetCopy(m, mem)
2239 && clobber(sbts)
2240 && clobber(key)
2241 => (StaticLECall {f} [argsize] typ_ map_ (StringMake <typ.String> ptr len) mem)
2242
2243 // Similarly to map lookups, also handle unique.Make for strings, which unique.Make will clone.
2244 (StaticLECall {f} [argsize] dict_ key:(SelectN [0] sbts:(StaticLECall {g} _ ptr len mem)) m:(SelectN [1] sbts))
2245 && isSameCall(f, "unique.Make[go.shape.string]")
2246 && isSameCall(g, "runtime.slicebytetostring")
2247 && key.Uses == 1
2248 && sbts.Uses == 2
2249 && resetCopy(m, mem)
2250 && clobber(sbts)
2251 && clobber(key)
2252 => (StaticLECall {f} [argsize] dict_ (StringMake <typ.String> ptr len) mem)
2253
2254 // Transform some CondSelect into math operations.
2255 // if b { x++ } => x += b // but not on arm64 because it has CSINC
2256 (CondSelect (Add8 <t> x (Const8 [1])) x bool) && config.arch != "arm64" => (Add8 x (CvtBoolToUint8 <t> bool))
2257 (CondSelect (Add(64|32|16) <t> x (Const(64|32|16) [1])) x bool) && config.arch != "arm64" => (Add(64|32|16) x (ZeroExt8to(64|32|16) <t> (CvtBoolToUint8 <types.Types[types.TUINT8]> bool)))
2258
2259 // if b { x-- } => x -= b
2260 (CondSelect (Add8 <t> x (Const8 [-1])) x bool) => (Sub8 x (CvtBoolToUint8 <t> bool))
2261 (CondSelect (Add(64|32|16) <t> x (Const(64|32|16) [-1])) x bool) => (Sub(64|32|16) x (ZeroExt8to(64|32|16) <t> (CvtBoolToUint8 <types.Types[types.TUINT8]> bool)))
2262
2263 // if b { x <<= 1 } => x <<= b
2264 (CondSelect (Lsh(64|32|16|8)x64 x (Const64 [1])) x bool) => (Lsh(64|32|16|8)x8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
2265
2266 // if b { x >>= 1 } => x >>= b
2267 (CondSelect (Rsh(64|32|16|8)x64 x (Const64 [1])) x bool) => (Rsh(64|32|16|8)x8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
2268 (CondSelect (Rsh(64|32|16|8)Ux64 x (Const64 [1])) x bool) => (Rsh(64|32|16|8)Ux8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
2269
2270 // bool(int(x)) => x
2271 (Neq8 (CvtBoolToUint8 x) (Const8 [0])) => x
2272 (Neq8 (CvtBoolToUint8 x) (Const8 [1])) => (Not x)
2273 (Eq8 (CvtBoolToUint8 x) (Const8 [1])) => x
2274 (Eq8 (CvtBoolToUint8 x) (Const8 [0])) => (Not x)
2275 (Neq(64|32|16) (ZeroExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [0])) => x
2276 (Neq(64|32|16) (ZeroExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [1])) => (Not x)
2277 (Eq(64|32|16) (ZeroExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [1])) => x
2278 (Eq(64|32|16) (ZeroExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [0])) => (Not x)
2279 (Neq(64|32|16) (SignExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [0])) => x
2280 (Neq(64|32|16) (SignExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [1])) => (Not x)
2281 (Eq(64|32|16) (SignExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [1])) => x
2282 (Eq(64|32|16) (SignExt8to(64|32|16) (CvtBoolToUint8 x)) (Const(64|32|16) [0])) => (Not x)
2283
View as plain text