Text file src/cmd/compile/internal/ssa/_gen/generic.rules

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Simplifications that apply to all backend architectures. As an example, this
     6  // Go source code
     7  //
     8  // y := 0 * x
     9  //
    10  // can be translated into y := 0 without losing any information, which saves a
    11  // pointless multiplication instruction. Other .rules files in this directory
    12  // (for example AMD64.rules) contain rules specific to the architecture in the
    13  // filename. The rules here apply to every architecture.
    14  //
    15  // The code for parsing this file lives in rulegen.go; this file generates
    16  // ssa/rewritegeneric.go.
    17  
    18  // values are specified using the following format:
    19  // (op <type> [auxint] {aux} arg0 arg1 ...)
    20  // the type, aux, and auxint fields are optional
    21  // on the matching side
    22  //  - the type, aux, and auxint fields must match if they are specified.
    23  //  - the first occurrence of a variable defines that variable.  Subsequent
    24  //    uses must match (be == to) the first use.
    25  //  - v is defined to be the value matched.
    26  //  - an additional conditional can be provided after the match pattern with "&&".
    27  // on the generated side
    28  //  - the type of the top-level expression is the same as the one on the left-hand side.
    29  //  - the type of any subexpressions must be specified explicitly (or
    30  //    be specified in the op's type field).
    31  //  - auxint will be 0 if not specified.
    32  //  - aux will be nil if not specified.
    33  
    34  // blocks are specified using the following format:
    35  // (kind controlvalue succ0 succ1 ...)
    36  // controlvalue must be "nil" or a value expression
    37  // succ* fields must be variables
    38  // For now, the generated successors must be a permutation of the matched successors.
    39  
    40  // constant folding
    41  (Trunc16to8  (Const16  [c])) => (Const8   [int8(c)])
    42  (Trunc32to8  (Const32  [c])) => (Const8   [int8(c)])
    43  (Trunc32to16 (Const32  [c])) => (Const16  [int16(c)])
    44  (Trunc64to8  (Const64  [c])) => (Const8   [int8(c)])
    45  (Trunc64to16 (Const64  [c])) => (Const16  [int16(c)])
    46  (Trunc64to32 (Const64  [c])) => (Const32  [int32(c)])
    47  (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)])
    48  (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)])
    49  (Cvt32to32F  (Const32  [c])) => (Const32F [float32(c)])
    50  (Cvt32to64F  (Const32  [c])) => (Const64F [float64(c)])
    51  (Cvt64to32F  (Const64  [c])) => (Const32F [float32(c)])
    52  (Cvt64to64F  (Const64  [c])) => (Const64F [float64(c)])
    53  (Cvt32Fto32  (Const32F [c])) && c >= -1<<31 && c < 1<<31 => (Const32 [int32(c)])
    54  (Cvt32Fto64  (Const32F [c])) && c >= -1<<63 && c < 1<<63 => (Const64 [int64(c)])
    55  (Cvt64Fto32  (Const64F [c])) && c >= -1<<31 && c < 1<<31 => (Const32 [int32(c)])
    56  (Cvt64Fto64  (Const64F [c])) && c >= -1<<63 && c < 1<<63 => (Const64 [int64(c)])
    57  (Round32F x:(Const32F)) => x
    58  (Round64F x:(Const64F)) => x
    59  (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0])
    60  (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1])
    61  (BitLen64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len64(uint64(c)))])
    62  (BitLen32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len32(uint32(c)))])
    63  (BitLen16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len16(uint16(c)))])
    64  (BitLen8  (Const8  [c])) && config.PtrSize == 8 => (Const64 [int64(bits.Len8(uint8(c)))])
    65  (BitLen64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len64(uint64(c)))])
    66  (BitLen32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len32(uint32(c)))])
    67  (BitLen16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len16(uint16(c)))])
    68  (BitLen8  (Const8  [c])) && config.PtrSize == 4 => (Const32 [int32(bits.Len8(uint8(c)))])
    69  (PopCount64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount64(uint64(c)))])
    70  (PopCount32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount32(uint32(c)))])
    71  (PopCount16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount16(uint16(c)))])
    72  (PopCount8  (Const8  [c])) && config.PtrSize == 8 => (Const64 [int64(bits.OnesCount8(uint8(c)))])
    73  (PopCount64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount64(uint64(c)))])
    74  (PopCount32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount32(uint32(c)))])
    75  (PopCount16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount16(uint16(c)))])
    76  (PopCount8  (Const8  [c])) && config.PtrSize == 4 => (Const32 [int32(bits.OnesCount8(uint8(c)))])
    77  (Add64carry (Const64 <t> [x]) (Const64 [y]) (Const64 [c])) && c >= 0 && c <= 1 => (MakeTuple (Const64 <t> [bitsAdd64(x, y, c).sum]) (Const64 <t> [bitsAdd64(x, y, c).carry]))
    78  
    79  (Trunc16to8  (ZeroExt8to16  x)) => x
    80  (Trunc32to8  (ZeroExt8to32  x)) => x
    81  (Trunc32to16 (ZeroExt8to32  x)) => (ZeroExt8to16  x)
    82  (Trunc32to16 (ZeroExt16to32 x)) => x
    83  (Trunc64to8  (ZeroExt8to64  x)) => x
    84  (Trunc64to16 (ZeroExt8to64  x)) => (ZeroExt8to16  x)
    85  (Trunc64to16 (ZeroExt16to64 x)) => x
    86  (Trunc64to32 (ZeroExt8to64  x)) => (ZeroExt8to32  x)
    87  (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x)
    88  (Trunc64to32 (ZeroExt32to64 x)) => x
    89  (Trunc16to8  (SignExt8to16  x)) => x
    90  (Trunc32to8  (SignExt8to32  x)) => x
    91  (Trunc32to16 (SignExt8to32  x)) => (SignExt8to16  x)
    92  (Trunc32to16 (SignExt16to32 x)) => x
    93  (Trunc64to8  (SignExt8to64  x)) => x
    94  (Trunc64to16 (SignExt8to64  x)) => (SignExt8to16  x)
    95  (Trunc64to16 (SignExt16to64 x)) => x
    96  (Trunc64to32 (SignExt8to64  x)) => (SignExt8to32  x)
    97  (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x)
    98  (Trunc64to32 (SignExt32to64 x)) => x
    99  
   100  (ZeroExt8to16  (Const8  [c])) => (Const16 [int16( uint8(c))])
   101  (ZeroExt8to32  (Const8  [c])) => (Const32 [int32( uint8(c))])
   102  (ZeroExt8to64  (Const8  [c])) => (Const64 [int64( uint8(c))])
   103  (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))])
   104  (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))])
   105  (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))])
   106  (SignExt8to16  (Const8  [c])) => (Const16 [int16(c)])
   107  (SignExt8to32  (Const8  [c])) => (Const32 [int32(c)])
   108  (SignExt8to64  (Const8  [c])) => (Const64 [int64(c)])
   109  (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)])
   110  (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)])
   111  (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)])
   112  
   113  (Neg8   (Const8   [c])) => (Const8   [-c])
   114  (Neg16  (Const16  [c])) => (Const16  [-c])
   115  (Neg32  (Const32  [c])) => (Const32  [-c])
   116  (Neg64  (Const64  [c])) => (Const64  [-c])
   117  (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c])
   118  (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c])
   119  
   120  (Add8   (Const8 [c])   (Const8 [d]))   => (Const8  [c+d])
   121  (Add16  (Const16 [c])  (Const16 [d]))  => (Const16 [c+d])
   122  (Add32  (Const32 [c])  (Const32 [d]))  => (Const32 [c+d])
   123  (Add64  (Const64 [c])  (Const64 [d]))  => (Const64 [c+d])
   124  (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d])
   125  (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d])
   126  (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c])
   127  (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)])
   128  
   129  (Sub8   (Const8 [c]) (Const8 [d]))     => (Const8 [c-d])
   130  (Sub16  (Const16 [c]) (Const16 [d]))   => (Const16 [c-d])
   131  (Sub32  (Const32 [c]) (Const32 [d]))   => (Const32 [c-d])
   132  (Sub64  (Const64 [c]) (Const64 [d]))   => (Const64 [c-d])
   133  (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d])
   134  (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d])
   135  
   136  (Mul8   (Const8 [c])   (Const8 [d]))   => (Const8  [c*d])
   137  (Mul16  (Const16 [c])  (Const16 [d]))  => (Const16 [c*d])
   138  (Mul32  (Const32 [c])  (Const32 [d]))  => (Const32 [c*d])
   139  (Mul64  (Const64 [c])  (Const64 [d]))  => (Const64 [c*d])
   140  (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d])
   141  (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d])
   142  (Mul32uhilo (Const32 [c]) (Const32 [d])) => (MakeTuple (Const32 <typ.UInt32> [bitsMulU32(c, d).hi]) (Const32 <typ.UInt32> [bitsMulU32(c,d).lo]))
   143  (Mul64uhilo (Const64 [c]) (Const64 [d])) => (MakeTuple (Const64 <typ.UInt64> [bitsMulU64(c, d).hi]) (Const64 <typ.UInt64> [bitsMulU64(c,d).lo]))
   144  (Mul32uover (Const32 [c]) (Const32 [d])) => (MakeTuple (Const32 <typ.UInt32> [bitsMulU32(c, d).lo]) (ConstBool <typ.Bool> [bitsMulU32(c,d).hi != 0]))
   145  (Mul64uover (Const64 [c]) (Const64 [d])) => (MakeTuple (Const64 <typ.UInt64> [bitsMulU64(c, d).lo]) (ConstBool <typ.Bool> [bitsMulU64(c,d).hi != 0]))
   146  
   147  (And8   (Const8 [c])   (Const8 [d]))   => (Const8  [c&d])
   148  (And16  (Const16 [c])  (Const16 [d]))  => (Const16 [c&d])
   149  (And32  (Const32 [c])  (Const32 [d]))  => (Const32 [c&d])
   150  (And64  (Const64 [c])  (Const64 [d]))  => (Const64 [c&d])
   151  
   152  (Or8   (Const8 [c])   (Const8 [d]))   => (Const8  [c|d])
   153  (Or16  (Const16 [c])  (Const16 [d]))  => (Const16 [c|d])
   154  (Or32  (Const32 [c])  (Const32 [d]))  => (Const32 [c|d])
   155  (Or64  (Const64 [c])  (Const64 [d]))  => (Const64 [c|d])
   156  
   157  (Xor8   (Const8 [c])   (Const8 [d]))   => (Const8  [c^d])
   158  (Xor16  (Const16 [c])  (Const16 [d]))  => (Const16 [c^d])
   159  (Xor32  (Const32 [c])  (Const32 [d]))  => (Const32 [c^d])
   160  (Xor64  (Const64 [c])  (Const64 [d]))  => (Const64 [c^d])
   161  
   162  (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))])
   163  (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))])
   164  (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))])
   165  (Ctz8  (Const8  [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))])
   166  
   167  (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))])
   168  (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))])
   169  (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))])
   170  (Ctz8  (Const8  [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))])
   171  
   172  (Div8   (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [c/d])
   173  (Div16  (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [c/d])
   174  (Div32  (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [c/d])
   175  (Div64  (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [c/d])
   176  (Div8u  (Const8  [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c)/uint8(d))])
   177  (Div16u (Const16 [c])  (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))])
   178  (Div32u (Const32 [c])  (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))])
   179  (Div64u (Const64 [c])  (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))])
   180  (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d])
   181  (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d])
   182  (Div128u <t> (Const64 [0]) lo y) => (MakeTuple (Div64u <t.FieldType(0)> lo y) (Mod64u <t.FieldType(1)> lo y))
   183  
   184  (Not (ConstBool [c])) => (ConstBool [!c])
   185  
   186  (Floor       (Const64F [c])) => (Const64F [math.Floor(c)])
   187  (Ceil        (Const64F [c])) => (Const64F [math.Ceil(c)])
   188  (Trunc       (Const64F [c])) => (Const64F [math.Trunc(c)])
   189  (RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)])
   190  
   191  // Convert x * 1 to x.
   192  (Mul(8|16|32|64)  (Const(8|16|32|64)  [1]) x) => x
   193  (Mul(32|64)uover <t> (Const(32|64) [1]) x) => (MakeTuple x (ConstBool <t.FieldType(1)> [false]))
   194  
   195  // Convert x * -1 to -x.
   196  (Mul(8|16|32|64)  (Const(8|16|32|64)  [-1]) x) => (Neg(8|16|32|64)  x)
   197  
   198  // DeMorgan's Laws
   199  (And(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) <t> x y))
   200  (Or(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) <t> x y))
   201  
   202  // Convert multiplication by a power of two to a shift.
   203  (Mul8  <t> n (Const8  [c])) && isPowerOfTwo(c) => (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(c)]))
   204  (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)]))
   205  (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)]))
   206  (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)]))
   207  (Mul8  <t> n (Const8  [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg8  (Lsh8x64  <t> n (Const64 <typ.UInt64> [log8(-c)])))
   208  (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)])))
   209  (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)])))
   210  (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)])))
   211  
   212  (Mod8  (Const8  [c]) (Const8  [d])) && d != 0 => (Const8  [c % d])
   213  (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d])
   214  (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d])
   215  (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d])
   216  
   217  (Mod8u  (Const8 [c])  (Const8  [d])) && d != 0 => (Const8  [int8(uint8(c) % uint8(d))])
   218  (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))])
   219  (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))])
   220  (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))])
   221  
   222  (Lsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)])
   223  (Rsh64x64  (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)])
   224  (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))])
   225  (Lsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)])
   226  (Rsh32x64  (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)])
   227  (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))])
   228  (Lsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)])
   229  (Rsh16x64  (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)])
   230  (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))])
   231  (Lsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c << uint64(d)])
   232  (Rsh8x64   (Const8  [c]) (Const64 [d])) => (Const8  [c >> uint64(d)])
   233  (Rsh8Ux64  (Const8  [c]) (Const64 [d])) => (Const8  [int8(uint8(c) >> uint64(d))])
   234  
   235  // Fold IsInBounds when the range of the index cannot exceed the limit.
   236  (IsInBounds (ZeroExt8to32  _) (Const32 [c])) && (1 << 8)  <= c => (ConstBool [true])
   237  (IsInBounds (ZeroExt8to64  _) (Const64 [c])) && (1 << 8)  <= c => (ConstBool [true])
   238  (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true])
   239  (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true])
   240  (IsInBounds x x) => (ConstBool [false])
   241  (IsInBounds                (And8  (Const8  [c]) _)  (Const8  [d])) && 0 <= c && c < d => (ConstBool [true])
   242  (IsInBounds (ZeroExt8to16  (And8  (Const8  [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true])
   243  (IsInBounds (ZeroExt8to32  (And8  (Const8  [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   244  (IsInBounds (ZeroExt8to64  (And8  (Const8  [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   245  (IsInBounds                (And16 (Const16 [c]) _)  (Const16 [d])) && 0 <= c && c < d => (ConstBool [true])
   246  (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true])
   247  (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   248  (IsInBounds                (And32 (Const32 [c]) _)  (Const32 [d])) && 0 <= c && c < d => (ConstBool [true])
   249  (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true])
   250  (IsInBounds                (And64 (Const64 [c]) _)  (Const64 [d])) && 0 <= c && c < d => (ConstBool [true])
   251  (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d])
   252  (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d])
   253  // (Mod64u x y) is always between 0 (inclusive) and y (exclusive).
   254  (IsInBounds (Mod32u _ y) y) => (ConstBool [true])
   255  (IsInBounds (Mod64u _ y) y) => (ConstBool [true])
   256  // Right shifting an unsigned number limits its value.
   257  (IsInBounds (ZeroExt8to64  (Rsh8Ux64  _ (Const64 [c]))) (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   258  (IsInBounds (ZeroExt8to32  (Rsh8Ux64  _ (Const64 [c]))) (Const32 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   259  (IsInBounds (ZeroExt8to16  (Rsh8Ux64  _ (Const64 [c]))) (Const16 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   260  (IsInBounds                (Rsh8Ux64  _ (Const64 [c]))  (Const64 [d])) && 0 < c && c <  8 && 1<<uint( 8-c)-1 < d => (ConstBool [true])
   261  (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   262  (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   263  (IsInBounds                (Rsh16Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true])
   264  (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   265  (IsInBounds                (Rsh32Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true])
   266  (IsInBounds                (Rsh64Ux64 _ (Const64 [c]))  (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true])
   267  
   268  (IsSliceInBounds x x) => (ConstBool [true])
   269  (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true])
   270  (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true])
   271  (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true])
   272  (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true])
   273  (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d])
   274  (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d])
   275  (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true])
   276  
   277  (Eq(64|32|16|8) x x) => (ConstBool [true])
   278  (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d])
   279  (EqB (ConstBool [false]) x) => (Not x)
   280  (EqB (ConstBool [true]) x) => x
   281  
   282  (Neq(64|32|16|8) x x) => (ConstBool [false])
   283  (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d])
   284  (NeqB (ConstBool [false]) x) => x
   285  (NeqB (ConstBool [true]) x) => (Not x)
   286  (NeqB (Not x) (Not y)) => (NeqB x y)
   287  
   288  (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x)
   289  (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x)
   290  (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x)
   291  (Eq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Eq8  (Const8  <t> [c-d]) x)
   292  
   293  (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x)
   294  (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x)
   295  (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x)
   296  (Neq8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Neq8  (Const8  <t> [c-d]) x)
   297  
   298  (CondSelect x _ (ConstBool [true ])) => x
   299  (CondSelect _ y (ConstBool [false])) => y
   300  (CondSelect x x _) => x
   301  
   302  // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) )
   303  (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   304  (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   305  (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   306  (AndB (Leq8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   307  
   308  // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) )
   309  (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   310  (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   311  (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   312  (AndB (Less8  (Const8  [c]) x) ((Less|Leq)8  x (Const8  [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1])) (Const8  <x.Type> [d-c-1]))
   313  
   314  // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c )
   315  (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c]))
   316  (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c]))
   317  (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c]))
   318  (AndB (Leq8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c])) (Const8  <x.Type> [d-c]))
   319  
   320  // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) )
   321  (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1]))
   322  (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1]))
   323  (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1]))
   324  (AndB (Less8U  (Const8  [c]) x) ((Less|Leq)8U  x (Const8  [d]))) && uint8(d)  >= uint8(c+1)  && uint8(c+1)  > uint8(c)  => ((Less|Leq)8U  (Sub8  <x.Type> x (Const8  <x.Type> [c+1]))  (Const8  <x.Type> [d-c-1]))
   325  
   326  // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) )
   327  (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   328  (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   329  (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   330  (OrB ((Less|Leq)8  (Const8  [c]) x) (Less8  x (Const8  [d]))) && c >= d => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   331  
   332  // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) )
   333  (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   334  (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   335  (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   336  (OrB ((Less|Leq)8  (Const8  [c]) x) (Leq8  x (Const8  [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   337  
   338  // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d )
   339  (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d])))
   340  (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d])))
   341  (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d])))
   342  (OrB ((Less|Leq)8U  (Const8  [c]) x) (Less8U  x (Const8  [d]))) && uint8(c)  >= uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d]) (Sub8  <x.Type> x (Const8  <x.Type> [d])))
   343  
   344  // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) )
   345  (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1])))
   346  (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1])))
   347  (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1])))
   348  (OrB ((Less|Leq)8U  (Const8  [c]) x) (Leq8U  x (Const8  [d]))) && uint8(c)  >= uint8(d+1)  && uint8(d+1)  > uint8(d)  => ((Less|Leq)8U  (Const8  <x.Type> [c-d-1]) (Sub8  <x.Type> x (Const8  <x.Type> [d+1])))
   349  
   350  // NaN check: ( x != x || x (>|>=|<|<=) c ) -> ( !(c (>=|>|<=|<) x) )
   351  (OrB (Neq64F x x) ((Less|Leq)64F x y:(Const64F [c]))) => (Not ((Leq|Less)64F y x))
   352  (OrB (Neq64F x x) ((Less|Leq)64F y:(Const64F [c]) x)) => (Not ((Leq|Less)64F x y))
   353  (OrB (Neq32F x x) ((Less|Leq)32F x y:(Const32F [c]))) => (Not ((Leq|Less)32F y x))
   354  (OrB (Neq32F x x) ((Less|Leq)32F y:(Const32F [c]) x)) => (Not ((Leq|Less)32F x y))
   355  
   356  // NaN check: ( x != x || Abs(x) (>|>=|<|<=) c ) -> ( !(c (>=|>|<=|<) Abs(x) )
   357  (OrB (Neq64F x x) ((Less|Leq)64F abs:(Abs x) y:(Const64F [c]))) => (Not ((Leq|Less)64F y abs))
   358  (OrB (Neq64F x x) ((Less|Leq)64F y:(Const64F [c]) abs:(Abs x))) => (Not ((Leq|Less)64F abs y))
   359  
   360  // NaN check: ( x != x || -x (>|>=|<|<=) c ) -> ( !(c (>=|>|<=|<) -x) )
   361  (OrB (Neq64F x x) ((Less|Leq)64F neg:(Neg64F x) y:(Const64F [c]))) => (Not ((Leq|Less)64F y neg))
   362  (OrB (Neq64F x x) ((Less|Leq)64F y:(Const64F [c]) neg:(Neg64F x))) => (Not ((Leq|Less)64F neg y))
   363  (OrB (Neq32F x x) ((Less|Leq)32F neg:(Neg32F x) y:(Const32F [c]))) => (Not ((Leq|Less)32F y neg))
   364  (OrB (Neq32F x x) ((Less|Leq)32F y:(Const32F [c]) neg:(Neg32F x))) => (Not ((Leq|Less)32F neg y))
   365  
   366  // Canonicalize x-const to x+(-const)
   367  (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x)
   368  (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x)
   369  (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x)
   370  (Sub8  x (Const8  <t> [c])) && x.Op != OpConst8  => (Add8  (Const8  <t> [-c]) x)
   371  
   372  // fold negation into comparison operators
   373  (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y)
   374  (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y)
   375  
   376  (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x)
   377  (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x)
   378  (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x)
   379  (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x)
   380  
   381  // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for:
   382  // a[i].b = ...; a[i+1].b = ...
   383  (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) =>
   384    (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x))
   385  (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) =>
   386    (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x))
   387  (Mul16 (Const16 <t> [c]) (Add16 <t> (Const16 <t> [d]) x)) =>
   388    (Add16 (Const16 <t> [c*d]) (Mul16 <t> (Const16 <t> [c]) x))
   389  (Mul8 (Const8 <t> [c]) (Add8 <t> (Const8 <t> [d]) x)) =>
   390    (Add8 (Const8 <t> [c*d]) (Mul8 <t> (Const8 <t> [c]) x))
   391  
   392  // Rewrite x*y ± x*z  to  x*(y±z)
   393  (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   394  	=> (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z))
   395  (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z))
   396  	=> (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z))
   397  
   398  // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce
   399  // the number of the other rewrite rules for const shifts
   400  (Lsh64x32  <t> x (Const32 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint32(c))]))
   401  (Lsh64x16  <t> x (Const16 [c])) => (Lsh64x64  x (Const64 <t> [int64(uint16(c))]))
   402  (Lsh64x8   <t> x (Const8  [c])) => (Lsh64x64  x (Const64 <t> [int64(uint8(c))]))
   403  (Rsh64x32  <t> x (Const32 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint32(c))]))
   404  (Rsh64x16  <t> x (Const16 [c])) => (Rsh64x64  x (Const64 <t> [int64(uint16(c))]))
   405  (Rsh64x8   <t> x (Const8  [c])) => (Rsh64x64  x (Const64 <t> [int64(uint8(c))]))
   406  (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))]))
   407  (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))]))
   408  (Rsh64Ux8  <t> x (Const8  [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))]))
   409  
   410  (Lsh32x32  <t> x (Const32 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint32(c))]))
   411  (Lsh32x16  <t> x (Const16 [c])) => (Lsh32x64  x (Const64 <t> [int64(uint16(c))]))
   412  (Lsh32x8   <t> x (Const8  [c])) => (Lsh32x64  x (Const64 <t> [int64(uint8(c))]))
   413  (Rsh32x32  <t> x (Const32 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint32(c))]))
   414  (Rsh32x16  <t> x (Const16 [c])) => (Rsh32x64  x (Const64 <t> [int64(uint16(c))]))
   415  (Rsh32x8   <t> x (Const8  [c])) => (Rsh32x64  x (Const64 <t> [int64(uint8(c))]))
   416  (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))]))
   417  (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))]))
   418  (Rsh32Ux8  <t> x (Const8  [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))]))
   419  
   420  (Lsh16x32  <t> x (Const32 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint32(c))]))
   421  (Lsh16x16  <t> x (Const16 [c])) => (Lsh16x64  x (Const64 <t> [int64(uint16(c))]))
   422  (Lsh16x8   <t> x (Const8  [c])) => (Lsh16x64  x (Const64 <t> [int64(uint8(c))]))
   423  (Rsh16x32  <t> x (Const32 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint32(c))]))
   424  (Rsh16x16  <t> x (Const16 [c])) => (Rsh16x64  x (Const64 <t> [int64(uint16(c))]))
   425  (Rsh16x8   <t> x (Const8  [c])) => (Rsh16x64  x (Const64 <t> [int64(uint8(c))]))
   426  (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))]))
   427  (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))]))
   428  (Rsh16Ux8  <t> x (Const8  [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))]))
   429  
   430  (Lsh8x32  <t> x (Const32 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint32(c))]))
   431  (Lsh8x16  <t> x (Const16 [c])) => (Lsh8x64  x (Const64 <t> [int64(uint16(c))]))
   432  (Lsh8x8   <t> x (Const8  [c])) => (Lsh8x64  x (Const64 <t> [int64(uint8(c))]))
   433  (Rsh8x32  <t> x (Const32 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint32(c))]))
   434  (Rsh8x16  <t> x (Const16 [c])) => (Rsh8x64  x (Const64 <t> [int64(uint16(c))]))
   435  (Rsh8x8   <t> x (Const8  [c])) => (Rsh8x64  x (Const64 <t> [int64(uint8(c))]))
   436  (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))]))
   437  (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))]))
   438  (Rsh8Ux8  <t> x (Const8  [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))]))
   439  
   440  // shifts by zero
   441  (Lsh(64|32|16|8)x64  x (Const64 [0])) => x
   442  (Rsh(64|32|16|8)x64  x (Const64 [0])) => x
   443  (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x
   444  
   445  // rotates by multiples of register width
   446  (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x
   447  (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x
   448  (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x
   449  (RotateLeft8  x (Const8 [c]))  && c%8  == 0 => x
   450  
   451  // zero shifted
   452  (Lsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   453  (Rsh64x(64|32|16|8)  (Const64 [0]) _) => (Const64 [0])
   454  (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0])
   455  (Lsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   456  (Rsh32x(64|32|16|8)  (Const32 [0]) _) => (Const32 [0])
   457  (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0])
   458  (Lsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   459  (Rsh16x(64|32|16|8)  (Const16 [0]) _) => (Const16 [0])
   460  (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0])
   461  (Lsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   462  (Rsh8x(64|32|16|8)   (Const8  [0]) _) => (Const8  [0])
   463  (Rsh8Ux(64|32|16|8)  (Const8  [0]) _) => (Const8  [0])
   464  
   465  // large left shifts of all values, and right shifts of unsigned values
   466  ((Lsh64|Rsh64U)x64  _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0])
   467  ((Lsh32|Rsh32U)x64  _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   468  ((Lsh16|Rsh16U)x64  _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   469  ((Lsh8|Rsh8U)x64    _ (Const64 [c])) && uint64(c) >= 8  => (Const8  [0])
   470  
   471  // combine const shifts
   472  (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d]))
   473  (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d]))
   474  (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d]))
   475  (Lsh8x64  <t> (Lsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64  x (Const64 <t> [c+d]))
   476  
   477  (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d]))
   478  (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d]))
   479  (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d]))
   480  (Rsh8x64  <t> (Rsh8x64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64  x (Const64 <t> [c+d]))
   481  
   482  (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d]))
   483  (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d]))
   484  (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d]))
   485  (Rsh8Ux64  <t> (Rsh8Ux64  x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64  x (Const64 <t> [c+d]))
   486  
   487  // Remove signed right shift before an unsigned right shift that extracts the sign bit.
   488  (Rsh8Ux64  (Rsh8x64  x _) (Const64 <t> [7] )) => (Rsh8Ux64  x (Const64 <t> [7] ))
   489  (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15]))
   490  (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31]))
   491  (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63]))
   492  
   493  // Convert x>>c<<c to x&^(1<<c-1)
   494  (Lsh64x64 i:(Rsh(64|64U)x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c]))
   495  (Lsh32x64 i:(Rsh(32|32U)x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c]))
   496  (Lsh16x64 i:(Rsh(16|16U)x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c]))
   497  (Lsh8x64  i:(Rsh(8|8U)x64    x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8  && i.Uses == 1 => (And8  x (Const8  <v.Type> [int8(-1)  << c]))
   498  // similarly for x<<c>>c
   499  (Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)]))
   500  (Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)]))
   501  (Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)]))
   502  (Rsh8Ux64  i:(Lsh8x64  x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8  && i.Uses == 1 => (And8  x (Const8  <v.Type> [int8 (^uint8 (0)>>c)]))
   503  
   504  // ((x >> c1) << c2) >> c3
   505  (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   506    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   507    => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   508  
   509  // ((x << c1) >> c2) << c3
   510  (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3]))
   511    && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3)
   512    => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3]))
   513  
   514  // (x >> c) & uppermask = 0
   515  (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0])
   516  (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0])
   517  (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0])
   518  (And8  (Const8  [m]) (Rsh8Ux64  _ (Const64 [c]))) && c >= int64(8-ntz8(m))  => (Const8  [0])
   519  
   520  // (x << c) & lowermask = 0
   521  (And64 (Const64 [m]) (Lsh64x64  _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0])
   522  (And32 (Const32 [m]) (Lsh32x64  _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0])
   523  (And16 (Const16 [m]) (Lsh16x64  _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0])
   524  (And8  (Const8  [m]) (Lsh8x64   _ (Const64 [c]))) && c >= int64(8-nlz8(m))  => (Const8  [0])
   525  
   526  // replace shifts with zero extensions
   527  (Rsh16Ux64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (ZeroExt8to16  (Trunc16to8  <typ.UInt8>  x))
   528  (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32  (Trunc32to8  <typ.UInt8>  x))
   529  (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64  (Trunc64to8  <typ.UInt8>  x))
   530  (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x))
   531  (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x))
   532  (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x))
   533  
   534  // replace shifts with sign extensions
   535  (Rsh16x64 (Lsh16x64 x (Const64  [8])) (Const64  [8])) => (SignExt8to16  (Trunc16to8  <typ.Int8>  x))
   536  (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32  (Trunc32to8  <typ.Int8>  x))
   537  (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64  (Trunc64to8  <typ.Int8>  x))
   538  (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x))
   539  (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x))
   540  (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x))
   541  
   542  // ((x >> c) & d) << e
   543  (Lsh64x64 (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c])) (Const64 [d])) (Const64 [e])) && c >= e => (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c-e])) (Const64 <t> [d<<e]))
   544  (Lsh32x64 (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c])) (Const32 [d])) (Const64 [e])) && c >= e => (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c-e])) (Const32 <t> [d<<e]))
   545  (Lsh16x64 (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c])) (Const16 [d])) (Const64 [e])) && c >= e => (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c-e])) (Const16 <t> [d<<e]))
   546  (Lsh8x64  (And8  (Rsh(8|8U)x64   <t> x (Const64 <t2> [c])) (Const8  [d])) (Const64 [e])) && c >= e => (And8  (Rsh(8|8U)x64   <t> x (Const64 <t2> [c-e])) (Const8  <t> [d<<e]))
   547  (Lsh64x64 (And64 (Rsh(64|64U)x64 <t> x (Const64 <t2> [c])) (Const64 [d])) (Const64 [e])) && c < e =>  (And64 (Lsh64x64 <t> x (Const64 <t2> [e-c])) (Const64 <t> [d<<e]))
   548  (Lsh32x64 (And32 (Rsh(32|32U)x64 <t> x (Const64 <t2> [c])) (Const32 [d])) (Const64 [e])) && c < e =>  (And32 (Lsh32x64 <t> x (Const64 <t2> [e-c])) (Const32 <t> [d<<e]))
   549  (Lsh16x64 (And16 (Rsh(16|16U)x64 <t> x (Const64 <t2> [c])) (Const16 [d])) (Const64 [e])) && c < e =>  (And16 (Lsh16x64 <t> x (Const64 <t2> [e-c])) (Const16 <t> [d<<e]))
   550  (Lsh8x64  (And8  (Rsh(8|8U)x64   <t> x (Const64 <t2> [c])) (Const8  [d])) (Const64 [e])) && c < e =>  (And8  (Lsh8x64  <t> x (Const64 <t2> [e-c])) (Const8  <t> [d<<e]))
   551  
   552  // constant comparisons
   553  (Eq(64|32|16|8)   (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d])
   554  (Neq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d])
   555  (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d])
   556  (Leq(64|32|16|8)  (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d])
   557  
   558  (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)])
   559  (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)])
   560  (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)])
   561  (Less8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <  uint8(d)])
   562  
   563  (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)])
   564  (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)])
   565  (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)])
   566  (Leq8U  (Const8  [c]) (Const8  [d])) => (ConstBool [ uint8(c) <=  uint8(d)])
   567  
   568  (Leq8  (Const8  [0]) (And8  _ (Const8  [c]))) && c >= 0 => (ConstBool [true])
   569  (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true])
   570  (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true])
   571  (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true])
   572  
   573  (Leq8  (Const8  [0]) (Rsh8Ux64  _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   574  (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   575  (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   576  (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true])
   577  
   578  // prefer equalities with zero
   579  (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   580  (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   581  (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   582  (Leq(64|32|16|8)U (Const(64|32|16|8) <t> [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   583  
   584  // prefer comparisons with zero
   585  (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
   586  (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
   587  (Leq(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   588  (Less(64|32|16|8) (Const(64|32|16|8) <t> [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x)
   589  
   590  // constant floating point comparisons
   591  (Eq32F   (Const32F [c]) (Const32F [d])) => (ConstBool [c == d])
   592  (Eq64F   (Const64F [c]) (Const64F [d])) => (ConstBool [c == d])
   593  (Neq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c != d])
   594  (Neq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c != d])
   595  (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d])
   596  (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d])
   597  (Leq32F  (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d])
   598  (Leq64F  (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d])
   599  
   600  // simplifications
   601  (Or(64|32|16|8) x x) => x
   602  (Or(64|32|16|8) (Const(64|32|16|8)  [0]) x) => x
   603  (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1])
   604  (Or(64|32|16|8) (Com(64|32|16|8)     x)  x) => (Const(64|32|16|8) [-1])
   605  
   606  (And(64|32|16|8) x x) => x
   607  (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x
   608  (And(64|32|16|8) (Const(64|32|16|8)  [0]) _) => (Const(64|32|16|8) [0])
   609  (And(64|32|16|8) (Com(64|32|16|8)     x)  x) => (Const(64|32|16|8) [0])
   610  
   611  (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   612  (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   613  (Xor(64|32|16|8) (Com(64|32|16|8)    x)  x) => (Const(64|32|16|8) [-1])
   614  
   615  (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x
   616  (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0])
   617  (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0])
   618  (Mul(64|32)uover <t> (Const(64|32) [0]) x) => (MakeTuple (Const(64|32) <t.FieldType(0)> [0]) (ConstBool <t.FieldType(1)> [false]))
   619  
   620  (Com(64|32|16|8) (Com(64|32|16|8)  x)) => x
   621  (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c])
   622  
   623  (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x)
   624  (Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y)
   625  
   626  (Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x)
   627  
   628  (Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1])
   629  (Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1])
   630  (Add(64|32|16|8) (Com(64|32|16|8) x)                  x)  => (Const(64|32|16|8) [-1])
   631  
   632  // Simplification when involving common integer
   633  // (t + x) - (t + y) == x - y
   634  // (t + x) - (y + t) == x - y
   635  // (x + t) - (y + t) == x - y
   636  // (x + t) - (t + y) == x - y
   637  // (x - t) + (t + y) == x + y
   638  // (x - t) + (y + t) == x + y
   639  (Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y)
   640  (Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y)
   641  
   642  // ^(x-1) == ^x+1 == -x
   643  (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x)
   644  (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x)
   645  
   646  // -(-x) == x
   647  (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x
   648  
   649  // -^x == x+1
   650  (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x)
   651  
   652  (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y)
   653  (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y)
   654  (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y
   655  
   656  // Fold comparisons with numeric bounds
   657  (Less(64|32|16|8)U _ (Const(64|32|16|8) [0]))  => (ConstBool [false])
   658  (Leq(64|32|16|8)U (Const(64|32|16|8) [0]) _)   => (ConstBool [true])
   659  (Less(64|32|16|8)U (Const(64|32|16|8) [-1]) _) => (ConstBool [false])
   660  (Leq(64|32|16|8)U _ (Const(64|32|16|8) [-1]))  => (ConstBool [true])
   661  (Less64 _ (Const64 [math.MinInt64])) => (ConstBool [false])
   662  (Less32 _ (Const32 [math.MinInt32])) => (ConstBool [false])
   663  (Less16 _ (Const16 [math.MinInt16])) => (ConstBool [false])
   664  (Less8  _ (Const8  [math.MinInt8 ])) => (ConstBool [false])
   665  (Leq64 (Const64 [math.MinInt64]) _)  => (ConstBool [true])
   666  (Leq32 (Const32 [math.MinInt32]) _)  => (ConstBool [true])
   667  (Leq16 (Const16 [math.MinInt16]) _)  => (ConstBool [true])
   668  (Leq8  (Const8  [math.MinInt8 ]) _)  => (ConstBool [true])
   669  (Less64 (Const64 [math.MaxInt64]) _) => (ConstBool [false])
   670  (Less32 (Const32 [math.MaxInt32]) _) => (ConstBool [false])
   671  (Less16 (Const16 [math.MaxInt16]) _) => (ConstBool [false])
   672  (Less8  (Const8  [math.MaxInt8 ]) _) => (ConstBool [false])
   673  (Leq64 _ (Const64 [math.MaxInt64]))  => (ConstBool [true])
   674  (Leq32 _ (Const32 [math.MaxInt32]))  => (ConstBool [true])
   675  (Leq16 _ (Const16 [math.MaxInt16]))  => (ConstBool [true])
   676  (Leq8  _ (Const8  [math.MaxInt8 ]))  => (ConstBool [true])
   677  
   678  // Canonicalize <= on numeric bounds and < near numeric bounds to ==
   679  (Leq(64|32|16|8)U x c:(Const(64|32|16|8) [0]))     => (Eq(64|32|16|8) x c)
   680  (Leq(64|32|16|8)U c:(Const(64|32|16|8) [-1]) x)    => (Eq(64|32|16|8) x c)
   681  (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1]))  => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [0]))
   682  (Less(64|32|16|8)U (Const(64|32|16|8) <t> [-2]) x) => (Eq(64|32|16|8) x (Const(64|32|16|8) <t> [-1]))
   683  (Leq64 x c:(Const64 [math.MinInt64])) => (Eq64 x c)
   684  (Leq32 x c:(Const32 [math.MinInt32])) => (Eq32 x c)
   685  (Leq16 x c:(Const16 [math.MinInt16])) => (Eq16 x c)
   686  (Leq8  x c:(Const8  [math.MinInt8 ])) => (Eq8  x c)
   687  (Leq64 c:(Const64 [math.MaxInt64]) x) => (Eq64 x c)
   688  (Leq32 c:(Const32 [math.MaxInt32]) x) => (Eq32 x c)
   689  (Leq16 c:(Const16 [math.MaxInt16]) x) => (Eq16 x c)
   690  (Leq8  c:(Const8  [math.MaxInt8 ]) x) => (Eq8  x c)
   691  (Less64 x (Const64 <t> [math.MinInt64+1])) => (Eq64 x (Const64 <t> [math.MinInt64]))
   692  (Less32 x (Const32 <t> [math.MinInt32+1])) => (Eq32 x (Const32 <t> [math.MinInt32]))
   693  (Less16 x (Const16 <t> [math.MinInt16+1])) => (Eq16 x (Const16 <t> [math.MinInt16]))
   694  (Less8  x (Const8  <t> [math.MinInt8 +1])) => (Eq8  x (Const8  <t> [math.MinInt8 ]))
   695  (Less64 (Const64 <t> [math.MaxInt64-1]) x) => (Eq64 x (Const64 <t> [math.MaxInt64]))
   696  (Less32 (Const32 <t> [math.MaxInt32-1]) x) => (Eq32 x (Const32 <t> [math.MaxInt32]))
   697  (Less16 (Const16 <t> [math.MaxInt16-1]) x) => (Eq16 x (Const16 <t> [math.MaxInt16]))
   698  (Less8  (Const8  <t> [math.MaxInt8 -1]) x) => (Eq8  x (Const8  <t> [math.MaxInt8 ]))
   699  
   700  // Ands clear bits. Ors set bits.
   701  // If a subsequent Or will set all the bits
   702  // that an And cleared, we can skip the And.
   703  // This happens in bitmasking code like:
   704  //   x &^= 3 << shift // clear two old bits
   705  //   x  |= v << shift // set two new bits
   706  // when shift is a small constant and v ends up a constant 3.
   707  (Or8  (And8  x (Const8  [c2])) (Const8  <t> [c1])) && ^(c1 | c2) == 0 => (Or8  (Const8  <t> [c1]) x)
   708  (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x)
   709  (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x)
   710  (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x)
   711  
   712  (Trunc64to8  (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x)
   713  (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x)
   714  (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x)
   715  (Trunc32to8  (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x)
   716  (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x)
   717  (Trunc16to8  (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x)
   718  
   719  (ZeroExt8to64  (Trunc64to8  x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x
   720  (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x
   721  (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x
   722  (ZeroExt8to32  (Trunc32to8  x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x
   723  (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x
   724  (ZeroExt8to16  (Trunc16to8  x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x
   725  
   726  (SignExt8to64  (Trunc64to8  x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x
   727  (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x
   728  (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x
   729  (SignExt8to32  (Trunc32to8  x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x
   730  (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x
   731  (SignExt8to16  (Trunc16to8  x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x
   732  
   733  (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1])
   734  (Slicemask (Const32 [0]))          => (Const32 [0])
   735  (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1])
   736  (Slicemask (Const64 [0]))          => (Const64 [0])
   737  
   738  // simplifications often used for lengths.  e.g. len(s[i:i+5])==5
   739  (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y
   740  (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x
   741  (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y)
   742  (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y)
   743  (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y
   744  (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z)
   745  
   746  // basic phi simplifications
   747  (Phi (Const8  [c]) (Const8  [c])) => (Const8  [c])
   748  (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c])
   749  (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c])
   750  (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c])
   751  
   752  // slice and interface comparisons
   753  // The frontend ensures that we can only compare against nil,
   754  // so we need only compare the first word (interface type or slice ptr).
   755  (EqInter x y)  => (EqPtr  (ITab x) (ITab y))
   756  (NeqInter x y) => (NeqPtr (ITab x) (ITab y))
   757  (EqSlice x y)  => (EqPtr  (SlicePtr x) (SlicePtr y))
   758  (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y))
   759  
   760  // Load of store of same address, with compatibly typed value and same size
   761  (Load <t1> p1 (Store {t2} p2 x _))
   762  	&& isSamePtr(p1, p2)
   763  	&& copyCompatibleType(t1, x.Type)
   764  	&& t1.Size() == t2.Size()
   765  	=> x
   766  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _)))
   767  	&& isSamePtr(p1, p3)
   768  	&& copyCompatibleType(t1, x.Type)
   769  	&& t1.Size() == t3.Size()
   770  	&& disjoint(p3, t3.Size(), p2, t2.Size())
   771  	=> x
   772  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _))))
   773  	&& isSamePtr(p1, p4)
   774  	&& copyCompatibleType(t1, x.Type)
   775  	&& t1.Size() == t4.Size()
   776  	&& disjoint(p4, t4.Size(), p2, t2.Size())
   777  	&& disjoint(p4, t4.Size(), p3, t3.Size())
   778  	=> x
   779  (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _)))))
   780  	&& isSamePtr(p1, p5)
   781  	&& copyCompatibleType(t1, x.Type)
   782  	&& t1.Size() == t5.Size()
   783  	&& disjoint(p5, t5.Size(), p2, t2.Size())
   784  	&& disjoint(p5, t5.Size(), p3, t3.Size())
   785  	&& disjoint(p5, t5.Size(), p4, t4.Size())
   786  	=> x
   787  
   788  // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits
   789  (Load <t1> p1 (Store {t2} p2 (Const64  [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))])
   790  (Load <t1> p1 (Store {t2} p2 (Const32  [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))])
   791  (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 8 && is64BitInt(t1)   => (Const64  [int64(math.Float64bits(x))])
   792  (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && t2.Size() == 4 && is32BitInt(t1)   => (Const32  [int32(math.Float32bits(x))])
   793  
   794  // Float Loads up to Zeros so they can be constant folded.
   795  (Load <t1> op:(OffPtr [o1] p1)
   796  	(Store {t2} p2 _
   797  		mem:(Zero [n] p3 _)))
   798  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3)
   799  	&& CanSSA(t1)
   800  	&& disjoint(op, t1.Size(), p2, t2.Size())
   801  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem)
   802  (Load <t1> op:(OffPtr [o1] p1)
   803  	(Store {t2} p2 _
   804  		(Store {t3} p3 _
   805  			mem:(Zero [n] p4 _))))
   806  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4)
   807  	&& CanSSA(t1)
   808  	&& disjoint(op, t1.Size(), p2, t2.Size())
   809  	&& disjoint(op, t1.Size(), p3, t3.Size())
   810  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem)
   811  (Load <t1> op:(OffPtr [o1] p1)
   812  	(Store {t2} p2 _
   813  		(Store {t3} p3 _
   814  			(Store {t4} p4 _
   815  				mem:(Zero [n] p5 _)))))
   816  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5)
   817  	&& CanSSA(t1)
   818  	&& disjoint(op, t1.Size(), p2, t2.Size())
   819  	&& disjoint(op, t1.Size(), p3, t3.Size())
   820  	&& disjoint(op, t1.Size(), p4, t4.Size())
   821  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem)
   822  (Load <t1> op:(OffPtr [o1] p1)
   823  	(Store {t2} p2 _
   824  		(Store {t3} p3 _
   825  			(Store {t4} p4 _
   826  				(Store {t5} p5 _
   827  					mem:(Zero [n] p6 _))))))
   828  	&& o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6)
   829  	&& CanSSA(t1)
   830  	&& disjoint(op, t1.Size(), p2, t2.Size())
   831  	&& disjoint(op, t1.Size(), p3, t3.Size())
   832  	&& disjoint(op, t1.Size(), p4, t4.Size())
   833  	&& disjoint(op, t1.Size(), p5, t5.Size())
   834  	=> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem)
   835  
   836  // Zero to Load forwarding.
   837  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   838  	&& t1.IsBoolean()
   839  	&& isSamePtr(p1, p2)
   840  	&& n >= o + 1
   841  	=> (ConstBool [false])
   842  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   843  	&& is8BitInt(t1)
   844  	&& isSamePtr(p1, p2)
   845  	&& n >= o + 1
   846  	=> (Const8 [0])
   847  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   848  	&& is16BitInt(t1)
   849  	&& isSamePtr(p1, p2)
   850  	&& n >= o + 2
   851  	=> (Const16 [0])
   852  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   853  	&& is32BitInt(t1)
   854  	&& isSamePtr(p1, p2)
   855  	&& n >= o + 4
   856  	=> (Const32 [0])
   857  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   858  	&& is64BitInt(t1)
   859  	&& isSamePtr(p1, p2)
   860  	&& n >= o + 8
   861  	=> (Const64 [0])
   862  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   863  	&& is32BitFloat(t1)
   864  	&& isSamePtr(p1, p2)
   865  	&& n >= o + 4
   866  	=> (Const32F [0])
   867  (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _))
   868  	&& is64BitFloat(t1)
   869  	&& isSamePtr(p1, p2)
   870  	&& n >= o + 8
   871  	=> (Const64F [0])
   872  
   873  // Eliminate stores of values that have just been loaded from the same location.
   874  // We also handle the common case where there are some intermediate stores.
   875  (Store {t1} p1 (Load <t2> p2 mem) mem)
   876  	&& isSamePtr(p1, p2)
   877  	&& t2.Size() == t1.Size()
   878  	=> mem
   879  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem))
   880  	&& isSamePtr(p1, p2)
   881  	&& t2.Size() == t1.Size()
   882  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   883  	=> mem
   884  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem)))
   885  	&& isSamePtr(p1, p2)
   886  	&& t2.Size() == t1.Size()
   887  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   888  	&& disjoint(p1, t1.Size(), p4, t4.Size())
   889  	=> mem
   890  (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem))))
   891  	&& isSamePtr(p1, p2)
   892  	&& t2.Size() == t1.Size()
   893  	&& disjoint(p1, t1.Size(), p3, t3.Size())
   894  	&& disjoint(p1, t1.Size(), p4, t4.Size())
   895  	&& disjoint(p1, t1.Size(), p5, t5.Size())
   896  	=> mem
   897  
   898  // Don't Store zeros to cleared variables.
   899  (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _))
   900  	&& isConstZero(x)
   901  	&& o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2)
   902  	=> mem
   903  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _)))
   904  	&& isConstZero(x)
   905  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3)
   906  	&& disjoint(op, t1.Size(), p2, t2.Size())
   907  	=> mem
   908  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _))))
   909  	&& isConstZero(x)
   910  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4)
   911  	&& disjoint(op, t1.Size(), p2, t2.Size())
   912  	&& disjoint(op, t1.Size(), p3, t3.Size())
   913  	=> mem
   914  (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _)))))
   915  	&& isConstZero(x)
   916  	&& o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5)
   917  	&& disjoint(op, t1.Size(), p2, t2.Size())
   918  	&& disjoint(op, t1.Size(), p3, t3.Size())
   919  	&& disjoint(op, t1.Size(), p4, t4.Size())
   920  	=> mem
   921  
   922  // Collapse OffPtr
   923  (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y])
   924  (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p
   925  
   926  // indexing operations
   927  // Note: bounds check has already been done
   928  (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())])))
   929  (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()])))
   930  
   931  // struct operations
   932  (StructSelect [i] x:(StructMake ___)) => x.Args[i]
   933  (Load <t> _ _) && t.IsStruct() && CanSSA(t) => rewriteStructLoad(v)
   934  (Store _ (StructMake ___) _) => rewriteStructStore(v)
   935  
   936  (StructSelect [i] x:(Load <t> ptr mem)) && !CanSSA(t) =>
   937    @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem)
   938  
   939  // Putting struct{*byte} and similar into direct interfaces.
   940  (IMake _typ (StructMake val)) => (IMake _typ val)
   941  (StructSelect [0] (IData x)) => (IData x)
   942  
   943  // un-SSAable values use mem->mem copies
   944  (Store {t} dst (Load src mem) mem) && !CanSSA(t) =>
   945  	(Move {t} [t.Size()] dst src mem)
   946  (Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) =>
   947  	(Move {t} [t.Size()] dst src (VarDef {x} mem))
   948  
   949  // array ops
   950  (ArraySelect (ArrayMake1 x)) => x
   951  
   952  (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 =>
   953    (ArrayMake0)
   954  
   955  (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) =>
   956    (ArrayMake1 (Load <t.Elem()> ptr mem))
   957  
   958  (Store _ (ArrayMake0) mem) => mem
   959  (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem)
   960  
   961  // Putting [1]*byte and similar into direct interfaces.
   962  (IMake _typ (ArrayMake1 val)) => (IMake _typ val)
   963  (ArraySelect [0] (IData x)) => (IData x)
   964  
   965  // string ops
   966  // Decomposing StringMake and lowering of StringPtr and StringLen
   967  // happens in a later pass, dec, so that these operations are available
   968  // to other passes for optimizations.
   969  (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base)
   970  (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c])
   971  (ConstString {str}) && config.PtrSize == 4 && str == "" =>
   972    (StringMake (ConstNil) (Const32 <typ.Int> [0]))
   973  (ConstString {str}) && config.PtrSize == 8 && str == "" =>
   974    (StringMake (ConstNil) (Const64 <typ.Int> [0]))
   975  (ConstString {str}) && config.PtrSize == 4 && str != "" =>
   976    (StringMake
   977      (Addr <typ.BytePtr> {fe.StringData(str)}
   978        (SB))
   979      (Const32 <typ.Int> [int32(len(str))]))
   980  (ConstString {str}) && config.PtrSize == 8 && str != "" =>
   981    (StringMake
   982      (Addr <typ.BytePtr> {fe.StringData(str)}
   983        (SB))
   984      (Const64 <typ.Int> [int64(len(str))]))
   985  
   986  // slice ops
   987  // Only a few slice rules are provided here.  See dec.rules for
   988  // a more comprehensive set.
   989  (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c])
   990  (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c])
   991  (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c])
   992  (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c])
   993  (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x)
   994  (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x)
   995  (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x)
   996  (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x)
   997  (ConstSlice) && config.PtrSize == 4 =>
   998    (SliceMake
   999      (ConstNil <v.Type.Elem().PtrTo()>)
  1000      (Const32 <typ.Int> [0])
  1001      (Const32 <typ.Int> [0]))
  1002  (ConstSlice) && config.PtrSize == 8 =>
  1003    (SliceMake
  1004      (ConstNil <v.Type.Elem().PtrTo()>)
  1005      (Const64 <typ.Int> [0])
  1006      (Const64 <typ.Int> [0]))
  1007  
  1008  // Special rule to help constant slicing; len > 0 implies cap > 0 implies Slicemask is all 1
  1009  (SliceMake (AddPtr <t> x (And64 y (Slicemask _))) w:(Const64 [c]) z) && c > 0 => (SliceMake (AddPtr <t> x y) w z)
  1010  (SliceMake (AddPtr <t> x (And32 y (Slicemask _))) w:(Const32 [c]) z) && c > 0 => (SliceMake (AddPtr <t> x y) w z)
  1011  
  1012  // interface ops
  1013  (ConstInterface) =>
  1014    (IMake
  1015      (ConstNil <typ.Uintptr>)
  1016      (ConstNil <typ.BytePtr>))
  1017  
  1018  (NilCheck ptr:(GetG mem) mem) => ptr
  1019  
  1020  (If (Not cond) yes no) => (If cond no yes)
  1021  (If (ConstBool [c]) yes no) && c => (First yes no)
  1022  (If (ConstBool [c]) yes no) && !c => (First no yes)
  1023  
  1024  (Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y))
  1025  
  1026  // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer.
  1027  (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off)
  1028  (Convert (Convert ptr mem) mem) => ptr
  1029  // Note: it is important that the target rewrite is ptr+(off1+off2), not (ptr+off1)+off2.
  1030  // We must ensure that no intermediate computations are invalid pointers.
  1031  (Convert a:(Add(64|32) (Add(64|32) (Convert ptr mem) off1) off2) mem) => (AddPtr ptr (Add(64|32) <a.Type> off1 off2))
  1032  
  1033  // strength reduction of divide by a constant.
  1034  // See ../magic.go for a detailed description of these algorithms.
  1035  
  1036  // Unsigned divide by power of 2.  Strength reduce to a shift.
  1037  (Div8u  n (Const8  [c])) && isUnsignedPowerOfTwo(uint8(c)) => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8u(uint8(c))]))
  1038  (Div16u n (Const16 [c])) && isUnsignedPowerOfTwo(uint16(c)) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16u(uint16(c))]))
  1039  (Div32u n (Const32 [c])) && isUnsignedPowerOfTwo(uint32(c)) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32u(uint32(c))]))
  1040  (Div64u n (Const64 [c])) && isUnsignedPowerOfTwo(uint64(c)) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64u(uint64(c))]))
  1041  
  1042  // Signed non-negative divide by power of 2.
  1043  (Div8  n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh8Ux64  n (Const64 <typ.UInt64> [log8(c)]))
  1044  (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)]))
  1045  (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)]))
  1046  (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)]))
  1047  (Div64 n (Const64 [-1<<63])) && isNonNegative(n)                 => (Const64 [0])
  1048  
  1049  // Unsigned divide, not a power of 2.  Strength reduce to a multiply.
  1050  // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply.
  1051  (Div8u x (Const8 [c])) && umagicOK8(c) =>
  1052    (Trunc32to8
  1053      (Rsh32Ux64 <typ.UInt32>
  1054        (Mul32 <typ.UInt32>
  1055          (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)])
  1056          (ZeroExt8to32 x))
  1057        (Const64 <typ.UInt64> [8+umagic8(c).s])))
  1058  
  1059  // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply.
  1060  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 =>
  1061    (Trunc64to16
  1062      (Rsh64Ux64 <typ.UInt64>
  1063        (Mul64 <typ.UInt64>
  1064          (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)])
  1065          (ZeroExt16to64 x))
  1066        (Const64 <typ.UInt64> [16+umagic16(c).s])))
  1067  
  1068  // For 16-bit divides on 32-bit machines
  1069  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 =>
  1070    (Trunc32to16
  1071      (Rsh32Ux64 <typ.UInt32>
  1072        (Mul32 <typ.UInt32>
  1073          (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)])
  1074          (ZeroExt16to32 x))
  1075        (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
  1076  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 =>
  1077    (Trunc32to16
  1078      (Rsh32Ux64 <typ.UInt32>
  1079        (Mul32 <typ.UInt32>
  1080          (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)])
  1081          (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1])))
  1082        (Const64 <typ.UInt64> [16+umagic16(c).s-2])))
  1083  (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg =>
  1084    (Trunc32to16
  1085      (Rsh32Ux64 <typ.UInt32>
  1086        (Avg32u
  1087          (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16]))
  1088          (Mul32 <typ.UInt32>
  1089            (Const32 <typ.UInt32> [int32(umagic16(c).m)])
  1090            (ZeroExt16to32 x)))
  1091        (Const64 <typ.UInt64> [16+umagic16(c).s-1])))
  1092  
  1093  // For 32-bit divides on 32-bit machines
  1094  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul =>
  1095    (Rsh32Ux64 <typ.UInt32>
  1096      (Hmul32u <typ.UInt32>
  1097        (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)])
  1098        x)
  1099      (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1100  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul =>
  1101    (Rsh32Ux64 <typ.UInt32>
  1102      (Hmul32u <typ.UInt32>
  1103        (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)])
  1104        (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1])))
  1105      (Const64 <typ.UInt64> [umagic32(c).s-2]))
  1106  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul =>
  1107    (Rsh32Ux64 <typ.UInt32>
  1108      (Avg32u
  1109        x
  1110        (Hmul32u <typ.UInt32>
  1111          (Const32 <typ.UInt32> [int32(umagic32(c).m)])
  1112          x))
  1113      (Const64 <typ.UInt64> [umagic32(c).s-1]))
  1114  
  1115  // For 32-bit divides on 64-bit machines
  1116  // We'll use a regular (non-hi) multiply for this case.
  1117  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 =>
  1118    (Trunc64to32
  1119      (Rsh64Ux64 <typ.UInt64>
  1120        (Mul64 <typ.UInt64>
  1121          (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)])
  1122          (ZeroExt32to64 x))
  1123        (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1124  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 =>
  1125    (Trunc64to32
  1126      (Rsh64Ux64 <typ.UInt64>
  1127        (Mul64 <typ.UInt64>
  1128          (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)])
  1129          (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1])))
  1130        (Const64 <typ.UInt64> [32+umagic32(c).s-2])))
  1131  (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg =>
  1132    (Trunc64to32
  1133      (Rsh64Ux64 <typ.UInt64>
  1134        (Avg64u
  1135          (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32]))
  1136          (Mul64 <typ.UInt64>
  1137            (Const64 <typ.UInt32> [int64(umagic32(c).m)])
  1138            (ZeroExt32to64 x)))
  1139        (Const64 <typ.UInt64> [32+umagic32(c).s-1])))
  1140  
  1141  // For unsigned 64-bit divides on 32-bit machines,
  1142  // if the constant fits in 16 bits (so that the last term
  1143  // fits in 32 bits), convert to three 32-bit divides by a constant.
  1144  //
  1145  // If 1<<32 = Q * c + R
  1146  // and    x = hi << 32 + lo
  1147  //
  1148  // Then x = (hi/c*c + hi%c) << 32 + lo
  1149  //        = hi/c*c<<32 + hi%c<<32 + lo
  1150  //        = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c
  1151  //        = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c)
  1152  // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c
  1153  (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul =>
  1154    (Add64
  1155      (Add64 <typ.UInt64>
  1156        (Add64 <typ.UInt64>
  1157          (Lsh64x64 <typ.UInt64>
  1158            (ZeroExt32to64
  1159              (Div32u <typ.UInt32>
  1160                (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1161                (Const32 <typ.UInt32> [int32(c)])))
  1162            (Const64 <typ.UInt64> [32]))
  1163          (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))))
  1164        (Mul64 <typ.UInt64>
  1165          (ZeroExt32to64 <typ.UInt64>
  1166            (Mod32u <typ.UInt32>
  1167              (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1168              (Const32 <typ.UInt32> [int32(c)])))
  1169          (Const64 <typ.UInt64> [int64((1<<32)/c)])))
  1170        (ZeroExt32to64
  1171          (Div32u <typ.UInt32>
  1172            (Add32 <typ.UInt32>
  1173              (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)]))
  1174              (Mul32 <typ.UInt32>
  1175                (Mod32u <typ.UInt32>
  1176                  (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32])))
  1177                  (Const32 <typ.UInt32> [int32(c)]))
  1178                (Const32 <typ.UInt32> [int32((1<<32)%c)])))
  1179            (Const32 <typ.UInt32> [int32(c)]))))
  1180  
  1181  // For 64-bit divides on 64-bit machines
  1182  // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.)
  1183  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul =>
  1184    (Rsh64Ux64 <typ.UInt64>
  1185      (Hmul64u <typ.UInt64>
  1186        (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)])
  1187        x)
  1188      (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1189  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul =>
  1190    (Rsh64Ux64 <typ.UInt64>
  1191      (Hmul64u <typ.UInt64>
  1192        (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)])
  1193        (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1])))
  1194      (Const64 <typ.UInt64> [umagic64(c).s-2]))
  1195  (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul =>
  1196    (Rsh64Ux64 <typ.UInt64>
  1197      (Avg64u
  1198        x
  1199        (Hmul64u <typ.UInt64>
  1200          (Const64 <typ.UInt64> [int64(umagic64(c).m)])
  1201          x))
  1202      (Const64 <typ.UInt64> [umagic64(c).s-1]))
  1203  
  1204  // Signed divide by a negative constant.  Rewrite to divide by a positive constant.
  1205  (Div8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Neg8  (Div8  <t> n (Const8  <t> [-c])))
  1206  (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c])))
  1207  (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c])))
  1208  (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c])))
  1209  
  1210  // Dividing by the most-negative number.  Result is always 0 except
  1211  // if the input is also the most-negative number.
  1212  // We can detect that using the sign bit of x & -x.
  1213  (Div8  <t> x (Const8  [-1<<7 ])) => (Rsh8Ux64  (And8  <t> x (Neg8  <t> x)) (Const64 <typ.UInt64> [7 ]))
  1214  (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15]))
  1215  (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31]))
  1216  (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63]))
  1217  
  1218  // Signed divide by power of 2.
  1219  // n / c =       n >> log(c) if n >= 0
  1220  //       = (n+c-1) >> log(c) if n < 0
  1221  // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned).
  1222  (Div8  <t> n (Const8  [c])) && isPowerOfTwo(c) =>
  1223    (Rsh8x64
  1224      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))])))
  1225      (Const64 <typ.UInt64> [int64(log8(c))]))
  1226  (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) =>
  1227    (Rsh16x64
  1228      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))])))
  1229      (Const64 <typ.UInt64> [int64(log16(c))]))
  1230  (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) =>
  1231    (Rsh32x64
  1232      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))])))
  1233      (Const64 <typ.UInt64> [int64(log32(c))]))
  1234  (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) =>
  1235    (Rsh64x64
  1236      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))])))
  1237      (Const64 <typ.UInt64> [int64(log64(c))]))
  1238  
  1239  // Signed divide, not a power of 2.  Strength reduce to a multiply.
  1240  (Div8 <t> x (Const8 [c])) && smagicOK8(c) =>
  1241    (Sub8 <t>
  1242      (Rsh32x64 <t>
  1243        (Mul32 <typ.UInt32>
  1244          (Const32 <typ.UInt32> [int32(smagic8(c).m)])
  1245          (SignExt8to32 x))
  1246        (Const64 <typ.UInt64> [8+smagic8(c).s]))
  1247      (Rsh32x64 <t>
  1248        (SignExt8to32 x)
  1249        (Const64 <typ.UInt64> [31])))
  1250  (Div16 <t> x (Const16 [c])) && smagicOK16(c) =>
  1251    (Sub16 <t>
  1252      (Rsh32x64 <t>
  1253        (Mul32 <typ.UInt32>
  1254          (Const32 <typ.UInt32> [int32(smagic16(c).m)])
  1255          (SignExt16to32 x))
  1256        (Const64 <typ.UInt64> [16+smagic16(c).s]))
  1257      (Rsh32x64 <t>
  1258        (SignExt16to32 x)
  1259        (Const64 <typ.UInt64> [31])))
  1260  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 =>
  1261    (Sub32 <t>
  1262      (Rsh64x64 <t>
  1263        (Mul64 <typ.UInt64>
  1264          (Const64 <typ.UInt64> [int64(smagic32(c).m)])
  1265          (SignExt32to64 x))
  1266        (Const64 <typ.UInt64> [32+smagic32(c).s]))
  1267      (Rsh64x64 <t>
  1268        (SignExt32to64 x)
  1269        (Const64 <typ.UInt64> [63])))
  1270  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul =>
  1271    (Sub32 <t>
  1272      (Rsh32x64 <t>
  1273        (Hmul32 <t>
  1274          (Const32 <typ.UInt32> [int32(smagic32(c).m/2)])
  1275          x)
  1276        (Const64 <typ.UInt64> [smagic32(c).s-1]))
  1277      (Rsh32x64 <t>
  1278        x
  1279        (Const64 <typ.UInt64> [31])))
  1280  (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul =>
  1281    (Sub32 <t>
  1282      (Rsh32x64 <t>
  1283        (Add32 <t>
  1284          (Hmul32 <t>
  1285            (Const32 <typ.UInt32> [int32(smagic32(c).m)])
  1286            x)
  1287          x)
  1288        (Const64 <typ.UInt64> [smagic32(c).s]))
  1289      (Rsh32x64 <t>
  1290        x
  1291        (Const64 <typ.UInt64> [31])))
  1292  (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul =>
  1293    (Sub64 <t>
  1294      (Rsh64x64 <t>
  1295        (Hmul64 <t>
  1296          (Const64 <typ.UInt64> [int64(smagic64(c).m/2)])
  1297          x)
  1298        (Const64 <typ.UInt64> [smagic64(c).s-1]))
  1299      (Rsh64x64 <t>
  1300        x
  1301        (Const64 <typ.UInt64> [63])))
  1302  (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul =>
  1303    (Sub64 <t>
  1304      (Rsh64x64 <t>
  1305        (Add64 <t>
  1306          (Hmul64 <t>
  1307            (Const64 <typ.UInt64> [int64(smagic64(c).m)])
  1308            x)
  1309          x)
  1310        (Const64 <typ.UInt64> [smagic64(c).s]))
  1311      (Rsh64x64 <t>
  1312        x
  1313        (Const64 <typ.UInt64> [63])))
  1314  
  1315  // Unsigned mod by power of 2 constant.
  1316  (Mod8u  <t> n (Const8  [c])) && isUnsignedPowerOfTwo(uint8(c)) => (And8  n (Const8  <t> [c-1]))
  1317  (Mod16u <t> n (Const16 [c])) && isUnsignedPowerOfTwo(uint16(c)) => (And16 n (Const16 <t> [c-1]))
  1318  (Mod32u <t> n (Const32 [c])) && isUnsignedPowerOfTwo(uint32(c)) => (And32 n (Const32 <t> [c-1]))
  1319  (Mod64u <t> n (Const64 [c])) && isUnsignedPowerOfTwo(uint64(c)) => (And64 n (Const64 <t> [c-1]))
  1320  
  1321  // Signed non-negative mod by power of 2 constant.
  1322  (Mod8  <t> n (Const8  [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And8  n (Const8  <t> [c-1]))
  1323  (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And16 n (Const16 <t> [c-1]))
  1324  (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And32 n (Const32 <t> [c-1]))
  1325  (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) => (And64 n (Const64 <t> [c-1]))
  1326  (Mod64 n (Const64 [-1<<63])) && isNonNegative(n)                   => n
  1327  
  1328  // Signed mod by negative constant.
  1329  (Mod8  <t> n (Const8  [c])) && c < 0 && c != -1<<7  => (Mod8  <t> n (Const8  <t> [-c]))
  1330  (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c]))
  1331  (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c]))
  1332  (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c]))
  1333  
  1334  // All other mods by constants, do A%B = A-(A/B*B).
  1335  // This implements % with two * and a bunch of ancillary ops.
  1336  // One of the * is free if the user's code also computes A/B.
  1337  (Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
  1338    => (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1339  (Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
  1340    => (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1341  (Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
  1342    => (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1343  (Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
  1344    => (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1345  (Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK8( c)
  1346    => (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
  1347  (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c)
  1348    => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c])))
  1349  (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c)
  1350    => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c])))
  1351  (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c)
  1352    => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c])))
  1353  
  1354  // For architectures without rotates on less than 32-bits, promote these checks to 32-bit.
  1355  (Eq8 (Mod8u x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) =>
  1356  	(Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0]))
  1357  (Eq16 (Mod16u x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) =>
  1358  	(Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0]))
  1359  (Eq8 (Mod8 x (Const8  [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) =>
  1360  	(Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1361  (Eq16 (Mod16 x (Const16  [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) =>
  1362  	(Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0]))
  1363  
  1364  // Divisibility checks x%c == 0 convert to multiply and rotate.
  1365  // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass
  1366  // where (x/c) is performed using multiplication with magic constants.
  1367  // To rewrite x%c == 0 requires pattern matching the rewritten expression
  1368  // and checking that the division by the same constant wasn't already calculated.
  1369  // This check is made by counting uses of the magic constant multiplication.
  1370  // Note that if there were an intermediate opt pass, this rule could be applied
  1371  // directly on the Div op and magic division rewrites could be delayed to late opt.
  1372  
  1373  // Unsigned divisibility checks convert to multiply and rotate.
  1374  (Eq8 x (Mul8 (Const8 [c])
  1375    (Trunc32to8
  1376      (Rsh32Ux64
  1377        mul:(Mul32
  1378          (Const32 [m])
  1379          (ZeroExt8to32 x))
  1380        (Const64 [s])))
  1381  	)
  1382  )
  1383    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1384    && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s
  1385    && x.Op != OpConst8 && udivisibleOK8(c)
  1386   => (Leq8U
  1387  			(RotateLeft8 <typ.UInt8>
  1388  				(Mul8 <typ.UInt8>
  1389  					(Const8 <typ.UInt8> [int8(udivisible8(c).m)])
  1390  					x)
  1391  				(Const8 <typ.UInt8> [int8(8-udivisible8(c).k)])
  1392  				)
  1393  			(Const8 <typ.UInt8> [int8(udivisible8(c).max)])
  1394  		)
  1395  
  1396  (Eq16 x (Mul16 (Const16 [c])
  1397    (Trunc64to16
  1398      (Rsh64Ux64
  1399        mul:(Mul64
  1400          (Const64 [m])
  1401          (ZeroExt16to64 x))
  1402        (Const64 [s])))
  1403  	)
  1404  )
  1405    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1406    && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s
  1407    && x.Op != OpConst16 && udivisibleOK16(c)
  1408   => (Leq16U
  1409  			(RotateLeft16 <typ.UInt16>
  1410  				(Mul16 <typ.UInt16>
  1411  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1412  					x)
  1413  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1414  				)
  1415  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1416  		)
  1417  
  1418  (Eq16 x (Mul16 (Const16 [c])
  1419    (Trunc32to16
  1420      (Rsh32Ux64
  1421        mul:(Mul32
  1422          (Const32 [m])
  1423          (ZeroExt16to32 x))
  1424        (Const64 [s])))
  1425  	)
  1426  )
  1427    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1428    && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1
  1429    && x.Op != OpConst16 && udivisibleOK16(c)
  1430   => (Leq16U
  1431  			(RotateLeft16 <typ.UInt16>
  1432  				(Mul16 <typ.UInt16>
  1433  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1434  					x)
  1435  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1436  				)
  1437  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1438  		)
  1439  
  1440  (Eq16 x (Mul16 (Const16 [c])
  1441    (Trunc32to16
  1442      (Rsh32Ux64
  1443        mul:(Mul32
  1444          (Const32 [m])
  1445          (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1])))
  1446        (Const64 [s])))
  1447  	)
  1448  )
  1449    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1450    && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2
  1451    && x.Op != OpConst16 && udivisibleOK16(c)
  1452   => (Leq16U
  1453  			(RotateLeft16 <typ.UInt16>
  1454  				(Mul16 <typ.UInt16>
  1455  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1456  					x)
  1457  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1458  				)
  1459  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1460  		)
  1461  
  1462  (Eq16 x (Mul16 (Const16 [c])
  1463    (Trunc32to16
  1464      (Rsh32Ux64
  1465        (Avg32u
  1466          (Lsh32x64 (ZeroExt16to32 x) (Const64 [16]))
  1467          mul:(Mul32
  1468            (Const32 [m])
  1469            (ZeroExt16to32 x)))
  1470        (Const64 [s])))
  1471  	)
  1472  )
  1473    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1474    && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1
  1475    && x.Op != OpConst16 && udivisibleOK16(c)
  1476   => (Leq16U
  1477  			(RotateLeft16 <typ.UInt16>
  1478  				(Mul16 <typ.UInt16>
  1479  					(Const16 <typ.UInt16> [int16(udivisible16(c).m)])
  1480  					x)
  1481  				(Const16 <typ.UInt16> [int16(16-udivisible16(c).k)])
  1482  				)
  1483  			(Const16 <typ.UInt16> [int16(udivisible16(c).max)])
  1484  		)
  1485  
  1486  (Eq32 x (Mul32 (Const32 [c])
  1487  	(Rsh32Ux64
  1488  		mul:(Hmul32u
  1489  			(Const32 [m])
  1490  			x)
  1491  		(Const64 [s]))
  1492  	)
  1493  )
  1494    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1495    && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1
  1496  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1497   => (Leq32U
  1498  			(RotateLeft32 <typ.UInt32>
  1499  				(Mul32 <typ.UInt32>
  1500  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1501  					x)
  1502  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1503  				)
  1504  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1505  		)
  1506  
  1507  (Eq32 x (Mul32 (Const32 [c])
  1508    (Rsh32Ux64
  1509      mul:(Hmul32u
  1510        (Const32 <typ.UInt32> [m])
  1511        (Rsh32Ux64 x (Const64 [1])))
  1512      (Const64 [s]))
  1513  	)
  1514  )
  1515    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1516    && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2
  1517  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1518   => (Leq32U
  1519  			(RotateLeft32 <typ.UInt32>
  1520  				(Mul32 <typ.UInt32>
  1521  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1522  					x)
  1523  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1524  				)
  1525  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1526  		)
  1527  
  1528  (Eq32 x (Mul32 (Const32 [c])
  1529    (Rsh32Ux64
  1530      (Avg32u
  1531        x
  1532        mul:(Hmul32u
  1533          (Const32 [m])
  1534          x))
  1535      (Const64 [s]))
  1536  	)
  1537  )
  1538    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1539    && m == int32(umagic32(c).m) && s == umagic32(c).s-1
  1540  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1541   => (Leq32U
  1542  			(RotateLeft32 <typ.UInt32>
  1543  				(Mul32 <typ.UInt32>
  1544  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1545  					x)
  1546  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1547  				)
  1548  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1549  		)
  1550  
  1551  (Eq32 x (Mul32 (Const32 [c])
  1552    (Trunc64to32
  1553      (Rsh64Ux64
  1554        mul:(Mul64
  1555          (Const64 [m])
  1556          (ZeroExt32to64 x))
  1557        (Const64 [s])))
  1558  	)
  1559  )
  1560    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1561    && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1
  1562  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1563   => (Leq32U
  1564  			(RotateLeft32 <typ.UInt32>
  1565  				(Mul32 <typ.UInt32>
  1566  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1567  					x)
  1568  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1569  				)
  1570  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1571  		)
  1572  
  1573  (Eq32 x (Mul32 (Const32 [c])
  1574    (Trunc64to32
  1575      (Rsh64Ux64
  1576        mul:(Mul64
  1577          (Const64 [m])
  1578          (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1])))
  1579        (Const64 [s])))
  1580  	)
  1581  )
  1582    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1583    && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2
  1584  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1585   => (Leq32U
  1586  			(RotateLeft32 <typ.UInt32>
  1587  				(Mul32 <typ.UInt32>
  1588  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1589  					x)
  1590  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1591  				)
  1592  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1593  		)
  1594  
  1595  (Eq32 x (Mul32 (Const32 [c])
  1596    (Trunc64to32
  1597      (Rsh64Ux64
  1598        (Avg64u
  1599          (Lsh64x64 (ZeroExt32to64 x) (Const64 [32]))
  1600          mul:(Mul64
  1601            (Const64 [m])
  1602            (ZeroExt32to64 x)))
  1603        (Const64 [s])))
  1604  	)
  1605  )
  1606    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1607    && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1
  1608  	&& x.Op != OpConst32 && udivisibleOK32(c)
  1609   => (Leq32U
  1610  			(RotateLeft32 <typ.UInt32>
  1611  				(Mul32 <typ.UInt32>
  1612  					(Const32 <typ.UInt32> [int32(udivisible32(c).m)])
  1613  					x)
  1614  				(Const32 <typ.UInt32> [int32(32-udivisible32(c).k)])
  1615  				)
  1616  			(Const32 <typ.UInt32> [int32(udivisible32(c).max)])
  1617  		)
  1618  
  1619  (Eq64 x (Mul64 (Const64 [c])
  1620  	(Rsh64Ux64
  1621  		mul:(Hmul64u
  1622  			(Const64 [m])
  1623  			x)
  1624  		(Const64 [s]))
  1625  	)
  1626  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1627    && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1
  1628    && x.Op != OpConst64 && udivisibleOK64(c)
  1629   => (Leq64U
  1630  			(RotateLeft64 <typ.UInt64>
  1631  				(Mul64 <typ.UInt64>
  1632  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1633  					x)
  1634  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1635  				)
  1636  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1637  		)
  1638  (Eq64 x (Mul64 (Const64 [c])
  1639  	(Rsh64Ux64
  1640  		mul:(Hmul64u
  1641  			(Const64 [m])
  1642  			(Rsh64Ux64 x (Const64 [1])))
  1643  		(Const64 [s]))
  1644  	)
  1645  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1646    && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2
  1647    && x.Op != OpConst64 && udivisibleOK64(c)
  1648   => (Leq64U
  1649  			(RotateLeft64 <typ.UInt64>
  1650  				(Mul64 <typ.UInt64>
  1651  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1652  					x)
  1653  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1654  				)
  1655  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1656  		)
  1657  (Eq64 x (Mul64 (Const64 [c])
  1658  	(Rsh64Ux64
  1659  		(Avg64u
  1660  			x
  1661  			mul:(Hmul64u
  1662  				(Const64 [m])
  1663  				x))
  1664  		(Const64 [s]))
  1665  	)
  1666  ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1667    && m == int64(umagic64(c).m) && s == umagic64(c).s-1
  1668    && x.Op != OpConst64 && udivisibleOK64(c)
  1669   => (Leq64U
  1670  			(RotateLeft64 <typ.UInt64>
  1671  				(Mul64 <typ.UInt64>
  1672  					(Const64 <typ.UInt64> [int64(udivisible64(c).m)])
  1673  					x)
  1674  				(Const64 <typ.UInt64> [64-udivisible64(c).k])
  1675  				)
  1676  			(Const64 <typ.UInt64> [int64(udivisible64(c).max)])
  1677  		)
  1678  
  1679  // Signed divisibility checks convert to multiply, add and rotate.
  1680  (Eq8 x (Mul8 (Const8 [c])
  1681    (Sub8
  1682      (Rsh32x64
  1683        mul:(Mul32
  1684          (Const32 [m])
  1685          (SignExt8to32 x))
  1686        (Const64 [s]))
  1687      (Rsh32x64
  1688        (SignExt8to32 x)
  1689        (Const64 [31])))
  1690  	)
  1691  )
  1692    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1693    && m == int32(smagic8(c).m) && s == 8+smagic8(c).s
  1694  	&& x.Op != OpConst8 && sdivisibleOK8(c)
  1695   => (Leq8U
  1696  			(RotateLeft8 <typ.UInt8>
  1697  				(Add8 <typ.UInt8>
  1698  					(Mul8 <typ.UInt8>
  1699  						(Const8 <typ.UInt8> [int8(sdivisible8(c).m)])
  1700  						x)
  1701  					(Const8 <typ.UInt8> [int8(sdivisible8(c).a)])
  1702  				)
  1703  				(Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)])
  1704  			)
  1705  			(Const8 <typ.UInt8> [int8(sdivisible8(c).max)])
  1706  		)
  1707  
  1708  (Eq16 x (Mul16 (Const16 [c])
  1709    (Sub16
  1710      (Rsh32x64
  1711        mul:(Mul32
  1712          (Const32 [m])
  1713          (SignExt16to32 x))
  1714        (Const64 [s]))
  1715      (Rsh32x64
  1716        (SignExt16to32 x)
  1717        (Const64 [31])))
  1718  	)
  1719  )
  1720    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1721    && m == int32(smagic16(c).m) && s == 16+smagic16(c).s
  1722  	&& x.Op != OpConst16 && sdivisibleOK16(c)
  1723   => (Leq16U
  1724  			(RotateLeft16 <typ.UInt16>
  1725  				(Add16 <typ.UInt16>
  1726  					(Mul16 <typ.UInt16>
  1727  						(Const16 <typ.UInt16> [int16(sdivisible16(c).m)])
  1728  						x)
  1729  					(Const16 <typ.UInt16> [int16(sdivisible16(c).a)])
  1730  				)
  1731  				(Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)])
  1732  			)
  1733  			(Const16 <typ.UInt16> [int16(sdivisible16(c).max)])
  1734  		)
  1735  
  1736  (Eq32 x (Mul32 (Const32 [c])
  1737    (Sub32
  1738      (Rsh64x64
  1739        mul:(Mul64
  1740          (Const64 [m])
  1741          (SignExt32to64 x))
  1742        (Const64 [s]))
  1743      (Rsh64x64
  1744        (SignExt32to64 x)
  1745        (Const64 [63])))
  1746  	)
  1747  )
  1748    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1749    && m == int64(smagic32(c).m) && s == 32+smagic32(c).s
  1750  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1751   => (Leq32U
  1752  			(RotateLeft32 <typ.UInt32>
  1753  				(Add32 <typ.UInt32>
  1754  					(Mul32 <typ.UInt32>
  1755  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1756  						x)
  1757  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1758  				)
  1759  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1760  			)
  1761  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1762  		)
  1763  
  1764  (Eq32 x (Mul32 (Const32 [c])
  1765    (Sub32
  1766      (Rsh32x64
  1767        mul:(Hmul32
  1768          (Const32 [m])
  1769          x)
  1770        (Const64 [s]))
  1771      (Rsh32x64
  1772        x
  1773        (Const64 [31])))
  1774  	)
  1775  )
  1776    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1777    && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1
  1778  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1779   => (Leq32U
  1780  			(RotateLeft32 <typ.UInt32>
  1781  				(Add32 <typ.UInt32>
  1782  					(Mul32 <typ.UInt32>
  1783  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1784  						x)
  1785  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1786  				)
  1787  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1788  			)
  1789  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1790  		)
  1791  
  1792  (Eq32 x (Mul32 (Const32 [c])
  1793    (Sub32
  1794      (Rsh32x64
  1795        (Add32
  1796          mul:(Hmul32
  1797            (Const32 [m])
  1798            x)
  1799          x)
  1800        (Const64 [s]))
  1801      (Rsh32x64
  1802        x
  1803        (Const64 [31])))
  1804  	)
  1805  )
  1806    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1807    && m == int32(smagic32(c).m) && s == smagic32(c).s
  1808  	&& x.Op != OpConst32 && sdivisibleOK32(c)
  1809   => (Leq32U
  1810  			(RotateLeft32 <typ.UInt32>
  1811  				(Add32 <typ.UInt32>
  1812  					(Mul32 <typ.UInt32>
  1813  						(Const32 <typ.UInt32> [int32(sdivisible32(c).m)])
  1814  						x)
  1815  					(Const32 <typ.UInt32> [int32(sdivisible32(c).a)])
  1816  				)
  1817  				(Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)])
  1818  			)
  1819  			(Const32 <typ.UInt32> [int32(sdivisible32(c).max)])
  1820  		)
  1821  
  1822  (Eq64 x (Mul64 (Const64 [c])
  1823    (Sub64
  1824      (Rsh64x64
  1825        mul:(Hmul64
  1826          (Const64 [m])
  1827          x)
  1828        (Const64 [s]))
  1829      (Rsh64x64
  1830        x
  1831        (Const64 [63])))
  1832  	)
  1833  )
  1834    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1835    && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1
  1836  	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1837   => (Leq64U
  1838  			(RotateLeft64 <typ.UInt64>
  1839  				(Add64 <typ.UInt64>
  1840  					(Mul64 <typ.UInt64>
  1841  						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1842  						x)
  1843  					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1844  				)
  1845  				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1846  			)
  1847  			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1848  		)
  1849  
  1850  (Eq64 x (Mul64 (Const64 [c])
  1851    (Sub64
  1852      (Rsh64x64
  1853        (Add64
  1854          mul:(Hmul64
  1855            (Const64 [m])
  1856            x)
  1857          x)
  1858        (Const64 [s]))
  1859      (Rsh64x64
  1860        x
  1861        (Const64 [63])))
  1862  	)
  1863  )
  1864    && v.Block.Func.pass.name != "opt" && mul.Uses == 1
  1865    && m == int64(smagic64(c).m) && s == smagic64(c).s
  1866  	&& x.Op != OpConst64 && sdivisibleOK64(c)
  1867   => (Leq64U
  1868  			(RotateLeft64 <typ.UInt64>
  1869  				(Add64 <typ.UInt64>
  1870  					(Mul64 <typ.UInt64>
  1871  						(Const64 <typ.UInt64> [int64(sdivisible64(c).m)])
  1872  						x)
  1873  					(Const64 <typ.UInt64> [int64(sdivisible64(c).a)])
  1874  				)
  1875  				(Const64 <typ.UInt64> [64-sdivisible64(c).k])
  1876  			)
  1877  			(Const64 <typ.UInt64> [int64(sdivisible64(c).max)])
  1878  		)
  1879  
  1880  // Divisibility check for signed integers for power of two constant are simple mask.
  1881  // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c)
  1882  // where n/c contains fixup code to handle signed n.
  1883  ((Eq8|Neq8) n (Lsh8x64
  1884    (Rsh8x64
  1885      (Add8  <t> n (Rsh8Ux64  <t> (Rsh8x64  <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar])))
  1886      (Const64 <typ.UInt64> [k]))
  1887  	(Const64 <typ.UInt64> [k]))
  1888  ) && k > 0 && k < 7 && kbar == 8 - k
  1889    => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0]))
  1890  
  1891  ((Eq16|Neq16) n (Lsh16x64
  1892    (Rsh16x64
  1893      (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar])))
  1894      (Const64 <typ.UInt64> [k]))
  1895  	(Const64 <typ.UInt64> [k]))
  1896  ) && k > 0 && k < 15 && kbar == 16 - k
  1897    => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0]))
  1898  
  1899  ((Eq32|Neq32) n (Lsh32x64
  1900    (Rsh32x64
  1901      (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar])))
  1902      (Const64 <typ.UInt64> [k]))
  1903  	(Const64 <typ.UInt64> [k]))
  1904  ) && k > 0 && k < 31 && kbar == 32 - k
  1905    => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0]))
  1906  
  1907  ((Eq64|Neq64) n (Lsh64x64
  1908    (Rsh64x64
  1909      (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar])))
  1910      (Const64 <typ.UInt64> [k]))
  1911  	(Const64 <typ.UInt64> [k]))
  1912  ) && k > 0 && k < 63 && kbar == 64 - k
  1913    => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0]))
  1914  
  1915  (Eq(8|16|32|64)  s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64)  x y)
  1916  (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y)
  1917  
  1918  // Optimize bitsets
  1919  (Eq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [y])) && oneBit(y)
  1920    => (Neq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [0]))
  1921  (Neq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [y])) && oneBit(y)
  1922    => (Eq(8|16|32|64) (And(8|16|32|64) <t> x (Const(8|16|32|64) <t> [y])) (Const(8|16|32|64) <t> [0]))
  1923  
  1924  // Reassociate expressions involving
  1925  // constants such that constants come first,
  1926  // exposing obvious constant-folding opportunities.
  1927  // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C
  1928  // is constant, which pushes constants to the outside
  1929  // of the expression. At that point, any constant-folding
  1930  // opportunities should be obvious.
  1931  // Note: don't include AddPtr here! In order to maintain the
  1932  // invariant that pointers must stay within the pointed-to object,
  1933  // we can't pull part of a pointer computation above the AddPtr.
  1934  // See issue 37881.
  1935  // Note: we don't need to handle any (x-C) cases because we already rewrite
  1936  // (x-C) to (x+(-C)).
  1937  
  1938  // x + (C + z) -> C + (x + z)
  1939  (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x))
  1940  (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x))
  1941  (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x))
  1942  (Add8  (Add8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Add8  <t> z x))
  1943  
  1944  // x + (C - z) -> C + (x - z)
  1945  (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z))
  1946  (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z))
  1947  (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z))
  1948  (Add8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> x z))
  1949  
  1950  // x - (C - z) -> x + (z - C) -> (x + z) - C
  1951  (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i)
  1952  (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i)
  1953  (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i)
  1954  (Sub8  x (Sub8  i:(Const8  <t>) z)) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  (Add8  <t> x z) i)
  1955  
  1956  // x - (z + C) -> x + (-z - C) -> (x - z) - C
  1957  (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i)
  1958  (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i)
  1959  (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i)
  1960  (Sub8  x (Add8  z i:(Const8  <t>))) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8 (Sub8  <t> x z) i)
  1961  
  1962  // (C - z) - x -> C - (z + x)
  1963  (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x))
  1964  (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x))
  1965  (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x))
  1966  (Sub8  (Sub8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Sub8  i (Add8  <t> z x))
  1967  
  1968  // (z + C) -x -> C + (z - x)
  1969  (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x))
  1970  (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x))
  1971  (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x))
  1972  (Sub8  (Add8  z i:(Const8  <t>)) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Add8  i (Sub8  <t> z x))
  1973  
  1974  // x & (C & z) -> C & (x & z)
  1975  (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x))
  1976  (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x))
  1977  (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x))
  1978  (And8  (And8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (And8  i (And8  <t> z x))
  1979  
  1980  // x | (C | z) -> C | (x | z)
  1981  (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x))
  1982  (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x))
  1983  (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x))
  1984  (Or8  (Or8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Or8  i (Or8  <t> z x))
  1985  
  1986  // x ^ (C ^ z) -> C ^ (x ^ z)
  1987  (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x))
  1988  (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x))
  1989  (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x))
  1990  (Xor8  (Xor8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Xor8  i (Xor8  <t> z x))
  1991  
  1992  // x * (D * z) = D * (x * z)
  1993  (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z))
  1994  (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z))
  1995  (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z))
  1996  (Mul8  (Mul8  i:(Const8  <t>) z) x) && (z.Op != OpConst8  && x.Op != OpConst8)  => (Mul8  i (Mul8  <t> x z))
  1997  
  1998  // C + (D + x) -> (C + D) + x
  1999  (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x)
  2000  (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x)
  2001  (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x)
  2002  (Add8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c+d]) x)
  2003  
  2004  // C + (D - x) -> (C + D) - x
  2005  (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x)
  2006  (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x)
  2007  (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x)
  2008  (Add8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c+d]) x)
  2009  
  2010  // C - (D - x) -> (C - D) + x
  2011  (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x)
  2012  (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x)
  2013  (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x)
  2014  (Sub8  (Const8  <t> [c]) (Sub8  (Const8  <t> [d]) x)) => (Add8  (Const8  <t> [c-d]) x)
  2015  
  2016  // C - (D + x) -> (C - D) - x
  2017  (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x)
  2018  (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x)
  2019  (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x)
  2020  (Sub8  (Const8  <t> [c]) (Add8  (Const8  <t> [d]) x)) => (Sub8  (Const8  <t> [c-d]) x)
  2021  
  2022  // C & (D & x) -> (C & D) & x
  2023  (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x)
  2024  (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x)
  2025  (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x)
  2026  (And8  (Const8  <t> [c]) (And8  (Const8  <t> [d]) x)) => (And8  (Const8  <t> [c&d]) x)
  2027  
  2028  // C | (D | x) -> (C | D) | x
  2029  (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x)
  2030  (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x)
  2031  (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x)
  2032  (Or8  (Const8  <t> [c]) (Or8  (Const8  <t> [d]) x)) => (Or8  (Const8  <t> [c|d]) x)
  2033  
  2034  // C ^ (D ^ x) -> (C ^ D) ^ x
  2035  (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x)
  2036  (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x)
  2037  (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x)
  2038  (Xor8  (Const8  <t> [c]) (Xor8  (Const8  <t> [d]) x)) => (Xor8  (Const8  <t> [c^d]) x)
  2039  
  2040  // C * (D * x) = (C * D) * x
  2041  (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x)
  2042  (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x)
  2043  (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x)
  2044  (Mul8  (Const8  <t> [c]) (Mul8  (Const8  <t> [d]) x)) => (Mul8  (Const8  <t> [c*d]) x)
  2045  
  2046  // floating point optimizations
  2047  (Mul(32|64)F x (Const(32|64)F [1])) => x
  2048  (Mul32F x (Const32F [-1])) => (Neg32F x)
  2049  (Mul64F x (Const64F [-1])) => (Neg64F x)
  2050  (Mul32F x (Const32F [2])) => (Add32F x x)
  2051  (Mul64F x (Const64F [2])) => (Add64F x x)
  2052  
  2053  (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c]))
  2054  (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c]))
  2055  
  2056  // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))"
  2057  (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x)
  2058  
  2059  (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)])
  2060  
  2061  // for rewriting constant folded math/bits ops
  2062  (Select0 (MakeTuple x y)) => x
  2063  (Select1 (MakeTuple x y)) => y
  2064  
  2065  // for rewriting results of some late-expanded rewrites (below)
  2066  (SelectN [n] m:(MakeResult ___)) => m.Args[n]
  2067  
  2068  // TODO(matloob): Try out having non-zeroing mallocs for prointerless
  2069  // memory, and leaving the zeroing here. Then the compiler can remove
  2070  // the zeroing if the user has explicit writes to the whole object.
  2071  
  2072  // for late-expanded calls, recognize newobject and remove zeroing and nilchecks
  2073  (Zero (SelectN [0] call:(StaticLECall ___)) mem:(SelectN [1] call))
  2074  	&& isMalloc(call.Aux)
  2075  	=> mem
  2076  
  2077  (Store (SelectN [0] call:(StaticLECall ___)) x mem:(SelectN [1] call))
  2078  	&& isConstZero(x)
  2079  	&& isMalloc(call.Aux)
  2080  	=> mem
  2081  
  2082  (Store (OffPtr (SelectN [0] call:(StaticLECall ___))) x mem:(SelectN [1] call))
  2083  	&& isConstZero(x)
  2084  	&& isMalloc(call.Aux)
  2085  	=> mem
  2086  
  2087  (NilCheck ptr:(SelectN [0] call:(StaticLECall ___)) _)
  2088  	&& isMalloc(call.Aux)
  2089  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2090  	=> ptr
  2091  
  2092  (NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall ___))) _)
  2093  	&& isMalloc(call.Aux)
  2094  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2095  	=> ptr
  2096  
  2097  // Addresses of globals are always non-nil.
  2098  (NilCheck          ptr:(Addr {_} (SB))    _) => ptr
  2099  (NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr
  2100  
  2101  // Addresses of locals are always non-nil.
  2102  (NilCheck ptr:(LocalAddr _ _) _)
  2103  	&& warnRule(fe.Debug_checknil(), v, "removed nil check")
  2104  	=> ptr
  2105  
  2106  // .dict args are always non-nil.
  2107  (NilCheck ptr:(Arg {sym}) _) && isDictArgSym(sym) => ptr
  2108  
  2109  // Nil checks of nil checks are redundant.
  2110  // See comment at the end of https://go-review.googlesource.com/c/go/+/537775.
  2111  (NilCheck ptr:(NilCheck _ _) _ ) => ptr
  2112  
  2113  // for late-expanded calls, recognize memequal applied to a single constant byte
  2114  // Support is limited by [1-8] byte sizes
  2115  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem)
  2116    && isSameCall(callAux, "runtime.memequal")
  2117    && symIsRO(scon)
  2118    => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
  2119  
  2120  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem)
  2121    && isSameCall(callAux, "runtime.memequal")
  2122    && symIsRO(scon)
  2123    => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem)
  2124  
  2125  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem)
  2126    && isSameCall(callAux, "runtime.memequal")
  2127    && symIsRO(scon)
  2128    && canLoadUnaligned(config)
  2129    => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2130  
  2131  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem)
  2132    && isSameCall(callAux, "runtime.memequal")
  2133    && symIsRO(scon)
  2134    && canLoadUnaligned(config)
  2135    => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2136  
  2137  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem)
  2138    && isSameCall(callAux, "runtime.memequal")
  2139    && symIsRO(scon)
  2140    && canLoadUnaligned(config)
  2141    => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2142  
  2143  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem)
  2144    && isSameCall(callAux, "runtime.memequal")
  2145    && symIsRO(scon)
  2146    && canLoadUnaligned(config)
  2147    => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2148  
  2149  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem)
  2150    && isSameCall(callAux, "runtime.memequal")
  2151    && symIsRO(scon)
  2152    && canLoadUnaligned(config) && config.PtrSize == 8
  2153    => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2154  
  2155  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem)
  2156    && isSameCall(callAux, "runtime.memequal")
  2157    && symIsRO(scon)
  2158    && canLoadUnaligned(config) && config.PtrSize == 8
  2159    => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem)
  2160  
  2161  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [3]) mem)
  2162    && isSameCall(callAux, "runtime.memequal")
  2163    && symIsRO(scon)
  2164    && canLoadUnaligned(config) =>
  2165    (MakeResult
  2166      (Eq32
  2167        (Or32 <typ.Int32>
  2168          (ZeroExt16to32 <typ.Int32> (Load <typ.Int16> sptr mem))
  2169          (Lsh32x32 <typ.Int32>
  2170            (ZeroExt8to32 <typ.Int32> (Load <typ.Int8> (OffPtr <typ.BytePtr> [2] sptr) mem))
  2171            (Const32 <typ.Int32> [16])))
  2172        (Const32 <typ.Int32> [int32(uint32(read16(scon,0,config.ctxt.Arch.ByteOrder))|(uint32(read8(scon,2))<<16))]))
  2173      mem)
  2174  
  2175  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [3]) mem)
  2176    && isSameCall(callAux, "runtime.memequal")
  2177    && symIsRO(scon)
  2178    && canLoadUnaligned(config) =>
  2179    (MakeResult
  2180      (Eq32
  2181        (Or32 <typ.Int32>
  2182          (ZeroExt16to32 <typ.Int32> (Load <typ.Int16> sptr mem))
  2183          (Lsh32x32 <typ.Int32>
  2184            (ZeroExt8to32 <typ.Int32> (Load <typ.Int8> (OffPtr <typ.BytePtr> [2] sptr) mem))
  2185            (Const32 <typ.Int32> [16])))
  2186        (Const32 <typ.Int32> [int32(uint32(read16(scon,0,config.ctxt.Arch.ByteOrder))|(uint32(read8(scon,2))<<16))]))
  2187      mem)
  2188  
  2189  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [5]) mem)
  2190    && isSameCall(callAux, "runtime.memequal")
  2191    && symIsRO(scon)
  2192    && canLoadUnaligned(config) && config.PtrSize == 8 =>
  2193    (MakeResult
  2194      (Eq64
  2195        (Or64 <typ.Int64>
  2196          (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
  2197          (Lsh64x64 <typ.Int64>
  2198            (ZeroExt8to64 <typ.Int64> (Load <typ.Int8> (OffPtr <typ.BytePtr> [4] sptr) mem))
  2199            (Const64 <typ.Int64> [32])))
  2200        (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read8(scon,4))<<32))]))
  2201      mem)
  2202  
  2203  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [5]) mem)
  2204    && isSameCall(callAux, "runtime.memequal")
  2205    && symIsRO(scon)
  2206    && canLoadUnaligned(config) && config.PtrSize == 8 =>
  2207    (MakeResult
  2208      (Eq64
  2209        (Or64 <typ.Int64>
  2210          (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
  2211          (Lsh64x64 <typ.Int64>
  2212            (ZeroExt8to64 <typ.Int64> (Load <typ.Int8> (OffPtr <typ.BytePtr> [4] sptr) mem))
  2213            (Const64 <typ.Int64> [32])))
  2214        (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read8(scon,4))<<32))]))
  2215      mem)
  2216  
  2217  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [6]) mem)
  2218    && isSameCall(callAux, "runtime.memequal")
  2219    && symIsRO(scon)
  2220    && canLoadUnaligned(config) && config.PtrSize == 8 =>
  2221    (MakeResult
  2222      (Eq64
  2223        (Or64 <typ.Int64>
  2224          (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
  2225          (Lsh64x64 <typ.Int64>
  2226            (ZeroExt16to64 <typ.Int64> (Load <typ.Int16> (OffPtr <typ.BytePtr> [4] sptr) mem))
  2227            (Const64 <typ.Int64> [32])))
  2228        (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read16(scon,4,config.ctxt.Arch.ByteOrder))<<32))]))
  2229      mem)
  2230  
  2231  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [6]) mem)
  2232    && isSameCall(callAux, "runtime.memequal")
  2233    && symIsRO(scon)
  2234    && canLoadUnaligned(config) && config.PtrSize == 8 =>
  2235    (MakeResult
  2236      (Eq64
  2237        (Or64 <typ.Int64>
  2238          (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
  2239          (Lsh64x64 <typ.Int64>
  2240            (ZeroExt16to64 <typ.Int64> (Load <typ.Int16> (OffPtr <typ.BytePtr> [4] sptr) mem))
  2241            (Const64 <typ.Int64> [32])))
  2242        (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read16(scon,4,config.ctxt.Arch.ByteOrder))<<32))]))
  2243      mem)
  2244  
  2245  (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [7]) mem)
  2246    && isSameCall(callAux, "runtime.memequal")
  2247    && symIsRO(scon)
  2248    && canLoadUnaligned(config) && config.PtrSize == 8 =>
  2249    (MakeResult
  2250      (Eq64
  2251        (Or64 <typ.Int64>
  2252          (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
  2253          (Lsh64x64 <typ.Int64>
  2254            (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> (OffPtr <typ.BytePtr> [3] sptr) mem))
  2255            (Const64 <typ.Int64> [32])))
  2256        (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read32(scon,3,config.ctxt.Arch.ByteOrder))<<32))]))
  2257      mem)
  2258  
  2259  (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [7]) mem)
  2260    && isSameCall(callAux, "runtime.memequal")
  2261    && symIsRO(scon)
  2262    && canLoadUnaligned(config) && config.PtrSize == 8 =>
  2263    (MakeResult
  2264      (Eq64
  2265        (Or64 <typ.Int64>
  2266          (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> sptr mem))
  2267          (Lsh64x64 <typ.Int64>
  2268            (ZeroExt32to64 <typ.Int64> (Load <typ.Int32> (OffPtr <typ.BytePtr> [3] sptr) mem))
  2269            (Const64 <typ.Int64> [32])))
  2270        (Const64 <typ.Int64> [int64(uint64(read32(scon,0,config.ctxt.Arch.ByteOrder))|(uint64(read32(scon,3,config.ctxt.Arch.ByteOrder))<<32))]))
  2271      mem)
  2272  
  2273  (StaticLECall {callAux} _ _ (Const64 [0]) mem)
  2274    && isSameCall(callAux, "runtime.memequal")
  2275    => (MakeResult (ConstBool <typ.Bool> [true]) mem)
  2276  
  2277  (Static(Call|LECall) {callAux} p q _ mem)
  2278    && isSameCall(callAux, "runtime.memequal")
  2279    && isSamePtr(p, q)
  2280    => (MakeResult (ConstBool <typ.Bool> [true]) mem)
  2281  
  2282  // Turn known-size calls to memclrNoHeapPointers into a Zero.
  2283  // Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details.
  2284  (SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem))
  2285    && isInlinableMemclr(config, int64(c))
  2286    && isSameCall(sym, "runtime.memclrNoHeapPointers")
  2287    && call.Uses == 1
  2288    && clobber(call)
  2289    => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem)
  2290  
  2291  // Recognise make([]T, 0) and replace it with a pointer to the zerobase
  2292  (StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem)
  2293  	&& isSameCall(callAux, "runtime.makeslice")
  2294  	=> (MakeResult (Addr <v.Type.FieldType(0)> {ir.Syms.Zerobase} (SB)) mem)
  2295  
  2296  // Evaluate constant address comparisons.
  2297  (EqPtr  x x) => (ConstBool [true])
  2298  (NeqPtr x x) => (ConstBool [false])
  2299  (EqPtr  (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y])
  2300  (EqPtr  (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0])
  2301  (EqPtr  (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2])
  2302  (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y])
  2303  (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0])
  2304  (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2])
  2305  (EqPtr  (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y])
  2306  (EqPtr  (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0])
  2307  (EqPtr  (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2])
  2308  (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y])
  2309  (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0])
  2310  (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2])
  2311  (EqPtr  (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0])
  2312  (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0])
  2313  (EqPtr  (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2])
  2314  (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2])
  2315  (EqPtr  (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d])
  2316  (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d])
  2317  (EqPtr  (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y])
  2318  (NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y])
  2319  
  2320  (EqPtr  (LocalAddr _ _) (Addr _)) => (ConstBool [false])
  2321  (EqPtr  (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false])
  2322  (EqPtr  (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false])
  2323  (EqPtr  (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false])
  2324  (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true])
  2325  (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true])
  2326  (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true])
  2327  (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true])
  2328  
  2329  // Simplify address comparisons.
  2330  (EqPtr  (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1))
  2331  (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1)
  2332  (EqPtr  (Const(32|64) [0]) p) => (Not (IsNonNil p))
  2333  (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p)
  2334  (EqPtr  (ConstNil) p) => (Not (IsNonNil p))
  2335  (NeqPtr (ConstNil) p) => (IsNonNil p)
  2336  
  2337  // Evaluate constant user nil checks.
  2338  (IsNonNil (ConstNil)) => (ConstBool [false])
  2339  (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0])
  2340  (IsNonNil          (Addr _)   ) => (ConstBool [true])
  2341  (IsNonNil (Convert (Addr _) _)) => (ConstBool [true])
  2342  (IsNonNil (LocalAddr _ _)) => (ConstBool [true])
  2343  
  2344  // Inline small or disjoint runtime.memmove calls with constant length.
  2345  // See the comment in op Move in genericOps.go for discussion of the type.
  2346  //
  2347  // Note that we've lost any knowledge of the type and alignment requirements
  2348  // of the source and destination. We only know the size, and that the type
  2349  // contains no pointers.
  2350  // The type of the move is not necessarily v.Args[0].Type().Elem()!
  2351  // See issue 55122 for details.
  2352  //
  2353  // Because expand calls runs after prove, constants useful to this pattern may not appear.
  2354  // Both versions need to exist; the memory and register variants.
  2355  //
  2356  // Match post-expansion calls, memory version.
  2357  (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store  _ src s3:(Store {t} _ dst mem)))))
  2358  	&& sz >= 0
  2359  	&& isSameCall(sym, "runtime.memmove")
  2360  	&& s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
  2361  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2362  	&& clobber(s1, s2, s3, call)
  2363  	=> (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
  2364  
  2365  // Match post-expansion calls, register version.
  2366  (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem))
  2367  	&& sz >= 0
  2368  	&& call.Uses == 1 // this will exclude all calls with results
  2369  	&& isSameCall(sym, "runtime.memmove")
  2370  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2371  	&& clobber(call)
  2372  	=> (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
  2373  
  2374  // Match pre-expansion calls.
  2375  (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem))
  2376  	&& sz >= 0
  2377  	&& call.Uses == 1 // this will exclude all calls with results
  2378  	&& isSameCall(sym, "runtime.memmove")
  2379  	&& isInlinableMemmove(dst, src, int64(sz), config)
  2380  	&& clobber(call)
  2381  	=> (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem)
  2382  
  2383  // De-virtualize late-expanded interface calls into late-expanded static calls.
  2384  (InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym))
  2385  
  2386  // Move and Zero optimizations.
  2387  // Move source and destination may overlap.
  2388  
  2389  // Convert Moves into Zeros when the source is known to be zeros.
  2390  (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2)
  2391  	=> (Zero {t} [n] dst1 mem)
  2392  (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0)
  2393  	=> (Zero {t} [n] dst1 mem)
  2394  (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem)
  2395  
  2396  // Don't Store to variables that are about to be overwritten by Move/Zero.
  2397  (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem))
  2398  	&& isSamePtr(p1, p2) && store.Uses == 1
  2399  	&& n >= o2 + t2.Size()
  2400  	&& clobber(store)
  2401  	=> (Zero {t1} [n] p1 mem)
  2402  (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem))
  2403  	&& isSamePtr(dst1, dst2) && store.Uses == 1
  2404  	&& n >= o2 + t2.Size()
  2405  	&& disjoint(src1, n, op, t2.Size())
  2406  	&& clobber(store)
  2407  	=> (Move {t1} [n] dst1 src1 mem)
  2408  
  2409  // Don't Move to variables that are immediately completely overwritten.
  2410  (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem))
  2411  	&& move.Uses == 1
  2412  	&& isSamePtr(dst1, dst2)
  2413  	&& clobber(move)
  2414  	=> (Zero {t} [n] dst1 mem)
  2415  (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem))
  2416  	&& move.Uses == 1
  2417  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2418  	&& clobber(move)
  2419  	=> (Move {t} [n] dst1 src1 mem)
  2420  (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2421  	&& move.Uses == 1 && vardef.Uses == 1
  2422  	&& isSamePtr(dst1, dst2)
  2423  	&& clobber(move, vardef)
  2424  	=> (Zero {t} [n] dst1 (VarDef {x} mem))
  2425  (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem)))
  2426  	&& move.Uses == 1 && vardef.Uses == 1
  2427  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2428  	&& clobber(move, vardef)
  2429  	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2430  (Store {t1} op1:(OffPtr [o1] p1) d1
  2431  	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2432  		m3:(Move [n] p3 _ mem)))
  2433  	&& m2.Uses == 1 && m3.Uses == 1
  2434  	&& o1 == t2.Size()
  2435  	&& n == t2.Size() + t1.Size()
  2436  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2437  	&& clobber(m2, m3)
  2438  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2439  (Store {t1} op1:(OffPtr [o1] p1) d1
  2440  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2441  		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2442  			m4:(Move [n] p4 _ mem))))
  2443  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2444  	&& o2 == t3.Size()
  2445  	&& o1-o2 == t2.Size()
  2446  	&& n == t3.Size() + t2.Size() + t1.Size()
  2447  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2448  	&& clobber(m2, m3, m4)
  2449  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2450  (Store {t1} op1:(OffPtr [o1] p1) d1
  2451  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2452  		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2453  			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2454  				m5:(Move [n] p5 _ mem)))))
  2455  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2456  	&& o3 == t4.Size()
  2457  	&& o2-o3 == t3.Size()
  2458  	&& o1-o2 == t2.Size()
  2459  	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2460  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2461  	&& clobber(m2, m3, m4, m5)
  2462  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2463  
  2464  // Don't Zero variables that are immediately completely overwritten
  2465  // before being accessed.
  2466  (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem))
  2467  	&& zero.Uses == 1
  2468  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2469  	&& clobber(zero)
  2470  	=> (Move {t} [n] dst1 src1 mem)
  2471  (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem)))
  2472  	&& zero.Uses == 1 && vardef.Uses == 1
  2473  	&& isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n)
  2474  	&& clobber(zero, vardef)
  2475  	=> (Move {t} [n] dst1 src1 (VarDef {x} mem))
  2476  (Store {t1} op1:(OffPtr [o1] p1) d1
  2477  	m2:(Store {t2} op2:(OffPtr [0] p2) d2
  2478  		m3:(Zero [n] p3 mem)))
  2479  	&& m2.Uses == 1 && m3.Uses == 1
  2480  	&& o1 == t2.Size()
  2481  	&& n == t2.Size() + t1.Size()
  2482  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2483  	&& clobber(m2, m3)
  2484  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 mem))
  2485  (Store {t1} op1:(OffPtr [o1] p1) d1
  2486  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2487  		m3:(Store {t3} op3:(OffPtr [0] p3) d3
  2488  			m4:(Zero [n] p4 mem))))
  2489  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1
  2490  	&& o2 == t3.Size()
  2491  	&& o1-o2 == t2.Size()
  2492  	&& n == t3.Size() + t2.Size() + t1.Size()
  2493  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2494  	&& clobber(m2, m3, m4)
  2495  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem)))
  2496  (Store {t1} op1:(OffPtr [o1] p1) d1
  2497  	m2:(Store {t2} op2:(OffPtr [o2] p2) d2
  2498  		m3:(Store {t3} op3:(OffPtr [o3] p3) d3
  2499  			m4:(Store {t4} op4:(OffPtr [0] p4) d4
  2500  				m5:(Zero [n] p5 mem)))))
  2501  	&& m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1
  2502  	&& o3 == t4.Size()
  2503  	&& o2-o3 == t3.Size()
  2504  	&& o1-o2 == t2.Size()
  2505  	&& n == t4.Size() + t3.Size() + t2.Size() + t1.Size()
  2506  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2507  	&& clobber(m2, m3, m4, m5)
  2508  	=> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem))))
  2509  
  2510  // Don't Move from memory if the values are likely to already be
  2511  // in registers.
  2512  (Move {t1} [n] dst p1
  2513  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2514  		(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))
  2515  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2516  	&& t2.Alignment() <= t1.Alignment()
  2517  	&& t3.Alignment() <= t1.Alignment()
  2518  	&& registerizable(b, t2)
  2519  	&& registerizable(b, t3)
  2520  	&& o2 == t3.Size()
  2521  	&& n == t2.Size() + t3.Size()
  2522  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2523  		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2524  (Move {t1} [n] dst p1
  2525  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2526  		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2527  			(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))
  2528  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2529  	&& t2.Alignment() <= t1.Alignment()
  2530  	&& t3.Alignment() <= t1.Alignment()
  2531  	&& t4.Alignment() <= t1.Alignment()
  2532  	&& registerizable(b, t2)
  2533  	&& registerizable(b, t3)
  2534  	&& registerizable(b, t4)
  2535  	&& o3 == t4.Size()
  2536  	&& o2-o3 == t3.Size()
  2537  	&& n == t2.Size() + t3.Size() + t4.Size()
  2538  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2539  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2540  			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2541  (Move {t1} [n] dst p1
  2542  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2543  		(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2544  			(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2545  				(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))
  2546  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2547  	&& t2.Alignment() <= t1.Alignment()
  2548  	&& t3.Alignment() <= t1.Alignment()
  2549  	&& t4.Alignment() <= t1.Alignment()
  2550  	&& t5.Alignment() <= t1.Alignment()
  2551  	&& registerizable(b, t2)
  2552  	&& registerizable(b, t3)
  2553  	&& registerizable(b, t4)
  2554  	&& registerizable(b, t5)
  2555  	&& o4 == t5.Size()
  2556  	&& o3-o4 == t4.Size()
  2557  	&& o2-o3 == t3.Size()
  2558  	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2559  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2560  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2561  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2562  				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2563  
  2564  // Same thing but with VarDef in the middle.
  2565  (Move {t1} [n] dst p1
  2566  	mem:(VarDef
  2567  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2568  			(Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))))
  2569  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2570  	&& t2.Alignment() <= t1.Alignment()
  2571  	&& t3.Alignment() <= t1.Alignment()
  2572  	&& registerizable(b, t2)
  2573  	&& registerizable(b, t3)
  2574  	&& o2 == t3.Size()
  2575  	&& n == t2.Size() + t3.Size()
  2576  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2577  		(Store {t3} (OffPtr <tt3> [0] dst) d2 mem))
  2578  (Move {t1} [n] dst p1
  2579  	mem:(VarDef
  2580  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2581  			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2582  				(Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))))
  2583  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2584  	&& t2.Alignment() <= t1.Alignment()
  2585  	&& t3.Alignment() <= t1.Alignment()
  2586  	&& t4.Alignment() <= t1.Alignment()
  2587  	&& registerizable(b, t2)
  2588  	&& registerizable(b, t3)
  2589  	&& registerizable(b, t4)
  2590  	&& o3 == t4.Size()
  2591  	&& o2-o3 == t3.Size()
  2592  	&& n == t2.Size() + t3.Size() + t4.Size()
  2593  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2594  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2595  			(Store {t4} (OffPtr <tt4> [0] dst) d3 mem)))
  2596  (Move {t1} [n] dst p1
  2597  	mem:(VarDef
  2598  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2599  			(Store {t3} op3:(OffPtr <tt3> [o3] p3) d2
  2600  				(Store {t4} op4:(OffPtr <tt4> [o4] p4) d3
  2601  					(Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))))
  2602  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2603  	&& t2.Alignment() <= t1.Alignment()
  2604  	&& t3.Alignment() <= t1.Alignment()
  2605  	&& t4.Alignment() <= t1.Alignment()
  2606  	&& t5.Alignment() <= t1.Alignment()
  2607  	&& registerizable(b, t2)
  2608  	&& registerizable(b, t3)
  2609  	&& registerizable(b, t4)
  2610  	&& registerizable(b, t5)
  2611  	&& o4 == t5.Size()
  2612  	&& o3-o4 == t4.Size()
  2613  	&& o2-o3 == t3.Size()
  2614  	&& n == t2.Size() + t3.Size() + t4.Size() + t5.Size()
  2615  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2616  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2617  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2618  				(Store {t5} (OffPtr <tt5> [0] dst) d4 mem))))
  2619  
  2620  // Prefer to Zero and Store than to Move.
  2621  (Move {t1} [n] dst p1
  2622  	mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2623  		(Zero {t3} [n] p3 _)))
  2624  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2625  	&& t2.Alignment() <= t1.Alignment()
  2626  	&& t3.Alignment() <= t1.Alignment()
  2627  	&& registerizable(b, t2)
  2628  	&& n >= o2 + t2.Size()
  2629  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2630  		(Zero {t1} [n] dst mem))
  2631  (Move {t1} [n] dst p1
  2632  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2633  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2634  			(Zero {t4} [n] p4 _))))
  2635  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2636  	&& t2.Alignment() <= t1.Alignment()
  2637  	&& t3.Alignment() <= t1.Alignment()
  2638  	&& t4.Alignment() <= t1.Alignment()
  2639  	&& registerizable(b, t2)
  2640  	&& registerizable(b, t3)
  2641  	&& n >= o2 + t2.Size()
  2642  	&& n >= o3 + t3.Size()
  2643  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2644  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2645  			(Zero {t1} [n] dst mem)))
  2646  (Move {t1} [n] dst p1
  2647  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2648  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2649  			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2650  				(Zero {t5} [n] p5 _)))))
  2651  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2652  	&& t2.Alignment() <= t1.Alignment()
  2653  	&& t3.Alignment() <= t1.Alignment()
  2654  	&& t4.Alignment() <= t1.Alignment()
  2655  	&& t5.Alignment() <= t1.Alignment()
  2656  	&& registerizable(b, t2)
  2657  	&& registerizable(b, t3)
  2658  	&& registerizable(b, t4)
  2659  	&& n >= o2 + t2.Size()
  2660  	&& n >= o3 + t3.Size()
  2661  	&& n >= o4 + t4.Size()
  2662  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2663  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2664  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2665  				(Zero {t1} [n] dst mem))))
  2666  (Move {t1} [n] dst p1
  2667  	mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2668  		(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2669  			(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2670  				(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2671  					(Zero {t6} [n] p6 _))))))
  2672  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2673  	&& t2.Alignment() <= t1.Alignment()
  2674  	&& t3.Alignment() <= t1.Alignment()
  2675  	&& t4.Alignment() <= t1.Alignment()
  2676  	&& t5.Alignment() <= t1.Alignment()
  2677  	&& t6.Alignment() <= t1.Alignment()
  2678  	&& registerizable(b, t2)
  2679  	&& registerizable(b, t3)
  2680  	&& registerizable(b, t4)
  2681  	&& registerizable(b, t5)
  2682  	&& n >= o2 + t2.Size()
  2683  	&& n >= o3 + t3.Size()
  2684  	&& n >= o4 + t4.Size()
  2685  	&& n >= o5 + t5.Size()
  2686  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2687  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2688  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2689  				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2690  					(Zero {t1} [n] dst mem)))))
  2691  (Move {t1} [n] dst p1
  2692  	mem:(VarDef
  2693  		(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1
  2694  			(Zero {t3} [n] p3 _))))
  2695  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3)
  2696  	&& t2.Alignment() <= t1.Alignment()
  2697  	&& t3.Alignment() <= t1.Alignment()
  2698  	&& registerizable(b, t2)
  2699  	&& n >= o2 + t2.Size()
  2700  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2701  		(Zero {t1} [n] dst mem))
  2702  (Move {t1} [n] dst p1
  2703  	mem:(VarDef
  2704  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2705  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2706  				(Zero {t4} [n] p4 _)))))
  2707  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4)
  2708  	&& t2.Alignment() <= t1.Alignment()
  2709  	&& t3.Alignment() <= t1.Alignment()
  2710  	&& t4.Alignment() <= t1.Alignment()
  2711  	&& registerizable(b, t2)
  2712  	&& registerizable(b, t3)
  2713  	&& n >= o2 + t2.Size()
  2714  	&& n >= o3 + t3.Size()
  2715  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2716  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2717  			(Zero {t1} [n] dst mem)))
  2718  (Move {t1} [n] dst p1
  2719  	mem:(VarDef
  2720  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2721  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2722  				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2723  					(Zero {t5} [n] p5 _))))))
  2724  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5)
  2725  	&& t2.Alignment() <= t1.Alignment()
  2726  	&& t3.Alignment() <= t1.Alignment()
  2727  	&& t4.Alignment() <= t1.Alignment()
  2728  	&& t5.Alignment() <= t1.Alignment()
  2729  	&& registerizable(b, t2)
  2730  	&& registerizable(b, t3)
  2731  	&& registerizable(b, t4)
  2732  	&& n >= o2 + t2.Size()
  2733  	&& n >= o3 + t3.Size()
  2734  	&& n >= o4 + t4.Size()
  2735  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2736  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2737  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2738  				(Zero {t1} [n] dst mem))))
  2739  (Move {t1} [n] dst p1
  2740  	mem:(VarDef
  2741  		(Store {t2} (OffPtr <tt2> [o2] p2) d1
  2742  			(Store {t3} (OffPtr <tt3> [o3] p3) d2
  2743  				(Store {t4} (OffPtr <tt4> [o4] p4) d3
  2744  					(Store {t5} (OffPtr <tt5> [o5] p5) d4
  2745  						(Zero {t6} [n] p6 _)))))))
  2746  	&& isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6)
  2747  	&& t2.Alignment() <= t1.Alignment()
  2748  	&& t3.Alignment() <= t1.Alignment()
  2749  	&& t4.Alignment() <= t1.Alignment()
  2750  	&& t5.Alignment() <= t1.Alignment()
  2751  	&& t6.Alignment() <= t1.Alignment()
  2752  	&& registerizable(b, t2)
  2753  	&& registerizable(b, t3)
  2754  	&& registerizable(b, t4)
  2755  	&& registerizable(b, t5)
  2756  	&& n >= o2 + t2.Size()
  2757  	&& n >= o3 + t3.Size()
  2758  	&& n >= o4 + t4.Size()
  2759  	&& n >= o5 + t5.Size()
  2760  	=> (Store {t2} (OffPtr <tt2> [o2] dst) d1
  2761  		(Store {t3} (OffPtr <tt3> [o3] dst) d2
  2762  			(Store {t4} (OffPtr <tt4> [o4] dst) d3
  2763  				(Store {t5} (OffPtr <tt5> [o5] dst) d4
  2764  					(Zero {t1} [n] dst mem)))))
  2765  
  2766  (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2767  (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x
  2768  
  2769  // When rewriting append to growslice, we use as the new length the result of
  2770  // growslice so that we don't have to spill/restore the new length around the growslice call.
  2771  // The exception here is that if the new length is a constant, avoiding spilling it
  2772  // is pointless and its constantness is sometimes useful for subsequent optimizations.
  2773  // See issue 56440.
  2774  // Note there are 2 rules here, one for the pre-decomposed []T result and one for
  2775  // the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.)
  2776  (SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen
  2777  (SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen
  2778  
  2779  // Collapse moving A -> B -> C into just A -> C.
  2780  // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible.
  2781  // This happens most commonly when B is an autotmp inserted earlier
  2782  // during compilation to ensure correctness.
  2783  // Take care that overlapping moves are preserved.
  2784  // Restrict this optimization to the stack, to avoid duplicating loads from the heap;
  2785  // see CL 145208 for discussion.
  2786  (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _))
  2787  	&& t1.Compare(t2) == types.CMPeq
  2788  	&& isSamePtr(tmp1, tmp2)
  2789  	&& isStackPtr(src) && !isVolatile(src)
  2790  	&& disjoint(src, s, tmp2, s)
  2791  	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2792  	=> (Move {t1} [s] dst src midmem)
  2793  
  2794  // Same, but for large types that require VarDefs.
  2795  (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _)))
  2796  	&& t1.Compare(t2) == types.CMPeq
  2797  	&& isSamePtr(tmp1, tmp2)
  2798  	&& isStackPtr(src) && !isVolatile(src)
  2799  	&& disjoint(src, s, tmp2, s)
  2800  	&& (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config))
  2801  	=> (Move {t1} [s] dst src midmem)
  2802  
  2803  // Don't zero the same bits twice.
  2804  (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero
  2805  (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef
  2806  
  2807  // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go).
  2808  // However, this rule is needed to prevent the previous rule from looping forever in such cases.
  2809  (Move dst src mem) && isSamePtr(dst, src) => mem
  2810  
  2811  // Constant rotate detection.
  2812  ((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z)
  2813  ((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z)
  2814  ((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z)
  2815  ((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z)
  2816  
  2817  // Non-constant rotate detection.
  2818  // We use shiftIsBounded to make sure that neither of the shifts are >64.
  2819  // Note: these rules are subtle when the shift amounts are 0/64, as Go shifts
  2820  // are different from most native shifts. But it works out.
  2821  ((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2822  ((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2823  ((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2824  ((Add64|Or64|Xor64) left:(Lsh64x8  x y) right:(Rsh64Ux8  x (Sub8  (Const8  [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y)
  2825  
  2826  ((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2827  ((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2828  ((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2829  ((Add64|Or64|Xor64) right:(Rsh64Ux8  x y) left:(Lsh64x8  x z:(Sub8  (Const8  [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z)
  2830  
  2831  ((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2832  ((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2833  ((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2834  ((Add32|Or32|Xor32) left:(Lsh32x8  x y) right:(Rsh32Ux8  x (Sub8  (Const8  [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y)
  2835  
  2836  ((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2837  ((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2838  ((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2839  ((Add32|Or32|Xor32) right:(Rsh32Ux8  x y) left:(Lsh32x8  x z:(Sub8  (Const8  [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z)
  2840  
  2841  ((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2842  ((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2843  ((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2844  ((Add16|Or16|Xor16) left:(Lsh16x8  x y) right:(Rsh16Ux8  x (Sub8  (Const8  [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y)
  2845  
  2846  ((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2847  ((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2848  ((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2849  ((Add16|Or16|Xor16) right:(Rsh16Ux8  x y) left:(Lsh16x8  x z:(Sub8  (Const8  [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z)
  2850  
  2851  ((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2852  ((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2853  ((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2854  ((Add8|Or8|Xor8) left:(Lsh8x8  x y) right:(Rsh8Ux8  x (Sub8  (Const8  [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y)
  2855  
  2856  ((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2857  ((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2858  ((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2859  ((Add8|Or8|Xor8) right:(Rsh8Ux8  x y) left:(Lsh8x8  x z:(Sub8  (Const8  [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z)
  2860  
  2861  // Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y.
  2862  (RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y)
  2863  (RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y)
  2864  (RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y)
  2865  (RotateLeft8  x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7  == 7  => (RotateLeft8  x y)
  2866  
  2867  // Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y.
  2868  (RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
  2869  (RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
  2870  (RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
  2871  (RotateLeft8  x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7  == 7  => (RotateLeft8  x (Neg(64|32|16|8) <y.Type> y))
  2872  
  2873  // Rotating by y+c, with c a multiple of the value width, is the same as rotating by y.
  2874  (RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y)
  2875  (RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y)
  2876  (RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y)
  2877  (RotateLeft8  x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7  == 0 => (RotateLeft8  x y)
  2878  
  2879  // Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y.
  2880  (RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y))
  2881  (RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y))
  2882  (RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y))
  2883  (RotateLeft8  x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7  == 0 => (RotateLeft8  x (Neg(64|32|16|8) <y.Type> y))
  2884  
  2885  // Ensure we don't do Const64 rotates in a 32-bit system.
  2886  (RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)]))
  2887  (RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)]))
  2888  (RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)]))
  2889  (RotateLeft8  x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8  x (Const32 <t> [int32(c)]))
  2890  
  2891  // Rotating by c, then by d, is the same as rotating by c+d.
  2892  // We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants.
  2893  // This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width.
  2894  (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d))
  2895  (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d))
  2896  (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d))
  2897  (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8  <c.Type> c d))
  2898  
  2899  // Loading fixed addresses and constants.
  2900  (Load                                     (Addr {s} sb)         _)  && isFixedLoad(v, s,   0) => rewriteFixedLoad(v, s, sb,   0)
  2901  (Load                            (Convert (Addr {s} sb) _)      _)  && isFixedLoad(v, s,   0) => rewriteFixedLoad(v, s, sb,   0)
  2902  (Load               (ITab (IMake          (Addr {s} sb)    _))  _)  && isFixedLoad(v, s,   0) => rewriteFixedLoad(v, s, sb,   0)
  2903  (Load               (ITab (IMake (Convert (Addr {s} sb) _) _))  _)  && isFixedLoad(v, s,   0) => rewriteFixedLoad(v, s, sb,   0)
  2904  (Load (OffPtr [off]                       (Addr {s} sb)       ) _)  && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
  2905  (Load (OffPtr [off]              (Convert (Addr {s} sb) _)    ) _)  && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
  2906  (Load (OffPtr [off] (ITab (IMake          (Addr {s} sb)    _))) _)  && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
  2907  (Load (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _)  && isFixedLoad(v, s, off) => rewriteFixedLoad(v, s, sb, off)
  2908  
  2909  // Calling cmpstring a second time with the same arguments in the
  2910  // same memory state can reuse the results of the first call.
  2911  // See issue 61725.
  2912  // Note that this could pretty easily generalize to any pure function.
  2913  (SelectN [0] (StaticLECall {f} x y (SelectN [1] c:(StaticLECall {g} x y mem))))
  2914    && isSameCall(f, "runtime.cmpstring")
  2915    && isSameCall(g, "runtime.cmpstring")
  2916  => @c.Block (SelectN [0] <typ.Int> c)
  2917  
  2918  // If we don't use the result of cmpstring, might as well not call it.
  2919  // Note that this could pretty easily generalize to any pure function.
  2920  (SelectN [1] c:(StaticLECall {f} _ _ mem)) && c.Uses == 1 && isSameCall(f, "runtime.cmpstring") && clobber(c) => mem
  2921  
  2922  // We can easily compute the result of efaceeq if
  2923  // we know the underlying type is pointer-ish.
  2924  (StaticLECall {f} typ_ x y mem)
  2925  	&& isSameCall(f, "runtime.efaceeq")
  2926  	&& isDirectType(typ_)
  2927  	&& clobber(v)
  2928  	=> (MakeResult (EqPtr x y) mem)
  2929  
  2930  // We can easily compute the result of ifaceeq if
  2931  // we know the underlying type is pointer-ish.
  2932  (StaticLECall {f} itab x y mem)
  2933  	&& isSameCall(f, "runtime.ifaceeq")
  2934  	&& isDirectIface(itab)
  2935  	&& clobber(v)
  2936  	=> (MakeResult (EqPtr x y) mem)
  2937  
  2938  // If we use the result of slicebytetostring in a map lookup operation,
  2939  // then we don't need to actually do the []byte->string conversion.
  2940  // We can just use the ptr/len of the byte slice directly as a (temporary) string.
  2941  //
  2942  // Note that this does not handle some obscure cases like
  2943  // m[[2]string{string(b1), string(b2)}]. There is code in ../walk/order.go
  2944  // which handles some of those cases.
  2945  (StaticLECall {f} [argsize] typ_ map_ key:(SelectN [0] sbts:(StaticLECall {g} _ ptr len mem)) m:(SelectN [1] sbts))
  2946    &&    (isSameCall(f, "runtime.mapaccess1_faststr")
  2947        || isSameCall(f, "runtime.mapaccess2_faststr")
  2948        || isSameCall(f, "runtime.mapdelete_faststr"))
  2949    && isSameCall(g, "runtime.slicebytetostring")
  2950    && key.Uses == 1
  2951    && sbts.Uses == 2
  2952    && resetCopy(m, mem)
  2953    && clobber(sbts)
  2954    && clobber(key)
  2955  => (StaticLECall {f} [argsize] typ_ map_ (StringMake <typ.String> ptr len) mem)
  2956  
  2957  // Similarly to map lookups, also handle unique.Make for strings, which unique.Make will clone.
  2958  (StaticLECall {f} [argsize] dict_ key:(SelectN [0] sbts:(StaticLECall {g} _ ptr len mem)) m:(SelectN [1] sbts))
  2959    && isSameCall(f, "unique.Make[go.shape.string]")
  2960    && isSameCall(g, "runtime.slicebytetostring")
  2961    && key.Uses == 1
  2962    && sbts.Uses == 2
  2963    && resetCopy(m, mem)
  2964    && clobber(sbts)
  2965    && clobber(key)
  2966  => (StaticLECall {f} [argsize] dict_ (StringMake <typ.String> ptr len) mem)
  2967  
  2968  // Transform some CondSelect into math operations.
  2969  // if b { x++ } => x += b // but not on arm64 because it has CSINC
  2970  (CondSelect (Add8 <t> x (Const8 [1])) x bool) && config.arch != "arm64" => (Add8 x (CvtBoolToUint8 <t> bool))
  2971  (CondSelect (Add(64|32|16) <t> x (Const(64|32|16) [1])) x bool) && config.arch != "arm64" => (Add(64|32|16) x (ZeroExt8to(64|32|16) <t> (CvtBoolToUint8 <types.Types[types.TUINT8]> bool)))
  2972  
  2973  // if b { x-- } => x -= b
  2974  (CondSelect (Add8 <t> x (Const8 [-1])) x bool) => (Sub8 x (CvtBoolToUint8 <t> bool))
  2975  (CondSelect (Add(64|32|16) <t> x (Const(64|32|16) [-1])) x bool) => (Sub(64|32|16) x (ZeroExt8to(64|32|16) <t> (CvtBoolToUint8 <types.Types[types.TUINT8]> bool)))
  2976  
  2977  // if b { x <<= 1 } => x <<= b
  2978  (CondSelect (Lsh(64|32|16|8)x64 x (Const64 [1])) x bool) => (Lsh(64|32|16|8)x8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
  2979  
  2980  // if b { x >>= 1 } => x >>= b
  2981  (CondSelect (Rsh(64|32|16|8)x64 x (Const64 [1])) x bool) => (Rsh(64|32|16|8)x8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
  2982  (CondSelect (Rsh(64|32|16|8)Ux64 x (Const64 [1])) x bool) => (Rsh(64|32|16|8)Ux8 [true] x (CvtBoolToUint8 <types.Types[types.TUINT8]> bool))
  2983  

View as plain text