// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main import ( "go/ast" "go/token" "reflect" ) type simplifier struct{} func (s simplifier) Visit(node ast.Node) ast.Visitor { switch n := node.(type) { case *ast.CompositeLit: // array, slice, and map composite literals may be simplified outer := n var keyType, eltType ast.Expr switch typ := outer.Type.(type) { case *ast.ArrayType: eltType = typ.Elt case *ast.MapType: keyType = typ.Key eltType = typ.Value } if eltType != nil { var ktyp reflect.Value if keyType != nil { ktyp = reflect.ValueOf(keyType) } typ := reflect.ValueOf(eltType) for i, x := range outer.Elts { px := &outer.Elts[i] // look at value of indexed/named elements if t, ok := x.(*ast.KeyValueExpr); ok { if keyType != nil { s.simplifyLiteral(ktyp, keyType, t.Key, &t.Key) } x = t.Value px = &t.Value } s.simplifyLiteral(typ, eltType, x, px) } // node was simplified - stop walk (there are no subnodes to simplify) return nil } case *ast.SliceExpr: // a slice expression of the form: s[a:len(s)] // can be simplified to: s[a:] // if s is "simple enough" (for now we only accept identifiers) // // Note: This may not be correct because len may have been redeclared in // the same package. However, this is extremely unlikely and so far // (April 2022, after years of supporting this rewrite feature) // has never come up, so let's keep it working as is (see also #15153). // // Also note that this code used to use go/ast's object tracking, // which was removed in exchange for go/parser.Mode.SkipObjectResolution. // False positives are extremely unlikely as described above, // and go/ast's object tracking is incomplete in any case. if n.Max != nil { // - 3-index slices always require the 2nd and 3rd index break } if s, _ := n.X.(*ast.Ident); s != nil { // the array/slice object is a single identifier if call, _ := n.High.(*ast.CallExpr); call != nil && len(call.Args) == 1 && !call.Ellipsis.IsValid() { // the high expression is a function call with a single argument if fun, _ := call.Fun.(*ast.Ident); fun != nil && fun.Name == "len" { // the function called is "len" if arg, _ := call.Args[0].(*ast.Ident); arg != nil && arg.Name == s.Name { // the len argument is the array/slice object n.High = nil } } } } // Note: We could also simplify slice expressions of the form s[0:b] to s[:b] // but we leave them as is since sometimes we want to be very explicit // about the lower bound. // An example where the 0 helps: // x, y, z := b[0:2], b[2:4], b[4:6] // An example where it does not: // x, y := b[:n], b[n:] case *ast.RangeStmt: // - a range of the form: for x, _ = range v {...} // can be simplified to: for x = range v {...} // - a range of the form: for _ = range v {...} // can be simplified to: for range v {...} if isBlank(n.Value) { n.Value = nil } if isBlank(n.Key) && n.Value == nil { n.Key = nil } } return s } func (s simplifier) simplifyLiteral(typ reflect.Value, astType, x ast.Expr, px *ast.Expr) { ast.Walk(s, x) // simplify x // if the element is a composite literal and its literal type // matches the outer literal's element type exactly, the inner // literal type may be omitted if inner, ok := x.(*ast.CompositeLit); ok { if match(nil, typ, reflect.ValueOf(inner.Type)) { inner.Type = nil } } // if the outer literal's element type is a pointer type *T // and the element is & of a composite literal of type T, // the inner &T may be omitted. if ptr, ok := astType.(*ast.StarExpr); ok { if addr, ok := x.(*ast.UnaryExpr); ok && addr.Op == token.AND { if inner, ok := addr.X.(*ast.CompositeLit); ok { if match(nil, reflect.ValueOf(ptr.X), reflect.ValueOf(inner.Type)) { inner.Type = nil // drop T *px = inner // drop & } } } } } func isBlank(x ast.Expr) bool { ident, ok := x.(*ast.Ident) return ok && ident.Name == "_" } func simplify(f *ast.File) { // remove empty declarations such as "const ()", etc removeEmptyDeclGroups(f) var s simplifier ast.Walk(s, f) } func removeEmptyDeclGroups(f *ast.File) { i := 0 for _, d := range f.Decls { if g, ok := d.(*ast.GenDecl); !ok || !isEmpty(f, g) { f.Decls[i] = d i++ } } f.Decls = f.Decls[:i] } func isEmpty(f *ast.File, g *ast.GenDecl) bool { if g.Doc != nil || g.Specs != nil { return false } for _, c := range f.Comments { // if there is a comment in the declaration, it is not considered empty if g.Pos() <= c.Pos() && c.End() <= g.End() { return false } } return true }