// cmd/7l/asm.c, cmd/7l/asmout.c, cmd/7l/optab.c, cmd/7l/span.c, cmd/ld/sub.c, cmd/ld/mod.c, from Vita Nuova. // https://bitbucket.org/plan9-from-bell-labs/9-cc/src/master/ // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package arm64 import ( "cmd/internal/obj" "cmd/internal/objabi" "encoding/binary" "fmt" "log" "math" "slices" "strings" ) // ctxt7 holds state while assembling a single function. // Each function gets a fresh ctxt7. // This allows for multiple functions to be safely concurrently assembled. type ctxt7 struct { ctxt *obj.Link newprog obj.ProgAlloc cursym *obj.LSym blitrl *obj.Prog elitrl *obj.Prog autosize int32 extrasize int32 instoffset int64 pc int64 pool struct { start uint32 size uint32 } } const ( funcAlign = 16 ) const ( REGFROM = 1 ) type Optab struct { as obj.As a1 uint8 // Prog.From a2 uint8 // 2nd source operand, Prog.Reg or Prog.RestArgs[XXX] a3 uint8 // 3rd source operand, Prog.RestArgs[XXX] a4 uint8 // Prog.To a5 uint8 // 2nd destination operand, Prog.RegTo2 or Prog.RestArgs[XXX] type_ int8 size_ int8 // the value of this field is not static, use the size() method to return the value param int16 flag int8 scond uint8 } func IsAtomicInstruction(as obj.As) bool { if _, ok := atomicLDADD[as]; ok { return true } if _, ok := atomicSWP[as]; ok { return true } return false } // known field values of an instruction. var atomicLDADD = map[obj.As]uint32{ ALDADDAD: 3<<30 | 0x1c5<<21 | 0x00<<10, ALDADDAW: 2<<30 | 0x1c5<<21 | 0x00<<10, ALDADDAH: 1<<30 | 0x1c5<<21 | 0x00<<10, ALDADDAB: 0<<30 | 0x1c5<<21 | 0x00<<10, ALDADDALD: 3<<30 | 0x1c7<<21 | 0x00<<10, ALDADDALW: 2<<30 | 0x1c7<<21 | 0x00<<10, ALDADDALH: 1<<30 | 0x1c7<<21 | 0x00<<10, ALDADDALB: 0<<30 | 0x1c7<<21 | 0x00<<10, ALDADDD: 3<<30 | 0x1c1<<21 | 0x00<<10, ALDADDW: 2<<30 | 0x1c1<<21 | 0x00<<10, ALDADDH: 1<<30 | 0x1c1<<21 | 0x00<<10, ALDADDB: 0<<30 | 0x1c1<<21 | 0x00<<10, ALDADDLD: 3<<30 | 0x1c3<<21 | 0x00<<10, ALDADDLW: 2<<30 | 0x1c3<<21 | 0x00<<10, ALDADDLH: 1<<30 | 0x1c3<<21 | 0x00<<10, ALDADDLB: 0<<30 | 0x1c3<<21 | 0x00<<10, ALDCLRAD: 3<<30 | 0x1c5<<21 | 0x04<<10, ALDCLRAW: 2<<30 | 0x1c5<<21 | 0x04<<10, ALDCLRAH: 1<<30 | 0x1c5<<21 | 0x04<<10, ALDCLRAB: 0<<30 | 0x1c5<<21 | 0x04<<10, ALDCLRALD: 3<<30 | 0x1c7<<21 | 0x04<<10, ALDCLRALW: 2<<30 | 0x1c7<<21 | 0x04<<10, ALDCLRALH: 1<<30 | 0x1c7<<21 | 0x04<<10, ALDCLRALB: 0<<30 | 0x1c7<<21 | 0x04<<10, ALDCLRD: 3<<30 | 0x1c1<<21 | 0x04<<10, ALDCLRW: 2<<30 | 0x1c1<<21 | 0x04<<10, ALDCLRH: 1<<30 | 0x1c1<<21 | 0x04<<10, ALDCLRB: 0<<30 | 0x1c1<<21 | 0x04<<10, ALDCLRLD: 3<<30 | 0x1c3<<21 | 0x04<<10, ALDCLRLW: 2<<30 | 0x1c3<<21 | 0x04<<10, ALDCLRLH: 1<<30 | 0x1c3<<21 | 0x04<<10, ALDCLRLB: 0<<30 | 0x1c3<<21 | 0x04<<10, ALDEORAD: 3<<30 | 0x1c5<<21 | 0x08<<10, ALDEORAW: 2<<30 | 0x1c5<<21 | 0x08<<10, ALDEORAH: 1<<30 | 0x1c5<<21 | 0x08<<10, ALDEORAB: 0<<30 | 0x1c5<<21 | 0x08<<10, ALDEORALD: 3<<30 | 0x1c7<<21 | 0x08<<10, ALDEORALW: 2<<30 | 0x1c7<<21 | 0x08<<10, ALDEORALH: 1<<30 | 0x1c7<<21 | 0x08<<10, ALDEORALB: 0<<30 | 0x1c7<<21 | 0x08<<10, ALDEORD: 3<<30 | 0x1c1<<21 | 0x08<<10, ALDEORW: 2<<30 | 0x1c1<<21 | 0x08<<10, ALDEORH: 1<<30 | 0x1c1<<21 | 0x08<<10, ALDEORB: 0<<30 | 0x1c1<<21 | 0x08<<10, ALDEORLD: 3<<30 | 0x1c3<<21 | 0x08<<10, ALDEORLW: 2<<30 | 0x1c3<<21 | 0x08<<10, ALDEORLH: 1<<30 | 0x1c3<<21 | 0x08<<10, ALDEORLB: 0<<30 | 0x1c3<<21 | 0x08<<10, ALDORAD: 3<<30 | 0x1c5<<21 | 0x0c<<10, ALDORAW: 2<<30 | 0x1c5<<21 | 0x0c<<10, ALDORAH: 1<<30 | 0x1c5<<21 | 0x0c<<10, ALDORAB: 0<<30 | 0x1c5<<21 | 0x0c<<10, ALDORALD: 3<<30 | 0x1c7<<21 | 0x0c<<10, ALDORALW: 2<<30 | 0x1c7<<21 | 0x0c<<10, ALDORALH: 1<<30 | 0x1c7<<21 | 0x0c<<10, ALDORALB: 0<<30 | 0x1c7<<21 | 0x0c<<10, ALDORD: 3<<30 | 0x1c1<<21 | 0x0c<<10, ALDORW: 2<<30 | 0x1c1<<21 | 0x0c<<10, ALDORH: 1<<30 | 0x1c1<<21 | 0x0c<<10, ALDORB: 0<<30 | 0x1c1<<21 | 0x0c<<10, ALDORLD: 3<<30 | 0x1c3<<21 | 0x0c<<10, ALDORLW: 2<<30 | 0x1c3<<21 | 0x0c<<10, ALDORLH: 1<<30 | 0x1c3<<21 | 0x0c<<10, ALDORLB: 0<<30 | 0x1c3<<21 | 0x0c<<10, } var atomicSWP = map[obj.As]uint32{ ASWPAD: 3<<30 | 0x1c5<<21 | 0x20<<10, ASWPAW: 2<<30 | 0x1c5<<21 | 0x20<<10, ASWPAH: 1<<30 | 0x1c5<<21 | 0x20<<10, ASWPAB: 0<<30 | 0x1c5<<21 | 0x20<<10, ASWPALD: 3<<30 | 0x1c7<<21 | 0x20<<10, ASWPALW: 2<<30 | 0x1c7<<21 | 0x20<<10, ASWPALH: 1<<30 | 0x1c7<<21 | 0x20<<10, ASWPALB: 0<<30 | 0x1c7<<21 | 0x20<<10, ASWPD: 3<<30 | 0x1c1<<21 | 0x20<<10, ASWPW: 2<<30 | 0x1c1<<21 | 0x20<<10, ASWPH: 1<<30 | 0x1c1<<21 | 0x20<<10, ASWPB: 0<<30 | 0x1c1<<21 | 0x20<<10, ASWPLD: 3<<30 | 0x1c3<<21 | 0x20<<10, ASWPLW: 2<<30 | 0x1c3<<21 | 0x20<<10, ASWPLH: 1<<30 | 0x1c3<<21 | 0x20<<10, ASWPLB: 0<<30 | 0x1c3<<21 | 0x20<<10, ACASD: 3<<30 | 0x45<<21 | 0x1f<<10, ACASW: 2<<30 | 0x45<<21 | 0x1f<<10, ACASH: 1<<30 | 0x45<<21 | 0x1f<<10, ACASB: 0<<30 | 0x45<<21 | 0x1f<<10, ACASAD: 3<<30 | 0x47<<21 | 0x1f<<10, ACASAW: 2<<30 | 0x47<<21 | 0x1f<<10, ACASLD: 3<<30 | 0x45<<21 | 0x3f<<10, ACASLW: 2<<30 | 0x45<<21 | 0x3f<<10, ACASALD: 3<<30 | 0x47<<21 | 0x3f<<10, ACASALW: 2<<30 | 0x47<<21 | 0x3f<<10, ACASALH: 1<<30 | 0x47<<21 | 0x3f<<10, ACASALB: 0<<30 | 0x47<<21 | 0x3f<<10, } var atomicCASP = map[obj.As]uint32{ ACASPD: 1<<30 | 0x41<<21 | 0x1f<<10, ACASPW: 0<<30 | 0x41<<21 | 0x1f<<10, } var oprange [ALAST & obj.AMask][]Optab var xcmp [C_NCLASS][C_NCLASS]bool const ( S32 = 0 << 31 S64 = 1 << 31 Sbit = 1 << 29 LSL0_32 = 2 << 13 LSL0_64 = 3 << 13 ) func OPDP2(x uint32) uint32 { return 0<<30 | 0<<29 | 0xd6<<21 | x<<10 } func OPDP3(sf uint32, op54 uint32, op31 uint32, o0 uint32) uint32 { return sf<<31 | op54<<29 | 0x1B<<24 | op31<<21 | o0<<15 } func OPBcc(x uint32) uint32 { return 0x2A<<25 | 0<<24 | 0<<4 | x&15 } func OPBLR(x uint32) uint32 { /* x=0, JMP; 1, CALL; 2, RET */ return 0x6B<<25 | 0<<23 | x<<21 | 0x1F<<16 | 0<<10 } func SYSOP(l uint32, op0 uint32, op1 uint32, crn uint32, crm uint32, op2 uint32, rt uint32) uint32 { return 0x354<<22 | l<<21 | op0<<19 | op1<<16 | crn&15<<12 | crm&15<<8 | op2<<5 | rt } func SYSHINT(x uint32) uint32 { return SYSOP(0, 0, 3, 2, 0, x, 0x1F) } func LDSTR(sz uint32, v uint32, opc uint32) uint32 { return sz<<30 | 7<<27 | v<<26 | opc<<22 } func LD2STR(o uint32) uint32 { return o &^ (3 << 22) } func LDSTX(sz uint32, o2 uint32, l uint32, o1 uint32, o0 uint32) uint32 { return sz<<30 | 0x8<<24 | o2<<23 | l<<22 | o1<<21 | o0<<15 } func FPCMP(m uint32, s uint32, type_ uint32, op uint32, op2 uint32) uint32 { return m<<31 | s<<29 | 0x1E<<24 | type_<<22 | 1<<21 | op<<14 | 8<<10 | op2 } func FPCCMP(m uint32, s uint32, type_ uint32, op uint32) uint32 { return m<<31 | s<<29 | 0x1E<<24 | type_<<22 | 1<<21 | 1<<10 | op<<4 } func FPOP1S(m uint32, s uint32, type_ uint32, op uint32) uint32 { return m<<31 | s<<29 | 0x1E<<24 | type_<<22 | 1<<21 | op<<15 | 0x10<<10 } func FPOP2S(m uint32, s uint32, type_ uint32, op uint32) uint32 { return m<<31 | s<<29 | 0x1E<<24 | type_<<22 | 1<<21 | op<<12 | 2<<10 } func FPOP3S(m uint32, s uint32, type_ uint32, op uint32, op2 uint32) uint32 { return m<<31 | s<<29 | 0x1F<<24 | type_<<22 | op<<21 | op2<<15 } func FPCVTI(sf uint32, s uint32, type_ uint32, rmode uint32, op uint32) uint32 { return sf<<31 | s<<29 | 0x1E<<24 | type_<<22 | 1<<21 | rmode<<19 | op<<16 | 0<<10 } func ADR(p uint32, o uint32, rt uint32) uint32 { return p<<31 | (o&3)<<29 | 0x10<<24 | ((o>>2)&0x7FFFF)<<5 | rt&31 } func OPBIT(x uint32) uint32 { return 1<<30 | 0<<29 | 0xD6<<21 | 0<<16 | x<<10 } func MOVCONST(d int64, s int, rt int) uint32 { return uint32(((d>>uint(s*16))&0xFFFF)<<5) | uint32(s)&3<<21 | uint32(rt&31) } const ( // Optab.flag LFROM = 1 << iota // p.From uses constant pool LTO // p.To uses constant pool NOTUSETMP // p expands to multiple instructions, but does NOT use REGTMP BRANCH14BITS // branch instruction encodes 14 bits BRANCH19BITS // branch instruction encodes 19 bits ) var optab = []Optab{ /* struct Optab: OPCODE, from, prog->reg, from3, to, to2, type,size,param,flag,scond */ {obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, C_NONE, 0, 0, 0, 0, 0}, /* arithmetic operations */ {AADD, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AADD, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AADC, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AADC, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {ANEG, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 25, 4, 0, 0, 0}, {ANEG, C_NONE, C_NONE, C_NONE, C_ZREG, C_NONE, 25, 4, 0, 0, 0}, {ANGC, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 17, 4, 0, 0, 0}, {ACMP, C_ZREG, C_ZREG, C_NONE, C_NONE, C_NONE, 1, 4, 0, 0, 0}, {AADD, C_ADDCON, C_RSP, C_NONE, C_RSP, C_NONE, 2, 4, 0, 0, 0}, {AADD, C_ADDCON, C_NONE, C_NONE, C_RSP, C_NONE, 2, 4, 0, 0, 0}, {ACMP, C_ADDCON, C_RSP, C_NONE, C_NONE, C_NONE, 2, 4, 0, 0, 0}, {AADD, C_MOVCON, C_RSP, C_NONE, C_RSP, C_NONE, 62, 8, 0, 0, 0}, {AADD, C_MOVCON, C_NONE, C_NONE, C_RSP, C_NONE, 62, 8, 0, 0, 0}, {ACMP, C_MOVCON, C_RSP, C_NONE, C_NONE, C_NONE, 62, 8, 0, 0, 0}, {AADD, C_BITCON, C_RSP, C_NONE, C_RSP, C_NONE, 62, 8, 0, 0, 0}, {AADD, C_BITCON, C_NONE, C_NONE, C_RSP, C_NONE, 62, 8, 0, 0, 0}, {ACMP, C_BITCON, C_RSP, C_NONE, C_NONE, C_NONE, 62, 8, 0, 0, 0}, {AADD, C_ADDCON2, C_RSP, C_NONE, C_RSP, C_NONE, 48, 8, 0, NOTUSETMP, 0}, {AADD, C_ADDCON2, C_NONE, C_NONE, C_RSP, C_NONE, 48, 8, 0, NOTUSETMP, 0}, {AADD, C_MOVCON2, C_RSP, C_NONE, C_RSP, C_NONE, 13, 12, 0, 0, 0}, {AADD, C_MOVCON2, C_NONE, C_NONE, C_RSP, C_NONE, 13, 12, 0, 0, 0}, {AADD, C_MOVCON3, C_RSP, C_NONE, C_RSP, C_NONE, 13, 16, 0, 0, 0}, {AADD, C_MOVCON3, C_NONE, C_NONE, C_RSP, C_NONE, 13, 16, 0, 0, 0}, {AADD, C_VCON, C_RSP, C_NONE, C_RSP, C_NONE, 13, 20, 0, 0, 0}, {AADD, C_VCON, C_NONE, C_NONE, C_RSP, C_NONE, 13, 20, 0, 0, 0}, {ACMP, C_MOVCON2, C_ZREG, C_NONE, C_NONE, C_NONE, 13, 12, 0, 0, 0}, {ACMP, C_MOVCON3, C_ZREG, C_NONE, C_NONE, C_NONE, 13, 16, 0, 0, 0}, {ACMP, C_VCON, C_ZREG, C_NONE, C_NONE, C_NONE, 13, 20, 0, 0, 0}, {AADD, C_SHIFT, C_ZREG, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {AADD, C_SHIFT, C_NONE, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {AMVN, C_SHIFT, C_NONE, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {ACMP, C_SHIFT, C_ZREG, C_NONE, C_NONE, C_NONE, 3, 4, 0, 0, 0}, {ANEG, C_SHIFT, C_NONE, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {AADD, C_ZREG, C_RSP, C_NONE, C_RSP, C_NONE, 27, 4, 0, 0, 0}, {AADD, C_ZREG, C_NONE, C_NONE, C_RSP, C_NONE, 27, 4, 0, 0, 0}, {ACMP, C_ZREG, C_RSP, C_NONE, C_NONE, C_NONE, 27, 4, 0, 0, 0}, {AADD, C_EXTREG, C_RSP, C_NONE, C_RSP, C_NONE, 27, 4, 0, 0, 0}, {AADD, C_EXTREG, C_NONE, C_NONE, C_RSP, C_NONE, 27, 4, 0, 0, 0}, {ACMP, C_EXTREG, C_RSP, C_NONE, C_NONE, C_NONE, 27, 4, 0, 0, 0}, {AADD, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AADD, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AMUL, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 15, 4, 0, 0, 0}, {AMUL, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 15, 4, 0, 0, 0}, {AMADD, C_ZREG, C_ZREG, C_ZREG, C_ZREG, C_NONE, 15, 4, 0, 0, 0}, {AREM, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 16, 8, 0, 0, 0}, {AREM, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 16, 8, 0, 0, 0}, {ASDIV, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {ASDIV, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AFADDS, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 54, 4, 0, 0, 0}, {AFADDS, C_FREG, C_FREG, C_NONE, C_FREG, C_NONE, 54, 4, 0, 0, 0}, {AFMSUBD, C_FREG, C_FREG, C_FREG, C_FREG, C_NONE, 15, 4, 0, 0, 0}, {AFCMPS, C_FREG, C_FREG, C_NONE, C_NONE, C_NONE, 56, 4, 0, 0, 0}, {AFCMPS, C_FCON, C_FREG, C_NONE, C_NONE, C_NONE, 56, 4, 0, 0, 0}, {AVADDP, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 72, 4, 0, 0, 0}, {AVADD, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 72, 4, 0, 0, 0}, {AVADD, C_VREG, C_VREG, C_NONE, C_VREG, C_NONE, 89, 4, 0, 0, 0}, {AVADD, C_VREG, C_NONE, C_NONE, C_VREG, C_NONE, 89, 4, 0, 0, 0}, {AVADDV, C_ARNG, C_NONE, C_NONE, C_VREG, C_NONE, 85, 4, 0, 0, 0}, /* logical operations */ {AAND, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AAND, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AANDS, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {AANDS, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 1, 4, 0, 0, 0}, {ATST, C_ZREG, C_ZREG, C_NONE, C_NONE, C_NONE, 1, 4, 0, 0, 0}, {AAND, C_MBCON, C_ZREG, C_NONE, C_RSP, C_NONE, 53, 4, 0, 0, 0}, {AAND, C_MBCON, C_NONE, C_NONE, C_RSP, C_NONE, 53, 4, 0, 0, 0}, {AANDS, C_MBCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 53, 4, 0, 0, 0}, {AANDS, C_MBCON, C_NONE, C_NONE, C_ZREG, C_NONE, 53, 4, 0, 0, 0}, {ATST, C_MBCON, C_ZREG, C_NONE, C_NONE, C_NONE, 53, 4, 0, 0, 0}, {AAND, C_BITCON, C_ZREG, C_NONE, C_RSP, C_NONE, 53, 4, 0, 0, 0}, {AAND, C_BITCON, C_NONE, C_NONE, C_RSP, C_NONE, 53, 4, 0, 0, 0}, {AANDS, C_BITCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 53, 4, 0, 0, 0}, {AANDS, C_BITCON, C_NONE, C_NONE, C_ZREG, C_NONE, 53, 4, 0, 0, 0}, {ATST, C_BITCON, C_ZREG, C_NONE, C_NONE, C_NONE, 53, 4, 0, 0, 0}, {AAND, C_MOVCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 62, 8, 0, 0, 0}, {AAND, C_MOVCON, C_NONE, C_NONE, C_ZREG, C_NONE, 62, 8, 0, 0, 0}, {AANDS, C_MOVCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 62, 8, 0, 0, 0}, {AANDS, C_MOVCON, C_NONE, C_NONE, C_ZREG, C_NONE, 62, 8, 0, 0, 0}, {ATST, C_MOVCON, C_ZREG, C_NONE, C_NONE, C_NONE, 62, 8, 0, 0, 0}, {AAND, C_MOVCON2, C_ZREG, C_NONE, C_ZREG, C_NONE, 28, 12, 0, 0, 0}, {AAND, C_MOVCON2, C_NONE, C_NONE, C_ZREG, C_NONE, 28, 12, 0, 0, 0}, {AAND, C_MOVCON3, C_ZREG, C_NONE, C_ZREG, C_NONE, 28, 16, 0, 0, 0}, {AAND, C_MOVCON3, C_NONE, C_NONE, C_ZREG, C_NONE, 28, 16, 0, 0, 0}, {AAND, C_VCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 28, 20, 0, 0, 0}, {AAND, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 28, 20, 0, 0, 0}, {AANDS, C_MOVCON2, C_ZREG, C_NONE, C_ZREG, C_NONE, 28, 12, 0, 0, 0}, {AANDS, C_MOVCON2, C_NONE, C_NONE, C_ZREG, C_NONE, 28, 12, 0, 0, 0}, {AANDS, C_MOVCON3, C_ZREG, C_NONE, C_ZREG, C_NONE, 28, 16, 0, 0, 0}, {AANDS, C_MOVCON3, C_NONE, C_NONE, C_ZREG, C_NONE, 28, 16, 0, 0, 0}, {AANDS, C_VCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 28, 20, 0, 0, 0}, {AANDS, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 28, 20, 0, 0, 0}, {ATST, C_MOVCON2, C_ZREG, C_NONE, C_NONE, C_NONE, 28, 12, 0, 0, 0}, {ATST, C_MOVCON3, C_ZREG, C_NONE, C_NONE, C_NONE, 28, 16, 0, 0, 0}, {ATST, C_VCON, C_ZREG, C_NONE, C_NONE, C_NONE, 28, 20, 0, 0, 0}, {AAND, C_SHIFT, C_ZREG, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {AAND, C_SHIFT, C_NONE, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {AANDS, C_SHIFT, C_ZREG, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {AANDS, C_SHIFT, C_NONE, C_NONE, C_ZREG, C_NONE, 3, 4, 0, 0, 0}, {ATST, C_SHIFT, C_ZREG, C_NONE, C_NONE, C_NONE, 3, 4, 0, 0, 0}, {AMOVD, C_RSP, C_NONE, C_NONE, C_RSP, C_NONE, 24, 4, 0, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 24, 4, 0, 0, 0}, {AMVN, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 24, 4, 0, 0, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 45, 4, 0, 0, 0}, /* also MOVBU */ {AMOVH, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 45, 4, 0, 0, 0}, /* also MOVHU */ {AMOVW, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 45, 4, 0, 0, 0}, /* also MOVWU */ /* TODO: MVN C_SHIFT */ /* MOVs that become MOVK/MOVN/MOVZ/ADD/SUB/OR */ {AMOVW, C_MBCON, C_NONE, C_NONE, C_ZREG, C_NONE, 32, 4, 0, 0, 0}, {AMOVD, C_MBCON, C_NONE, C_NONE, C_ZREG, C_NONE, 32, 4, 0, 0, 0}, {AMOVW, C_MOVCON, C_NONE, C_NONE, C_ZREG, C_NONE, 32, 4, 0, 0, 0}, {AMOVD, C_MOVCON, C_NONE, C_NONE, C_ZREG, C_NONE, 32, 4, 0, 0, 0}, {AMOVW, C_BITCON, C_NONE, C_NONE, C_RSP, C_NONE, 32, 4, 0, 0, 0}, {AMOVD, C_BITCON, C_NONE, C_NONE, C_RSP, C_NONE, 32, 4, 0, 0, 0}, {AMOVW, C_MOVCON2, C_NONE, C_NONE, C_ZREG, C_NONE, 12, 8, 0, NOTUSETMP, 0}, {AMOVD, C_MOVCON2, C_NONE, C_NONE, C_ZREG, C_NONE, 12, 8, 0, NOTUSETMP, 0}, {AMOVD, C_MOVCON3, C_NONE, C_NONE, C_ZREG, C_NONE, 12, 12, 0, NOTUSETMP, 0}, {AMOVD, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 12, 16, 0, NOTUSETMP, 0}, {AMOVK, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 33, 4, 0, 0, 0}, {AMOVD, C_AACON, C_NONE, C_NONE, C_RSP, C_NONE, 4, 4, REGFROM, 0, 0}, {AMOVD, C_AACON2, C_NONE, C_NONE, C_RSP, C_NONE, 4, 8, REGFROM, NOTUSETMP, 0}, /* load long effective stack address (load int32 offset and add) */ {AMOVD, C_LACON, C_NONE, C_NONE, C_RSP, C_NONE, 34, 8, REGSP, LFROM, 0}, // Load a large constant into a vector register. {AVMOVS, C_ADDR, C_NONE, C_NONE, C_VREG, C_NONE, 65, 12, 0, 0, 0}, {AVMOVD, C_ADDR, C_NONE, C_NONE, C_VREG, C_NONE, 65, 12, 0, 0, 0}, {AVMOVQ, C_ADDR, C_NONE, C_NONE, C_VREG, C_NONE, 65, 12, 0, 0, 0}, /* jump operations */ {AB, C_NONE, C_NONE, C_NONE, C_SBRA, C_NONE, 5, 4, 0, 0, 0}, {ABL, C_NONE, C_NONE, C_NONE, C_SBRA, C_NONE, 5, 4, 0, 0, 0}, {AB, C_NONE, C_NONE, C_NONE, C_ZOREG, C_NONE, 6, 4, 0, 0, 0}, {ABL, C_NONE, C_NONE, C_NONE, C_ZREG, C_NONE, 6, 4, 0, 0, 0}, {ABL, C_NONE, C_NONE, C_NONE, C_ZOREG, C_NONE, 6, 4, 0, 0, 0}, {obj.ARET, C_NONE, C_NONE, C_NONE, C_ZREG, C_NONE, 6, 4, 0, 0, 0}, {obj.ARET, C_NONE, C_NONE, C_NONE, C_ZOREG, C_NONE, 6, 4, 0, 0, 0}, {ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, C_NONE, 7, 4, 0, BRANCH19BITS, 0}, {ACBZ, C_ZREG, C_NONE, C_NONE, C_SBRA, C_NONE, 39, 4, 0, BRANCH19BITS, 0}, {ATBZ, C_VCON, C_ZREG, C_NONE, C_SBRA, C_NONE, 40, 4, 0, BRANCH14BITS, 0}, {AERET, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 41, 4, 0, 0, 0}, // get a PC-relative address {AADRP, C_SBRA, C_NONE, C_NONE, C_ZREG, C_NONE, 60, 4, 0, 0, 0}, {AADR, C_SBRA, C_NONE, C_NONE, C_ZREG, C_NONE, 61, 4, 0, 0, 0}, {ACLREX, C_NONE, C_NONE, C_NONE, C_VCON, C_NONE, 38, 4, 0, 0, 0}, {ACLREX, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 38, 4, 0, 0, 0}, {ABFM, C_VCON, C_ZREG, C_VCON, C_ZREG, C_NONE, 42, 4, 0, 0, 0}, {ABFI, C_VCON, C_ZREG, C_VCON, C_ZREG, C_NONE, 43, 4, 0, 0, 0}, {AEXTR, C_VCON, C_ZREG, C_ZREG, C_ZREG, C_NONE, 44, 4, 0, 0, 0}, {ASXTB, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 45, 4, 0, 0, 0}, {ACLS, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 46, 4, 0, 0, 0}, {ALSL, C_VCON, C_ZREG, C_NONE, C_ZREG, C_NONE, 8, 4, 0, 0, 0}, {ALSL, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 8, 4, 0, 0, 0}, {ALSL, C_ZREG, C_NONE, C_NONE, C_ZREG, C_NONE, 9, 4, 0, 0, 0}, {ALSL, C_ZREG, C_ZREG, C_NONE, C_ZREG, C_NONE, 9, 4, 0, 0, 0}, {ASVC, C_VCON, C_NONE, C_NONE, C_NONE, C_NONE, 10, 4, 0, 0, 0}, {ASVC, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 10, 4, 0, 0, 0}, {ADWORD, C_NONE, C_NONE, C_NONE, C_VCON, C_NONE, 11, 8, 0, NOTUSETMP, 0}, {ADWORD, C_NONE, C_NONE, C_NONE, C_LEXT, C_NONE, 11, 8, 0, NOTUSETMP, 0}, {ADWORD, C_NONE, C_NONE, C_NONE, C_ADDR, C_NONE, 11, 8, 0, NOTUSETMP, 0}, {ADWORD, C_NONE, C_NONE, C_NONE, C_LACON, C_NONE, 11, 8, 0, NOTUSETMP, 0}, {AWORD, C_NONE, C_NONE, C_NONE, C_LCON, C_NONE, 14, 4, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_NONE, C_LEXT, C_NONE, 14, 4, 0, 0, 0}, {AWORD, C_NONE, C_NONE, C_NONE, C_ADDR, C_NONE, 14, 4, 0, 0, 0}, {AMOVW, C_VCONADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 68, 8, 0, NOTUSETMP, 0}, {AMOVD, C_VCONADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 68, 8, 0, NOTUSETMP, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_ADDR, C_NONE, 64, 12, 0, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_ADDR, C_NONE, 64, 12, 0, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_ADDR, C_NONE, 64, 12, 0, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_ADDR, C_NONE, 64, 12, 0, 0, 0}, {AMOVB, C_ADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 65, 12, 0, 0, 0}, {AMOVH, C_ADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 65, 12, 0, 0, 0}, {AMOVW, C_ADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 65, 12, 0, 0, 0}, {AMOVD, C_ADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 65, 12, 0, 0, 0}, {AMOVD, C_GOTADDR, C_NONE, C_NONE, C_ZREG, C_NONE, 71, 8, 0, 0, 0}, {AMOVD, C_TLS_LE, C_NONE, C_NONE, C_ZREG, C_NONE, 69, 4, 0, 0, 0}, {AMOVD, C_TLS_IE, C_NONE, C_NONE, C_ZREG, C_NONE, 70, 8, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_ADDR, C_NONE, 64, 12, 0, 0, 0}, {AFMOVS, C_ADDR, C_NONE, C_NONE, C_FREG, C_NONE, 65, 12, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, C_NONE, 64, 12, 0, 0, 0}, {AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, C_NONE, 65, 12, 0, 0, 0}, {AFMOVS, C_FCON, C_NONE, C_NONE, C_FREG, C_NONE, 55, 4, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 54, 4, 0, 0, 0}, {AFMOVD, C_FCON, C_NONE, C_NONE, C_FREG, C_NONE, 55, 4, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 54, 4, 0, 0, 0}, {AFMOVS, C_ZREG, C_NONE, C_NONE, C_FREG, C_NONE, 29, 4, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_ZREG, C_NONE, 29, 4, 0, 0, 0}, {AFMOVD, C_ZREG, C_NONE, C_NONE, C_FREG, C_NONE, 29, 4, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_ZREG, C_NONE, 29, 4, 0, 0, 0}, {AFCVTZSD, C_FREG, C_NONE, C_NONE, C_ZREG, C_NONE, 29, 4, 0, 0, 0}, {ASCVTFD, C_ZREG, C_NONE, C_NONE, C_FREG, C_NONE, 29, 4, 0, 0, 0}, {AFCVTSD, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 29, 4, 0, 0, 0}, {AVMOV, C_ELEM, C_NONE, C_NONE, C_ZREG, C_NONE, 73, 4, 0, 0, 0}, {AVMOV, C_ELEM, C_NONE, C_NONE, C_ELEM, C_NONE, 92, 4, 0, 0, 0}, {AVMOV, C_ELEM, C_NONE, C_NONE, C_VREG, C_NONE, 80, 4, 0, 0, 0}, {AVMOV, C_ZREG, C_NONE, C_NONE, C_ARNG, C_NONE, 82, 4, 0, 0, 0}, {AVMOV, C_ZREG, C_NONE, C_NONE, C_ELEM, C_NONE, 78, 4, 0, 0, 0}, {AVMOV, C_ARNG, C_NONE, C_NONE, C_ARNG, C_NONE, 83, 4, 0, 0, 0}, {AVDUP, C_ELEM, C_NONE, C_NONE, C_ARNG, C_NONE, 79, 4, 0, 0, 0}, {AVDUP, C_ELEM, C_NONE, C_NONE, C_VREG, C_NONE, 80, 4, 0, 0, 0}, {AVDUP, C_ZREG, C_NONE, C_NONE, C_ARNG, C_NONE, 82, 4, 0, 0, 0}, {AVMOVI, C_ADDCON, C_NONE, C_NONE, C_ARNG, C_NONE, 86, 4, 0, 0, 0}, {AVFMLA, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 72, 4, 0, 0, 0}, {AVEXT, C_VCON, C_ARNG, C_ARNG, C_ARNG, C_NONE, 94, 4, 0, 0, 0}, {AVTBL, C_ARNG, C_NONE, C_LIST, C_ARNG, C_NONE, 100, 4, 0, 0, 0}, {AVUSHR, C_VCON, C_ARNG, C_NONE, C_ARNG, C_NONE, 95, 4, 0, 0, 0}, {AVZIP1, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 72, 4, 0, 0, 0}, {AVUSHLL, C_VCON, C_ARNG, C_NONE, C_ARNG, C_NONE, 102, 4, 0, 0, 0}, {AVUXTL, C_ARNG, C_NONE, C_NONE, C_ARNG, C_NONE, 102, 4, 0, 0, 0}, {AVUADDW, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 105, 4, 0, 0, 0}, /* conditional operations */ {ACSEL, C_COND, C_ZREG, C_ZREG, C_ZREG, C_NONE, 18, 4, 0, 0, 0}, {ACINC, C_COND, C_ZREG, C_NONE, C_ZREG, C_NONE, 18, 4, 0, 0, 0}, {ACSET, C_COND, C_NONE, C_NONE, C_ZREG, C_NONE, 18, 4, 0, 0, 0}, {AFCSELD, C_COND, C_FREG, C_FREG, C_FREG, C_NONE, 18, 4, 0, 0, 0}, {ACCMN, C_COND, C_ZREG, C_ZREG, C_VCON, C_NONE, 19, 4, 0, 0, 0}, {ACCMN, C_COND, C_ZREG, C_VCON, C_VCON, C_NONE, 19, 4, 0, 0, 0}, {AFCCMPS, C_COND, C_FREG, C_FREG, C_VCON, C_NONE, 57, 4, 0, 0, 0}, /* scaled 12-bit unsigned displacement store */ {AMOVB, C_ZREG, C_NONE, C_NONE, C_UAUTO4K, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_UOREG4K, C_NONE, 20, 4, 0, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_UAUTO8K, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_UOREG8K, C_NONE, 20, 4, 0, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_UAUTO16K, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_UOREG16K, C_NONE, 20, 4, 0, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_UAUTO32K, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_UOREG32K, C_NONE, 20, 4, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_UAUTO16K, C_NONE, 20, 4, REGSP, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_UOREG16K, C_NONE, 20, 4, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_UAUTO32K, C_NONE, 20, 4, REGSP, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_UOREG32K, C_NONE, 20, 4, 0, 0, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_UAUTO64K, C_NONE, 20, 4, REGSP, 0, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_UOREG64K, C_NONE, 20, 4, 0, 0, 0}, /* unscaled 9-bit signed displacement store */ {AMOVB, C_ZREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_NSAUTO, C_NONE, 20, 4, REGSP, 0, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_NSOREG, C_NONE, 20, 4, 0, 0, 0}, /* scaled 12-bit unsigned displacement load */ {AMOVB, C_UAUTO4K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVB, C_UOREG4K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AMOVH, C_UAUTO8K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVH, C_UOREG8K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AMOVW, C_UAUTO16K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVW, C_UOREG16K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AMOVD, C_UAUTO32K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVD, C_UOREG32K, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AFMOVS, C_UAUTO16K, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, REGSP, 0, 0}, {AFMOVS, C_UOREG16K, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0, 0}, {AFMOVD, C_UAUTO32K, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, REGSP, 0, 0}, {AFMOVD, C_UOREG32K, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0, 0}, {AFMOVQ, C_UAUTO64K, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, REGSP, 0, 0}, {AFMOVQ, C_UOREG64K, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0, 0}, /* unscaled 9-bit signed displacement load */ {AMOVB, C_NSAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVB, C_NSOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AMOVH, C_NSAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVH, C_NSOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AMOVW, C_NSAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVW, C_NSOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AMOVD, C_NSAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, REGSP, 0, 0}, {AMOVD, C_NSOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 21, 4, 0, 0, 0}, {AFMOVS, C_NSAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, REGSP, 0, 0}, {AFMOVS, C_NSOREG, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0, 0}, {AFMOVD, C_NSAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, REGSP, 0, 0}, {AFMOVD, C_NSOREG, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0, 0}, {AFMOVQ, C_NSAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, REGSP, 0, 0}, {AFMOVQ, C_NSOREG, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0, 0}, /* long displacement store */ {AMOVB, C_ZREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 30, 8, REGSP, 0, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 30, 8, REGSP, LTO, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 30, 8, 0, 0, 0}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 30, 8, 0, LTO, 0}, /* long displacement load */ {AMOVB, C_LAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, 0, 0}, {AMOVB, C_LAUTOPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AMOVB, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, 0, 0}, {AMOVB, C_LOREGPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, LFROM, 0}, {AMOVH, C_LAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, 0, 0}, {AMOVH, C_LAUTOPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AMOVH, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, 0, 0}, {AMOVH, C_LOREGPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, LFROM, 0}, {AMOVW, C_LAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, 0, 0}, {AMOVW, C_LAUTOPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AMOVW, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, 0, 0}, {AMOVW, C_LOREGPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, LFROM, 0}, {AMOVD, C_LAUTO, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, 0, 0}, {AMOVD, C_LAUTOPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AMOVD, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, 0, 0}, {AMOVD, C_LOREGPOOL, C_NONE, C_NONE, C_ZREG, C_NONE, 31, 8, 0, LFROM, 0}, {AFMOVS, C_LAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, REGSP, 0, 0}, {AFMOVS, C_LAUTOPOOL, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AFMOVS, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, 0, 0, 0}, {AFMOVS, C_LOREGPOOL, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, 0, LFROM, 0}, {AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, REGSP, 0, 0}, {AFMOVD, C_LAUTOPOOL, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, 0, 0, 0}, {AFMOVD, C_LOREGPOOL, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, 0, LFROM, 0}, {AFMOVQ, C_LAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, REGSP, 0, 0}, {AFMOVQ, C_LAUTOPOOL, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, REGSP, LFROM, 0}, {AFMOVQ, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, 0, 0, 0}, {AFMOVQ, C_LOREGPOOL, C_NONE, C_NONE, C_FREG, C_NONE, 31, 8, 0, LFROM, 0}, /* pre/post-indexed load (unscaled, signed 9-bit offset) */ {AMOVD, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AMOVW, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AMOVH, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AMOVB, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AFMOVS, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AFMOVQ, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 22, 4, 0, 0, C_XPOST}, {AMOVD, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPRE}, {AMOVW, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPRE}, {AMOVH, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPRE}, {AMOVB, C_LOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 22, 4, 0, 0, C_XPRE}, {AFMOVS, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 22, 4, 0, 0, C_XPRE}, {AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 22, 4, 0, 0, C_XPRE}, {AFMOVQ, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 22, 4, 0, 0, C_XPRE}, /* pre/post-indexed store (unscaled, signed 9-bit offset) */ {AMOVD, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPOST}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, {AFMOVQ, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 23, 4, 0, 0, C_XPRE}, /* load with shifted or extended register offset */ {AMOVD, C_ROFF, C_NONE, C_NONE, C_ZREG, C_NONE, 98, 4, 0, 0, 0}, {AMOVW, C_ROFF, C_NONE, C_NONE, C_ZREG, C_NONE, 98, 4, 0, 0, 0}, {AMOVH, C_ROFF, C_NONE, C_NONE, C_ZREG, C_NONE, 98, 4, 0, 0, 0}, {AMOVB, C_ROFF, C_NONE, C_NONE, C_ZREG, C_NONE, 98, 4, 0, 0, 0}, {AFMOVS, C_ROFF, C_NONE, C_NONE, C_FREG, C_NONE, 98, 4, 0, 0, 0}, {AFMOVD, C_ROFF, C_NONE, C_NONE, C_FREG, C_NONE, 98, 4, 0, 0, 0}, /* store with extended register offset */ {AMOVD, C_ZREG, C_NONE, C_NONE, C_ROFF, C_NONE, 99, 4, 0, 0, 0}, {AMOVW, C_ZREG, C_NONE, C_NONE, C_ROFF, C_NONE, 99, 4, 0, 0, 0}, {AMOVH, C_ZREG, C_NONE, C_NONE, C_ROFF, C_NONE, 99, 4, 0, 0, 0}, {AMOVB, C_ZREG, C_NONE, C_NONE, C_ROFF, C_NONE, 99, 4, 0, 0, 0}, {AFMOVS, C_FREG, C_NONE, C_NONE, C_ROFF, C_NONE, 99, 4, 0, 0, 0}, {AFMOVD, C_FREG, C_NONE, C_NONE, C_ROFF, C_NONE, 99, 4, 0, 0, 0}, /* pre/post-indexed/signed-offset load/store register pair (unscaled, signed 10-bit quad-aligned and long offset). The pre/post-indexed format only supports OREG cases because the RSP and pseudo registers are not allowed to be modified in this way. */ {AFLDPQ, C_NQAUTO_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, REGSP, 0, 0}, {AFLDPQ, C_PQAUTO_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, REGSP, 0, 0}, {AFLDPQ, C_UAUTO4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, REGSP, 0, 0}, {AFLDPQ, C_NAUTO4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, REGSP, 0, 0}, {AFLDPQ, C_LAUTO, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, REGSP, 0, 0}, {AFLDPQ, C_LAUTOPOOL, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, REGSP, LFROM, 0}, {AFLDPQ, C_NQOREG_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, 0}, {AFLDPQ, C_NQOREG_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPRE}, {AFLDPQ, C_NQOREG_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPOST}, {AFLDPQ, C_PQOREG_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, 0}, {AFLDPQ, C_PQOREG_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPRE}, {AFLDPQ, C_PQOREG_16, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPOST}, {AFLDPQ, C_UOREG4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, 0, 0, 0}, {AFLDPQ, C_NOREG4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, 0, 0, 0}, {AFLDPQ, C_LOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, 0, 0, 0}, {AFLDPQ, C_LOREGPOOL, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, 0, LFROM, 0}, {AFLDPQ, C_ADDR, C_NONE, C_NONE, C_PAIR, C_NONE, 88, 12, 0, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_NQAUTO_16, C_NONE, 67, 4, REGSP, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_PQAUTO_16, C_NONE, 67, 4, REGSP, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_UAUTO4K, C_NONE, 76, 8, REGSP, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_NAUTO4K, C_NONE, 76, 8, REGSP, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_LAUTO, C_NONE, 77, 12, REGSP, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 77, 12, REGSP, LTO, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_NQOREG_16, C_NONE, 67, 4, 0, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_NQOREG_16, C_NONE, 67, 4, 0, 0, C_XPRE}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_NQOREG_16, C_NONE, 67, 4, 0, 0, C_XPOST}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_PQOREG_16, C_NONE, 67, 4, 0, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_PQOREG_16, C_NONE, 67, 4, 0, 0, C_XPRE}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_PQOREG_16, C_NONE, 67, 4, 0, 0, C_XPOST}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_UOREG4K, C_NONE, 76, 8, 0, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_NOREG4K, C_NONE, 76, 8, 0, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_LOREG, C_NONE, 77, 12, 0, 0, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 77, 12, 0, LTO, 0}, {AFSTPQ, C_PAIR, C_NONE, C_NONE, C_ADDR, C_NONE, 87, 12, 0, 0, 0}, {ALDP, C_NPAUTO, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, REGSP, 0, 0}, {ALDP, C_PPAUTO, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, REGSP, 0, 0}, {ALDP, C_UAUTO4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, REGSP, 0, 0}, {ALDP, C_NAUTO4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, REGSP, 0, 0}, {ALDP, C_LAUTO, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, REGSP, 0, 0}, {ALDP, C_LAUTOPOOL, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, REGSP, LFROM, 0}, {ALDP, C_NPOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, 0}, {ALDP, C_NPOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPRE}, {ALDP, C_NPOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPOST}, {ALDP, C_PPOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, 0}, {ALDP, C_PPOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPRE}, {ALDP, C_PPOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPOST}, {ALDP, C_UOREG4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, 0, 0, 0}, {ALDP, C_NOREG4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, 0, 0, 0}, {ALDP, C_LOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, 0, 0, 0}, {ALDP, C_LOREGPOOL, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, 0, LFROM, 0}, {ALDP, C_ADDR, C_NONE, C_NONE, C_PAIR, C_NONE, 88, 12, 0, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_NPAUTO, C_NONE, 67, 4, REGSP, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_PPAUTO, C_NONE, 67, 4, REGSP, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_UAUTO4K, C_NONE, 76, 8, REGSP, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_NAUTO4K, C_NONE, 76, 8, REGSP, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_LAUTO, C_NONE, 77, 12, REGSP, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 77, 12, REGSP, LTO, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_NPOREG, C_NONE, 67, 4, 0, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_NPOREG, C_NONE, 67, 4, 0, 0, C_XPRE}, {ASTP, C_PAIR, C_NONE, C_NONE, C_NPOREG, C_NONE, 67, 4, 0, 0, C_XPOST}, {ASTP, C_PAIR, C_NONE, C_NONE, C_PPOREG, C_NONE, 67, 4, 0, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_PPOREG, C_NONE, 67, 4, 0, 0, C_XPRE}, {ASTP, C_PAIR, C_NONE, C_NONE, C_PPOREG, C_NONE, 67, 4, 0, 0, C_XPOST}, {ASTP, C_PAIR, C_NONE, C_NONE, C_UOREG4K, C_NONE, 76, 8, 0, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_NOREG4K, C_NONE, 76, 8, 0, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_LOREG, C_NONE, 77, 12, 0, 0, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 77, 12, 0, LTO, 0}, {ASTP, C_PAIR, C_NONE, C_NONE, C_ADDR, C_NONE, 87, 12, 0, 0, 0}, // differ from LDP/STP for C_NSAUTO_4/C_PSAUTO_4/C_NSOREG_4/C_PSOREG_4 {ALDPW, C_NSAUTO_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, REGSP, 0, 0}, {ALDPW, C_PSAUTO_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, REGSP, 0, 0}, {ALDPW, C_UAUTO4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, REGSP, 0, 0}, {ALDPW, C_NAUTO4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, REGSP, 0, 0}, {ALDPW, C_LAUTO, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, REGSP, 0, 0}, {ALDPW, C_LAUTOPOOL, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, REGSP, LFROM, 0}, {ALDPW, C_NSOREG_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, 0}, {ALDPW, C_NSOREG_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPRE}, {ALDPW, C_NSOREG_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPOST}, {ALDPW, C_PSOREG_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, 0}, {ALDPW, C_PSOREG_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPRE}, {ALDPW, C_PSOREG_4, C_NONE, C_NONE, C_PAIR, C_NONE, 66, 4, 0, 0, C_XPOST}, {ALDPW, C_UOREG4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, 0, 0, 0}, {ALDPW, C_NOREG4K, C_NONE, C_NONE, C_PAIR, C_NONE, 74, 8, 0, 0, 0}, {ALDPW, C_LOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, 0, 0, 0}, {ALDPW, C_LOREGPOOL, C_NONE, C_NONE, C_PAIR, C_NONE, 75, 12, 0, LFROM, 0}, {ALDPW, C_ADDR, C_NONE, C_NONE, C_PAIR, C_NONE, 88, 12, 0, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_NSAUTO_4, C_NONE, 67, 4, REGSP, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_PSAUTO_4, C_NONE, 67, 4, REGSP, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_UAUTO4K, C_NONE, 76, 8, REGSP, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_NAUTO4K, C_NONE, 76, 8, REGSP, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_LAUTO, C_NONE, 77, 12, REGSP, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_LAUTOPOOL, C_NONE, 77, 12, REGSP, LTO, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_NSOREG_4, C_NONE, 67, 4, 0, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_NSOREG_4, C_NONE, 67, 4, 0, 0, C_XPRE}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_NSOREG_4, C_NONE, 67, 4, 0, 0, C_XPOST}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_PSOREG_4, C_NONE, 67, 4, 0, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_PSOREG_4, C_NONE, 67, 4, 0, 0, C_XPRE}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_PSOREG_4, C_NONE, 67, 4, 0, 0, C_XPOST}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_UOREG4K, C_NONE, 76, 8, 0, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_NOREG4K, C_NONE, 76, 8, 0, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_LOREG, C_NONE, 77, 12, 0, 0, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_LOREGPOOL, C_NONE, 77, 12, 0, LTO, 0}, {ASTPW, C_PAIR, C_NONE, C_NONE, C_ADDR, C_NONE, 87, 12, 0, 0, 0}, {ASWPD, C_ZREG, C_NONE, C_NONE, C_ZOREG, C_ZREG, 47, 4, 0, 0, 0}, {ASWPD, C_ZREG, C_NONE, C_NONE, C_ZAUTO, C_ZREG, 47, 4, REGSP, 0, 0}, {ACASPD, C_PAIR, C_NONE, C_NONE, C_ZOREG, C_PAIR, 106, 4, 0, 0, 0}, {ACASPD, C_PAIR, C_NONE, C_NONE, C_ZAUTO, C_PAIR, 106, 4, REGSP, 0, 0}, {ALDAR, C_ZOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 58, 4, 0, 0, 0}, {ALDXR, C_ZOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 58, 4, 0, 0, 0}, {ALDAXR, C_ZOREG, C_NONE, C_NONE, C_ZREG, C_NONE, 58, 4, 0, 0, 0}, {ALDXP, C_ZOREG, C_NONE, C_NONE, C_PAIR, C_NONE, 58, 4, 0, 0, 0}, {ASTLR, C_ZREG, C_NONE, C_NONE, C_ZOREG, C_NONE, 59, 4, 0, 0, 0}, {ASTXR, C_ZREG, C_NONE, C_NONE, C_ZOREG, C_ZREG, 59, 4, 0, 0, 0}, {ASTLXR, C_ZREG, C_NONE, C_NONE, C_ZOREG, C_ZREG, 59, 4, 0, 0, 0}, {ASTXP, C_PAIR, C_NONE, C_NONE, C_ZOREG, C_ZREG, 59, 4, 0, 0, 0}, /* VLD[1-4]/VST[1-4] */ {AVLD1, C_ZOREG, C_NONE, C_NONE, C_LIST, C_NONE, 81, 4, 0, 0, 0}, {AVLD1, C_LOREG, C_NONE, C_NONE, C_LIST, C_NONE, 81, 4, 0, 0, C_XPOST}, {AVLD1, C_ROFF, C_NONE, C_NONE, C_LIST, C_NONE, 81, 4, 0, 0, C_XPOST}, {AVLD1R, C_ZOREG, C_NONE, C_NONE, C_LIST, C_NONE, 81, 4, 0, 0, 0}, {AVLD1R, C_LOREG, C_NONE, C_NONE, C_LIST, C_NONE, 81, 4, 0, 0, C_XPOST}, {AVLD1R, C_ROFF, C_NONE, C_NONE, C_LIST, C_NONE, 81, 4, 0, 0, C_XPOST}, {AVLD1, C_LOREG, C_NONE, C_NONE, C_ELEM, C_NONE, 97, 4, 0, 0, C_XPOST}, {AVLD1, C_ROFF, C_NONE, C_NONE, C_ELEM, C_NONE, 97, 4, 0, 0, C_XPOST}, {AVLD1, C_LOREG, C_NONE, C_NONE, C_ELEM, C_NONE, 97, 4, 0, 0, 0}, {AVST1, C_LIST, C_NONE, C_NONE, C_ZOREG, C_NONE, 84, 4, 0, 0, 0}, {AVST1, C_LIST, C_NONE, C_NONE, C_LOREG, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST1, C_LIST, C_NONE, C_NONE, C_ROFF, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST2, C_LIST, C_NONE, C_NONE, C_ZOREG, C_NONE, 84, 4, 0, 0, 0}, {AVST2, C_LIST, C_NONE, C_NONE, C_LOREG, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST2, C_LIST, C_NONE, C_NONE, C_ROFF, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST3, C_LIST, C_NONE, C_NONE, C_ZOREG, C_NONE, 84, 4, 0, 0, 0}, {AVST3, C_LIST, C_NONE, C_NONE, C_LOREG, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST3, C_LIST, C_NONE, C_NONE, C_ROFF, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST4, C_LIST, C_NONE, C_NONE, C_ZOREG, C_NONE, 84, 4, 0, 0, 0}, {AVST4, C_LIST, C_NONE, C_NONE, C_LOREG, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST4, C_LIST, C_NONE, C_NONE, C_ROFF, C_NONE, 84, 4, 0, 0, C_XPOST}, {AVST1, C_ELEM, C_NONE, C_NONE, C_LOREG, C_NONE, 96, 4, 0, 0, C_XPOST}, {AVST1, C_ELEM, C_NONE, C_NONE, C_ROFF, C_NONE, 96, 4, 0, 0, C_XPOST}, {AVST1, C_ELEM, C_NONE, C_NONE, C_LOREG, C_NONE, 96, 4, 0, 0, 0}, /* special */ {AMOVD, C_SPR, C_NONE, C_NONE, C_ZREG, C_NONE, 35, 4, 0, 0, 0}, {AMRS, C_SPR, C_NONE, C_NONE, C_ZREG, C_NONE, 35, 4, 0, 0, 0}, {AMOVD, C_ZREG, C_NONE, C_NONE, C_SPR, C_NONE, 36, 4, 0, 0, 0}, {AMSR, C_ZREG, C_NONE, C_NONE, C_SPR, C_NONE, 36, 4, 0, 0, 0}, {AMOVD, C_VCON, C_NONE, C_NONE, C_SPR, C_NONE, 37, 4, 0, 0, 0}, {AMSR, C_VCON, C_NONE, C_NONE, C_SPR, C_NONE, 37, 4, 0, 0, 0}, {AMSR, C_VCON, C_NONE, C_NONE, C_SPOP, C_NONE, 37, 4, 0, 0, 0}, {APRFM, C_UOREG32K, C_NONE, C_NONE, C_SPOP, C_NONE, 91, 4, 0, 0, 0}, {APRFM, C_UOREG32K, C_NONE, C_NONE, C_LCON, C_NONE, 91, 4, 0, 0, 0}, {ADMB, C_VCON, C_NONE, C_NONE, C_NONE, C_NONE, 51, 4, 0, 0, 0}, {AHINT, C_VCON, C_NONE, C_NONE, C_NONE, C_NONE, 52, 4, 0, 0, 0}, {ASYS, C_VCON, C_NONE, C_NONE, C_NONE, C_NONE, 50, 4, 0, 0, 0}, {ASYS, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 50, 4, 0, 0, 0}, {ASYSL, C_VCON, C_NONE, C_NONE, C_ZREG, C_NONE, 50, 4, 0, 0, 0}, {ATLBI, C_SPOP, C_NONE, C_NONE, C_NONE, C_NONE, 107, 4, 0, 0, 0}, {ATLBI, C_SPOP, C_NONE, C_NONE, C_ZREG, C_NONE, 107, 4, 0, 0, 0}, /* encryption instructions */ {AAESD, C_VREG, C_NONE, C_NONE, C_VREG, C_NONE, 26, 4, 0, 0, 0}, // for compatibility with old code {AAESD, C_ARNG, C_NONE, C_NONE, C_ARNG, C_NONE, 26, 4, 0, 0, 0}, // recommend using the new one for better readability {ASHA1C, C_VREG, C_VREG, C_NONE, C_VREG, C_NONE, 49, 4, 0, 0, 0}, {ASHA1C, C_ARNG, C_VREG, C_NONE, C_VREG, C_NONE, 49, 4, 0, 0, 0}, {ASHA1SU0, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 63, 4, 0, 0, 0}, {AVREV32, C_ARNG, C_NONE, C_NONE, C_ARNG, C_NONE, 83, 4, 0, 0, 0}, {AVPMULL, C_ARNG, C_ARNG, C_NONE, C_ARNG, C_NONE, 93, 4, 0, 0, 0}, {AVEOR3, C_ARNG, C_ARNG, C_ARNG, C_ARNG, C_NONE, 103, 4, 0, 0, 0}, {AVXAR, C_VCON, C_ARNG, C_ARNG, C_ARNG, C_NONE, 104, 4, 0, 0, 0}, {obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 90, 4, 0, 0, 0}, {obj.APCDATA, C_VCON, C_NONE, C_NONE, C_VCON, C_NONE, 0, 0, 0, 0, 0}, {obj.AFUNCDATA, C_VCON, C_NONE, C_NONE, C_ADDR, C_NONE, 0, 0, 0, 0, 0}, {obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, {obj.ANOP, C_LCON, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, // nop variants, see #40689 {obj.ANOP, C_ZREG, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, {obj.ANOP, C_VREG, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, {obj.ADUFFZERO, C_NONE, C_NONE, C_NONE, C_SBRA, C_NONE, 5, 4, 0, 0, 0}, // same as AB/ABL {obj.ADUFFCOPY, C_NONE, C_NONE, C_NONE, C_SBRA, C_NONE, 5, 4, 0, 0, 0}, // same as AB/ABL {obj.APCALIGN, C_LCON, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, // align code {obj.APCALIGNMAX, C_LCON, C_NONE, C_NONE, C_LCON, C_NONE, 0, 0, 0, 0, 0}, // align code, conditional } // Valid pstate field values, and value to use in instruction. // Doesn't include special registers. var pstatefield = []struct { opd SpecialOperand enc uint32 }{ {SPOP_DAIFSet, 3<<16 | 4<<12 | 6<<5}, {SPOP_DAIFClr, 3<<16 | 4<<12 | 7<<5}, } var prfopfield = map[SpecialOperand]uint32{ SPOP_PLDL1KEEP: 0, SPOP_PLDL1STRM: 1, SPOP_PLDL2KEEP: 2, SPOP_PLDL2STRM: 3, SPOP_PLDL3KEEP: 4, SPOP_PLDL3STRM: 5, SPOP_PLIL1KEEP: 8, SPOP_PLIL1STRM: 9, SPOP_PLIL2KEEP: 10, SPOP_PLIL2STRM: 11, SPOP_PLIL3KEEP: 12, SPOP_PLIL3STRM: 13, SPOP_PSTL1KEEP: 16, SPOP_PSTL1STRM: 17, SPOP_PSTL2KEEP: 18, SPOP_PSTL2STRM: 19, SPOP_PSTL3KEEP: 20, SPOP_PSTL3STRM: 21, } // sysInstFields helps convert SYS alias instructions to SYS instructions. // For example, the format of TLBI is: TLBI {, }. // It's equivalent to: SYS #, C8, , #{, }. // The field hasOperand2 indicates whether Xt is required. It helps to check // some combinations that may be undefined, such as TLBI VMALLE1IS, R0. var sysInstFields = map[SpecialOperand]struct { op1 uint8 cn uint8 cm uint8 op2 uint8 hasOperand2 bool }{ // TLBI SPOP_VMALLE1IS: {0, 8, 3, 0, false}, SPOP_VAE1IS: {0, 8, 3, 1, true}, SPOP_ASIDE1IS: {0, 8, 3, 2, true}, SPOP_VAAE1IS: {0, 8, 3, 3, true}, SPOP_VALE1IS: {0, 8, 3, 5, true}, SPOP_VAALE1IS: {0, 8, 3, 7, true}, SPOP_VMALLE1: {0, 8, 7, 0, false}, SPOP_VAE1: {0, 8, 7, 1, true}, SPOP_ASIDE1: {0, 8, 7, 2, true}, SPOP_VAAE1: {0, 8, 7, 3, true}, SPOP_VALE1: {0, 8, 7, 5, true}, SPOP_VAALE1: {0, 8, 7, 7, true}, SPOP_IPAS2E1IS: {4, 8, 0, 1, true}, SPOP_IPAS2LE1IS: {4, 8, 0, 5, true}, SPOP_ALLE2IS: {4, 8, 3, 0, false}, SPOP_VAE2IS: {4, 8, 3, 1, true}, SPOP_ALLE1IS: {4, 8, 3, 4, false}, SPOP_VALE2IS: {4, 8, 3, 5, true}, SPOP_VMALLS12E1IS: {4, 8, 3, 6, false}, SPOP_IPAS2E1: {4, 8, 4, 1, true}, SPOP_IPAS2LE1: {4, 8, 4, 5, true}, SPOP_ALLE2: {4, 8, 7, 0, false}, SPOP_VAE2: {4, 8, 7, 1, true}, SPOP_ALLE1: {4, 8, 7, 4, false}, SPOP_VALE2: {4, 8, 7, 5, true}, SPOP_VMALLS12E1: {4, 8, 7, 6, false}, SPOP_ALLE3IS: {6, 8, 3, 0, false}, SPOP_VAE3IS: {6, 8, 3, 1, true}, SPOP_VALE3IS: {6, 8, 3, 5, true}, SPOP_ALLE3: {6, 8, 7, 0, false}, SPOP_VAE3: {6, 8, 7, 1, true}, SPOP_VALE3: {6, 8, 7, 5, true}, SPOP_VMALLE1OS: {0, 8, 1, 0, false}, SPOP_VAE1OS: {0, 8, 1, 1, true}, SPOP_ASIDE1OS: {0, 8, 1, 2, true}, SPOP_VAAE1OS: {0, 8, 1, 3, true}, SPOP_VALE1OS: {0, 8, 1, 5, true}, SPOP_VAALE1OS: {0, 8, 1, 7, true}, SPOP_RVAE1IS: {0, 8, 2, 1, true}, SPOP_RVAAE1IS: {0, 8, 2, 3, true}, SPOP_RVALE1IS: {0, 8, 2, 5, true}, SPOP_RVAALE1IS: {0, 8, 2, 7, true}, SPOP_RVAE1OS: {0, 8, 5, 1, true}, SPOP_RVAAE1OS: {0, 8, 5, 3, true}, SPOP_RVALE1OS: {0, 8, 5, 5, true}, SPOP_RVAALE1OS: {0, 8, 5, 7, true}, SPOP_RVAE1: {0, 8, 6, 1, true}, SPOP_RVAAE1: {0, 8, 6, 3, true}, SPOP_RVALE1: {0, 8, 6, 5, true}, SPOP_RVAALE1: {0, 8, 6, 7, true}, SPOP_RIPAS2E1IS: {4, 8, 0, 2, true}, SPOP_RIPAS2LE1IS: {4, 8, 0, 6, true}, SPOP_ALLE2OS: {4, 8, 1, 0, false}, SPOP_VAE2OS: {4, 8, 1, 1, true}, SPOP_ALLE1OS: {4, 8, 1, 4, false}, SPOP_VALE2OS: {4, 8, 1, 5, true}, SPOP_VMALLS12E1OS: {4, 8, 1, 6, false}, SPOP_RVAE2IS: {4, 8, 2, 1, true}, SPOP_RVALE2IS: {4, 8, 2, 5, true}, SPOP_IPAS2E1OS: {4, 8, 4, 0, true}, SPOP_RIPAS2E1: {4, 8, 4, 2, true}, SPOP_RIPAS2E1OS: {4, 8, 4, 3, true}, SPOP_IPAS2LE1OS: {4, 8, 4, 4, true}, SPOP_RIPAS2LE1: {4, 8, 4, 6, true}, SPOP_RIPAS2LE1OS: {4, 8, 4, 7, true}, SPOP_RVAE2OS: {4, 8, 5, 1, true}, SPOP_RVALE2OS: {4, 8, 5, 5, true}, SPOP_RVAE2: {4, 8, 6, 1, true}, SPOP_RVALE2: {4, 8, 6, 5, true}, SPOP_ALLE3OS: {6, 8, 1, 0, false}, SPOP_VAE3OS: {6, 8, 1, 1, true}, SPOP_VALE3OS: {6, 8, 1, 5, true}, SPOP_RVAE3IS: {6, 8, 2, 1, true}, SPOP_RVALE3IS: {6, 8, 2, 5, true}, SPOP_RVAE3OS: {6, 8, 5, 1, true}, SPOP_RVALE3OS: {6, 8, 5, 5, true}, SPOP_RVAE3: {6, 8, 6, 1, true}, SPOP_RVALE3: {6, 8, 6, 5, true}, // DC SPOP_IVAC: {0, 7, 6, 1, true}, SPOP_ISW: {0, 7, 6, 2, true}, SPOP_CSW: {0, 7, 10, 2, true}, SPOP_CISW: {0, 7, 14, 2, true}, SPOP_ZVA: {3, 7, 4, 1, true}, SPOP_CVAC: {3, 7, 10, 1, true}, SPOP_CVAU: {3, 7, 11, 1, true}, SPOP_CIVAC: {3, 7, 14, 1, true}, SPOP_IGVAC: {0, 7, 6, 3, true}, SPOP_IGSW: {0, 7, 6, 4, true}, SPOP_IGDVAC: {0, 7, 6, 5, true}, SPOP_IGDSW: {0, 7, 6, 6, true}, SPOP_CGSW: {0, 7, 10, 4, true}, SPOP_CGDSW: {0, 7, 10, 6, true}, SPOP_CIGSW: {0, 7, 14, 4, true}, SPOP_CIGDSW: {0, 7, 14, 6, true}, SPOP_GVA: {3, 7, 4, 3, true}, SPOP_GZVA: {3, 7, 4, 4, true}, SPOP_CGVAC: {3, 7, 10, 3, true}, SPOP_CGDVAC: {3, 7, 10, 5, true}, SPOP_CGVAP: {3, 7, 12, 3, true}, SPOP_CGDVAP: {3, 7, 12, 5, true}, SPOP_CGVADP: {3, 7, 13, 3, true}, SPOP_CGDVADP: {3, 7, 13, 5, true}, SPOP_CIGVAC: {3, 7, 14, 3, true}, SPOP_CIGDVAC: {3, 7, 14, 5, true}, SPOP_CVAP: {3, 7, 12, 1, true}, SPOP_CVADP: {3, 7, 13, 1, true}, } // Used for padding NOOP instruction const OP_NOOP = 0xd503201f // pcAlignPadLength returns the number of bytes required to align pc to alignedValue, // reporting an error if alignedValue is not a power of two or is out of range. func pcAlignPadLength(ctxt *obj.Link, pc int64, alignedValue int64) int { if !((alignedValue&(alignedValue-1) == 0) && 8 <= alignedValue && alignedValue <= 2048) { ctxt.Diag("alignment value of an instruction must be a power of two and in the range [8, 2048], got %d\n", alignedValue) } return int(-pc & (alignedValue - 1)) } // size returns the size of the sequence of machine instructions when p is encoded with o. // Usually it just returns o.size directly, in some cases it checks whether the optimization // conditions are met, and if so returns the size of the optimized instruction sequence. // These optimizations need to be synchronized with the asmout function. func (o *Optab) size(ctxt *obj.Link, p *obj.Prog) int { // Optimize adrp+add+ld/st to adrp+ld/st(offset). sz := movesize(p.As) if sz != -1 { // Relocations R_AARCH64_LDST{64,32,16,8}_ABS_LO12_NC can only generate 8-byte, 4-byte, // 2-byte and 1-byte aligned addresses, so the address of load/store must be aligned. // Also symbols with prefix of "go:string." are Go strings, which will go into // the symbol table, their addresses are not necessary aligned, rule this out. // // Note that the code generation routines for these addressing forms call o.size // to decide whether to use the unaligned/aligned forms, so o.size's result is always // in sync with the code generation decisions, because it *is* the code generation decision. align := int64(1 << sz) if o.a1 == C_ADDR && p.From.Offset%align == 0 && symAlign(p.From.Sym) >= align || o.a4 == C_ADDR && p.To.Offset%align == 0 && symAlign(p.To.Sym) >= align { return 8 } } return int(o.size_) } // symAlign returns the expected symbol alignment of the symbol s. // This must match the linker's own default alignment decisions. func symAlign(s *obj.LSym) int64 { name := s.Name switch { case strings.HasPrefix(name, "go:string."), strings.HasPrefix(name, "type:.namedata."), strings.HasPrefix(name, "type:.importpath."), strings.HasSuffix(name, ".opendefer"), strings.HasSuffix(name, ".arginfo0"), strings.HasSuffix(name, ".arginfo1"), strings.HasSuffix(name, ".argliveinfo"): // These are just bytes, or varints. return 1 case strings.HasPrefix(name, "gclocals·"): // It has 32-bit fields. return 4 default: switch { case s.Size%8 == 0: return 8 case s.Size%4 == 0: return 4 case s.Size%2 == 0: return 2 } } return 1 } func span7(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { if ctxt.Retpoline { ctxt.Diag("-spectre=ret not supported on arm64") ctxt.Retpoline = false // don't keep printing } p := cursym.Func().Text if p == nil || p.Link == nil { // handle external functions and ELF section symbols return } if oprange[AAND&obj.AMask] == nil { ctxt.Diag("arm64 ops not initialized, call arm64.buildop first") } c := ctxt7{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset & 0xffffffff), extrasize: int32(p.To.Offset >> 32)} p.To.Offset &= 0xffffffff // extrasize is no longer needed // Process literal pool and allocate initial program counter for each Prog, before // generating branch veneers. pc := int64(0) p.Pc = pc for p = p.Link; p != nil; p = p.Link { p.Pc = pc c.addLiteralsToPool(p) pc += int64(c.asmsizeBytes(p)) } /* * if any procedure is large enough to * generate a large SBRA branch, then * generate extra passes putting branches * around jmps to fix. this is rare. */ changed := true for changed { changed = false pc = 0 for p = c.cursym.Func().Text.Link; p != nil; p = p.Link { p.Pc = pc changed = changed || c.fixUpLongBranch(p) pc += int64(c.asmsizeBytes(p)) } } /* * lay out the code, emitting code and data relocations. */ buf := codeBuffer{&c.cursym.P} for p := c.cursym.Func().Text.Link; p != nil; p = p.Link { c.pc = p.Pc switch p.As { case obj.APCALIGN, obj.APCALIGNMAX: v := obj.AlignmentPaddingLength(int32(p.Pc), p, c.ctxt) for i := 0; i < int(v/4); i++ { // emit ANOOP instruction by the padding size buf.emit(OP_NOOP) } case obj.ANOP, obj.AFUNCDATA, obj.APCDATA: continue default: var out [6]uint32 count := c.asmout(p, out[:]) buf.emit(out[:count]...) } } buf.finish() c.cursym.Size = int64(len(c.cursym.P)) // Mark nonpreemptible instruction sequences. // We use REGTMP as a scratch register during call injection, // so instruction sequences that use REGTMP are unsafe to // preempt asynchronously. obj.MarkUnsafePoints(c.ctxt, c.cursym.Func().Text, c.newprog, c.isUnsafePoint, c.isRestartable) // Now that we know byte offsets, we can generate jump table entries. for _, jt := range cursym.Func().JumpTables { for i, p := range jt.Targets { // The ith jumptable entry points to the p.Pc'th // byte in the function symbol s. // TODO: try using relative PCs. jt.Sym.WriteAddr(ctxt, int64(i)*8, 8, cursym, p.Pc) } } } type codeBuffer struct { data *[]byte } func (cb *codeBuffer) pc() int64 { return int64(len(*cb.data)) } // Write a sequence of opcodes into the code buffer. func (cb *codeBuffer) emit(op ...uint32) { for _, o := range op { *cb.data = binary.LittleEndian.AppendUint32(*cb.data, o) } } // Completes the code buffer for the function by padding the buffer to function alignment // with zero values. func (cb *codeBuffer) finish() { for len(*cb.data)%funcAlign > 0 { *cb.data = append(*cb.data, 0) } } // Return the size of the assembled Prog, in bytes. func (c *ctxt7) asmsizeBytes(p *obj.Prog) int { switch p.As { case obj.APCALIGN, obj.APCALIGNMAX: return obj.AlignmentPadding(int32(p.Pc), p, c.ctxt, c.cursym) case obj.ANOP, obj.AFUNCDATA, obj.APCDATA: return 0 default: o := c.oplook(p) return o.size(c.ctxt, p) } } // Modify the Prog list if the Prog is a branch with a large offset that cannot be // encoded in the instruction. Return true if a modification was made, false if not. func (c *ctxt7) fixUpLongBranch(p *obj.Prog) bool { var toofar bool o := c.oplook(p) /* very large branches */ if (o.flag&BRANCH14BITS != 0 || o.flag&BRANCH19BITS != 0) && p.To.Target() != nil { otxt := p.To.Target().Pc - p.Pc if o.flag&BRANCH14BITS != 0 { // branch instruction encodes 14 bits toofar = otxt <= -(1<<15)+10 || otxt >= (1<<15)-10 } else if o.flag&BRANCH19BITS != 0 { // branch instruction encodes 19 bits toofar = otxt <= -(1<<20)+10 || otxt >= (1<<20)-10 } if toofar { q := c.newprog() q.Link = p.Link p.Link = q q.As = AB q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(p.To.Target()) p.To.SetTarget(q) q = c.newprog() q.Link = p.Link p.Link = q q.As = AB q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(q.Link.Link) } } return toofar } // Adds literal values from the Prog into the literal pool if necessary. func (c *ctxt7) addLiteralsToPool(p *obj.Prog) { o := c.oplook(p) if o.flag&LFROM != 0 { c.addpool(p, &p.From) } if o.flag<O != 0 { c.addpool(p, &p.To) } if c.blitrl != nil { c.checkpool(p) } } // isUnsafePoint returns whether p is an unsafe point. func (c *ctxt7) isUnsafePoint(p *obj.Prog) bool { // If p explicitly uses REGTMP, it's unsafe to preempt, because the // preemption sequence clobbers REGTMP. return p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP || p.From.Type == obj.TYPE_REGREG && p.From.Offset == REGTMP || p.To.Type == obj.TYPE_REGREG && p.To.Offset == REGTMP } // isRestartable returns whether p is a multi-instruction sequence that, // if preempted, can be restarted. func (c *ctxt7) isRestartable(p *obj.Prog) bool { if c.isUnsafePoint(p) { return false } // If p is a multi-instruction sequence with uses REGTMP inserted by // the assembler in order to materialize a large constant/offset, we // can restart p (at the start of the instruction sequence), recompute // the content of REGTMP, upon async preemption. Currently, all cases // of assembler-inserted REGTMP fall into this category. // If p doesn't use REGTMP, it can be simply preempted, so we don't // mark it. o := c.oplook(p) return o.size(c.ctxt, p) > 4 && o.flag&NOTUSETMP == 0 } /* * when the first reference to the literal pool threatens * to go out of range of a 1Mb PC-relative offset * drop the pool now. */ func (c *ctxt7) checkpool(p *obj.Prog) { // If the pool is going to go out of range or p is the last instruction of the function, // flush the pool. if c.pool.size >= 0xffff0 || !ispcdisp(int32(p.Pc+4+int64(c.pool.size)-int64(c.pool.start)+8)) || p.Link == nil { c.flushpool(p) } } func (c *ctxt7) flushpool(p *obj.Prog) { // Needs to insert a branch before flushing the pool. // We don't need the jump if following an unconditional branch. // TODO: other unconditional operations. if !(p.As == AB || p.As == obj.ARET || p.As == AERET) { if c.ctxt.Debugvlog { fmt.Printf("note: flush literal pool at %#x: len=%d ref=%x\n", uint64(p.Pc+4), c.pool.size, c.pool.start) } q := c.newprog() if p.Link == nil { // If p is the last instruction of the function, insert an UNDEF instruction in case the // execution fall through to the pool. q.As = obj.AUNDEF } else { // Else insert a branch to the next instruction of p. q.As = AB q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(p.Link) } q.Link = c.blitrl q.Pos = p.Pos c.blitrl = q } // The line number for constant pool entries doesn't really matter. // We set it to the line number of the preceding instruction so that // there are no deltas to encode in the pc-line tables. for q := c.blitrl; q != nil; q = q.Link { q.Pos = p.Pos } c.elitrl.Link = p.Link p.Link = c.blitrl c.blitrl = nil /* BUG: should refer back to values until out-of-range */ c.elitrl = nil c.pool.size = 0 c.pool.start = 0 } /* * MOVD foo(SB), R is actually * MOVD addr, REGTMP * MOVD REGTMP, R * where addr is the address of the DWORD containing the address of foo. * * TODO: hash */ func (c *ctxt7) addpool(p *obj.Prog, a *obj.Addr) { cls := c.aclass(a) lit := c.instoffset t := c.newprog() t.As = AWORD sz := 4 if a.Type == obj.TYPE_CONST { if lit != int64(int32(lit)) && uint64(lit) != uint64(uint32(lit)) { // out of range -0x80000000 ~ 0xffffffff, must store 64-bit. t.As = ADWORD sz = 8 } // else store 32-bit } else if p.As == AMOVD && a.Type != obj.TYPE_MEM || cls == C_ADDR || cls == C_VCON || lit != int64(int32(lit)) || uint64(lit) != uint64(uint32(lit)) { // conservative: don't know if we want signed or unsigned extension. // in case of ambiguity, store 64-bit t.As = ADWORD sz = 8 } t.To.Type = obj.TYPE_CONST t.To.Offset = lit for q := c.blitrl; q != nil; q = q.Link { /* could hash on t.t0.offset */ if q.To == t.To { p.Pool = q return } } if c.blitrl == nil { c.blitrl = t c.pool.start = uint32(p.Pc) } else { c.elitrl.Link = t } c.elitrl = t if t.As == ADWORD { // make DWORD 8-byte aligned, this is not required by ISA, // just to avoid performance penalties when loading from // the constant pool across a cache line. c.pool.size = roundUp(c.pool.size, 8) } c.pool.size += uint32(sz) p.Pool = t } // roundUp rounds up x to "to". func roundUp(x, to uint32) uint32 { if to == 0 || to&(to-1) != 0 { log.Fatalf("rounded up to a value that is not a power of 2: %d\n", to) } return (x + to - 1) &^ (to - 1) } // splitImm24uScaled splits an immediate into a scaled 12 bit unsigned lo value // and an unscaled shifted 12 bit unsigned hi value. These are typically used // by adding or subtracting the hi value and using the lo value as the offset // for a load or store. func splitImm24uScaled(v int32, shift int) (int32, int32, error) { if v < 0 { return 0, 0, fmt.Errorf("%d is not a 24 bit unsigned immediate", v) } if v > 0xfff000+0xfff<> shift) & 0xfff hi := v - (lo << shift) if hi > 0xfff000 { hi = 0xfff000 lo = (v - hi) >> shift } if hi & ^0xfff000 != 0 { panic(fmt.Sprintf("bad split for %x with shift %v (%x, %x)", v, shift, hi, lo)) } return hi, lo, nil } func (c *ctxt7) regoff(a *obj.Addr) int32 { c.instoffset = 0 c.aclass(a) return int32(c.instoffset) } func isSTLXRop(op obj.As) bool { switch op { case ASTLXR, ASTLXRW, ASTLXRB, ASTLXRH, ASTXR, ASTXRW, ASTXRB, ASTXRH: return true } return false } func isSTXPop(op obj.As) bool { switch op { case ASTXP, ASTLXP, ASTXPW, ASTLXPW: return true } return false } func isANDop(op obj.As) bool { switch op { case AAND, AORR, AEOR, AANDS, ATST, ABIC, AEON, AORN, ABICS: return true } return false } func isANDWop(op obj.As) bool { switch op { case AANDW, AORRW, AEORW, AANDSW, ATSTW, ABICW, AEONW, AORNW, ABICSW: return true } return false } func isADDop(op obj.As) bool { switch op { case AADD, AADDS, ASUB, ASUBS, ACMN, ACMP: return true } return false } func isADDWop(op obj.As) bool { switch op { case AADDW, AADDSW, ASUBW, ASUBSW, ACMNW, ACMPW: return true } return false } func isADDSop(op obj.As) bool { switch op { case AADDS, AADDSW, ASUBS, ASUBSW: return true } return false } func isNEGop(op obj.As) bool { switch op { case ANEG, ANEGW, ANEGS, ANEGSW: return true } return false } func isLoadStorePairOp(op obj.As) bool { switch op { case AFLDPQ, AFSTPQ, ALDP, ASTP, ALDPW, ASTPW: return true } return false } func isMOVop(op obj.As) bool { switch op { case AMOVB, AMOVBU, AMOVH, AMOVHU, AMOVW, AMOVWU, AMOVD, AFMOVS, AFMOVD, AFMOVQ: return true } return false } func isRegShiftOrExt(a *obj.Addr) bool { return (a.Index-obj.RBaseARM64)®_EXT != 0 || (a.Index-obj.RBaseARM64)®_LSL != 0 } // Maximum PC-relative displacement. // The actual limit is ±2²⁰, but we are conservative // to avoid needing to recompute the literal pool flush points // as span-dependent jumps are enlarged. const maxPCDisp = 512 * 1024 // ispcdisp reports whether v is a valid PC-relative displacement. func ispcdisp(v int32) bool { return -maxPCDisp < v && v < maxPCDisp && v&3 == 0 } func isaddcon(v int64) bool { /* uimm12 or uimm24? */ if v < 0 { return false } if (v & 0xFFF) == 0 { v >>= 12 } return v <= 0xFFF } func isaddcon2(v int64) bool { return 0 <= v && v <= 0xFFFFFF } // isbitcon reports whether a constant can be encoded into a logical instruction. // bitcon has a binary form of repetition of a bit sequence of length 2, 4, 8, 16, 32, or 64, // which itself is a rotate (w.r.t. the length of the unit) of a sequence of ones. // special cases: 0 and -1 are not bitcon. // this function needs to run against virtually all the constants, so it needs to be fast. // for this reason, bitcon testing and bitcon encoding are separate functions. func isbitcon(x uint64) bool { if x == 1<<64-1 || x == 0 { return false } // determine the period and sign-extend a unit to 64 bits switch { case x != x>>32|x<<32: // period is 64 // nothing to do case x != x>>16|x<<48: // period is 32 x = uint64(int64(int32(x))) case x != x>>8|x<<56: // period is 16 x = uint64(int64(int16(x))) case x != x>>4|x<<60: // period is 8 x = uint64(int64(int8(x))) default: // period is 4 or 2, always true // 0001, 0010, 0100, 1000 -- 0001 rotate // 0011, 0110, 1100, 1001 -- 0011 rotate // 0111, 1011, 1101, 1110 -- 0111 rotate // 0101, 1010 -- 01 rotate, repeat return true } return sequenceOfOnes(x) || sequenceOfOnes(^x) } // sequenceOfOnes tests whether a constant is a sequence of ones in binary, with leading and trailing zeros. func sequenceOfOnes(x uint64) bool { y := x & -x // lowest set bit of x. x is good iff x+y is a power of 2 y += x return (y-1)&y == 0 } // bitconEncode returns the encoding of a bitcon used in logical instructions // x is known to be a bitcon // a bitcon is a sequence of n ones at low bits (i.e. 1<>32|x<<32: period = 64 case x != x>>16|x<<48: period = 32 x = uint64(int64(int32(x))) case x != x>>8|x<<56: period = 16 x = uint64(int64(int16(x))) case x != x>>4|x<<60: period = 8 x = uint64(int64(int8(x))) case x != x>>2|x<<62: period = 4 x = uint64(int64(x<<60) >> 60) default: period = 2 x = uint64(int64(x<<62) >> 62) } neg := false if int64(x) < 0 { x = ^x neg = true } y := x & -x // lowest set bit of x. s := log2(y) n := log2(x+y) - s // x (or ^x) is a sequence of n ones left shifted by s bits if neg { // ^x is a sequence of n ones left shifted by s bits // adjust n, s for x s = n + s n = period - n } N := uint32(0) if mode == 64 && period == 64 { N = 1 } R := (period - s) & (period - 1) & uint32(mode-1) // shift amount of right rotate S := (n - 1) | 63&^(period<<1-1) // low bits = #ones - 1, high bits encodes period return N<<22 | R<<16 | S<<10 } func log2(x uint64) uint32 { if x == 0 { panic("log2 of 0") } n := uint32(0) if x >= 1<<32 { x >>= 32 n += 32 } if x >= 1<<16 { x >>= 16 n += 16 } if x >= 1<<8 { x >>= 8 n += 8 } if x >= 1<<4 { x >>= 4 n += 4 } if x >= 1<<2 { x >>= 2 n += 2 } if x >= 1<<1 { x >>= 1 n += 1 } return n } func autoclass(l int64) int { if l == 0 { return C_ZAUTO } if l < 0 { if l >= -256 && (l&15) == 0 { return C_NSAUTO_16 } if l >= -256 && (l&7) == 0 { return C_NSAUTO_8 } if l >= -256 && (l&3) == 0 { return C_NSAUTO_4 } if l >= -256 { return C_NSAUTO } if l >= -512 && (l&15) == 0 { return C_NPAUTO_16 } if l >= -512 && (l&7) == 0 { return C_NPAUTO } if l >= -1024 && (l&15) == 0 { return C_NQAUTO_16 } if l >= -4095 { return C_NAUTO4K } return C_LAUTO } if l <= 255 { if (l & 15) == 0 { return C_PSAUTO_16 } if (l & 7) == 0 { return C_PSAUTO_8 } if (l & 3) == 0 { return C_PSAUTO_4 } return C_PSAUTO } if l <= 504 { if l&15 == 0 { return C_PPAUTO_16 } if l&7 == 0 { return C_PPAUTO } } if l <= 1008 { if l&15 == 0 { return C_PQAUTO_16 } } if l <= 4095 { if l&15 == 0 { return C_UAUTO4K_16 } if l&7 == 0 { return C_UAUTO4K_8 } if l&3 == 0 { return C_UAUTO4K_4 } if l&1 == 0 { return C_UAUTO4K_2 } return C_UAUTO4K } if l <= 8190 { if l&15 == 0 { return C_UAUTO8K_16 } if l&7 == 0 { return C_UAUTO8K_8 } if l&3 == 0 { return C_UAUTO8K_4 } if l&1 == 0 { return C_UAUTO8K } } if l <= 16380 { if l&15 == 0 { return C_UAUTO16K_16 } if l&7 == 0 { return C_UAUTO16K_8 } if l&3 == 0 { return C_UAUTO16K } } if l <= 32760 { if l&15 == 0 { return C_UAUTO32K_16 } if l&7 == 0 { return C_UAUTO32K } } if l <= 65520 && (l&15) == 0 { return C_UAUTO64K } return C_LAUTO } func oregclass(l int64) int { return autoclass(l) - C_ZAUTO + C_ZOREG } /* * given an offset v and a class c (see above) * return the offset value to use in the instruction, * scaled if necessary */ func (c *ctxt7) offsetshift(p *obj.Prog, v int64, cls int) int64 { s := 0 if cls >= C_SEXT1 && cls <= C_SEXT16 { s = cls - C_SEXT1 } else { switch cls { case C_UAUTO4K, C_UOREG4K, C_ZOREG: s = 0 case C_UAUTO8K, C_UOREG8K: s = 1 case C_UAUTO16K, C_UOREG16K: s = 2 case C_UAUTO32K, C_UOREG32K: s = 3 case C_UAUTO64K, C_UOREG64K: s = 4 default: c.ctxt.Diag("bad class: %v\n%v", DRconv(cls), p) } } vs := v >> uint(s) if vs<= REG_ARNG && r < REG_ELEM: return C_ARNG case r >= REG_ELEM && r < REG_ELEM_END: return C_ELEM case r >= REG_UXTB && r < REG_SPECIAL, r >= REG_LSL && r < REG_ARNG: return C_EXTREG case r >= REG_SPECIAL: return C_SPR } return C_GOK } // con32class reclassifies the constant of 32-bit instruction. Because the constant type is 32-bit, // but saved in Offset which type is int64, con32class treats it as uint32 type and reclassifies it. func (c *ctxt7) con32class(a *obj.Addr) int { v := uint32(a.Offset) // For 32-bit instruction with constant, rewrite // the high 32-bit to be a repetition of the low // 32-bit, so that the BITCON test can be shared // for both 32-bit and 64-bit. 32-bit ops will // zero the high 32-bit of the destination register // anyway. vbitcon := uint64(v)<<32 | uint64(v) if v == 0 { return C_ZCON } if isaddcon(int64(v)) { if v <= 0xFFF { if isbitcon(vbitcon) { return C_ABCON0 } return C_ADDCON0 } if isbitcon(vbitcon) { return C_ABCON } if movcon(int64(v)) >= 0 { return C_AMCON } if movcon(int64(^v)) >= 0 { return C_AMCON } return C_ADDCON } t := movcon(int64(v)) if t >= 0 { if isbitcon(vbitcon) { return C_MBCON } return C_MOVCON } t = movcon(int64(^v)) if t >= 0 { if isbitcon(vbitcon) { return C_MBCON } return C_MOVCON } if isbitcon(vbitcon) { return C_BITCON } if 0 <= v && v <= 0xffffff { return C_ADDCON2 } return C_LCON } // con64class reclassifies the constant of C_VCON and C_LCON class. func (c *ctxt7) con64class(a *obj.Addr) int { zeroCount := 0 negCount := 0 for i := uint(0); i < 4; i++ { immh := uint32(a.Offset >> (i * 16) & 0xffff) if immh == 0 { zeroCount++ } else if immh == 0xffff { negCount++ } } if zeroCount >= 3 || negCount >= 3 { return C_MOVCON } else if zeroCount == 2 || negCount == 2 { return C_MOVCON2 } else if zeroCount == 1 || negCount == 1 { return C_MOVCON3 } else { return C_VCON } } // loadStoreClass reclassifies a load or store operation based on its offset. func (c *ctxt7) loadStoreClass(p *obj.Prog, lsc int, v int64) int { // Avoid reclassification of pre/post-indexed loads and stores. if p.Scond == C_XPRE || p.Scond == C_XPOST { return lsc } if cmp(C_NSAUTO, lsc) || cmp(C_NSOREG, lsc) { return lsc } needsPool := true if v >= -4095 && v <= 4095 { needsPool = false } switch p.As { case AMOVB, AMOVBU: if cmp(C_UAUTO4K, lsc) || cmp(C_UOREG4K, lsc) { return lsc } if v >= 0 && v <= 0xffffff { needsPool = false } case AMOVH, AMOVHU: if cmp(C_UAUTO8K, lsc) || cmp(C_UOREG8K, lsc) { return lsc } if v >= 0 && v <= 0xfff000+0xfff<<1 && v&1 == 0 { needsPool = false } case AMOVW, AMOVWU, AFMOVS: if cmp(C_UAUTO16K, lsc) || cmp(C_UOREG16K, lsc) { return lsc } if v >= 0 && v <= 0xfff000+0xfff<<2 && v&3 == 0 { needsPool = false } case AMOVD, AFMOVD: if cmp(C_UAUTO32K, lsc) || cmp(C_UOREG32K, lsc) { return lsc } if v >= 0 && v <= 0xfff000+0xfff<<3 && v&7 == 0 { needsPool = false } case AFMOVQ: if cmp(C_UAUTO64K, lsc) || cmp(C_UOREG64K, lsc) { return lsc } if v >= 0 && v <= 0xfff000+0xfff<<4 && v&15 == 0 { needsPool = false } } if needsPool && cmp(C_LAUTO, lsc) { return C_LAUTOPOOL } if needsPool && cmp(C_LOREG, lsc) { return C_LOREGPOOL } return lsc } // loadStorePairClass reclassifies a load or store pair operation based on its offset. func (c *ctxt7) loadStorePairClass(p *obj.Prog, lsc int, v int64) int { // Avoid reclassification of pre/post-indexed loads and stores. if p.Scond == C_XPRE || p.Scond == C_XPOST { return lsc } if cmp(C_NAUTO4K, lsc) || cmp(C_NOREG4K, lsc) { return lsc } if cmp(C_UAUTO4K, lsc) || cmp(C_UOREG4K, lsc) { return lsc } needsPool := true if v >= 0 && v <= 0xffffff { needsPool = false } if needsPool && cmp(C_LAUTO, lsc) { return C_LAUTOPOOL } if needsPool && cmp(C_LOREG, lsc) { return C_LOREGPOOL } return lsc } func (c *ctxt7) aclass(a *obj.Addr) int { switch a.Type { case obj.TYPE_NONE: return C_NONE case obj.TYPE_REG: return rclass(a.Reg) case obj.TYPE_REGREG: return C_PAIR case obj.TYPE_SHIFT: return C_SHIFT case obj.TYPE_REGLIST: return C_LIST case obj.TYPE_MEM: // The base register should be an integer register. if int16(REG_F0) <= a.Reg && a.Reg <= int16(REG_V31) { break } switch a.Name { case obj.NAME_EXTERN, obj.NAME_STATIC: if a.Sym == nil { break } c.instoffset = a.Offset if a.Sym != nil { // use relocation if a.Sym.Type == objabi.STLSBSS { if c.ctxt.Flag_shared { return C_TLS_IE } else { return C_TLS_LE } } return C_ADDR } return C_LEXT case obj.NAME_GOTREF: return C_GOTADDR case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } // The frame top 8 or 16 bytes are for FP c.instoffset = int64(c.autosize) + a.Offset - int64(c.extrasize) return autoclass(c.instoffset) case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset + 8 return autoclass(c.instoffset) case obj.NAME_NONE: if a.Index != 0 { if a.Offset != 0 { if isRegShiftOrExt(a) { // extended or shifted register offset, (Rn)(Rm.UXTW<<2) or (Rn)(Rm<<2). return C_ROFF } return C_GOK } // register offset, (Rn)(Rm) return C_ROFF } c.instoffset = a.Offset return oregclass(c.instoffset) } return C_GOK case obj.TYPE_FCONST: return C_FCON case obj.TYPE_TEXTSIZE: return C_TEXTSIZE case obj.TYPE_CONST, obj.TYPE_ADDR: switch a.Name { case obj.NAME_NONE: c.instoffset = a.Offset if a.Reg != 0 && a.Reg != REGZERO { break } v := c.instoffset if v == 0 { return C_ZCON } if isaddcon(v) { if v <= 0xFFF { if isbitcon(uint64(v)) { return C_ABCON0 } return C_ADDCON0 } if isbitcon(uint64(v)) { return C_ABCON } if movcon(v) >= 0 { return C_AMCON } if movcon(^v) >= 0 { return C_AMCON } return C_ADDCON } t := movcon(v) if t >= 0 { if isbitcon(uint64(v)) { return C_MBCON } return C_MOVCON } t = movcon(^v) if t >= 0 { if isbitcon(uint64(v)) { return C_MBCON } return C_MOVCON } if isbitcon(uint64(v)) { return C_BITCON } if 0 <= v && v <= 0xffffff { return C_ADDCON2 } if uint64(v) == uint64(uint32(v)) || v == int64(int32(v)) { return C_LCON } return C_VCON case obj.NAME_EXTERN, obj.NAME_STATIC: if a.Sym == nil { return C_GOK } if a.Sym.Type == objabi.STLSBSS { c.ctxt.Diag("taking address of TLS variable is not supported") } c.instoffset = a.Offset return C_VCONADDR case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } // The frame top 8 or 16 bytes are for FP c.instoffset = int64(c.autosize) + a.Offset - int64(c.extrasize) case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset + 8 default: return C_GOK } cf := c.instoffset if isaddcon(cf) || isaddcon(-cf) { return C_AACON } if isaddcon2(cf) { return C_AACON2 } return C_LACON case obj.TYPE_BRANCH: return C_SBRA case obj.TYPE_SPECIAL: opd := SpecialOperand(a.Offset) if SPOP_EQ <= opd && opd <= SPOP_NV { return C_COND } return C_SPOP } return C_GOK } func (c *ctxt7) oplook(p *obj.Prog) *Optab { a1 := int(p.Optab) if a1 != 0 { return &optab[a1-1] } a1 = int(p.From.Class) if a1 == 0 { a1 = c.aclass(&p.From) // do not break C_ADDCON2 when S bit is set if (p.As == AADDS || p.As == AADDSW || p.As == ASUBS || p.As == ASUBSW) && a1 == C_ADDCON2 { a1 = C_LCON } if p.From.Type == obj.TYPE_CONST && p.From.Name == obj.NAME_NONE { if p.As == AMOVW || isADDWop(p.As) || isANDWop(p.As) { // For 32-bit instruction with constant, we need to // treat its offset value as 32 bits to classify it. a1 = c.con32class(&p.From) // do not break C_ADDCON2 when S bit is set if (p.As == AADDSW || p.As == ASUBSW) && a1 == C_ADDCON2 { a1 = C_LCON } } if ((p.As == AMOVD) || isANDop(p.As) || isADDop(p.As)) && (a1 == C_LCON || a1 == C_VCON) { // more specific classification of 64-bit integers a1 = c.con64class(&p.From) } } if p.From.Type == obj.TYPE_MEM { if isMOVop(p.As) && (cmp(C_LAUTO, a1) || cmp(C_LOREG, a1)) { // More specific classification of large offset loads and stores. a1 = c.loadStoreClass(p, a1, c.instoffset) } if isLoadStorePairOp(p.As) && (cmp(C_LAUTO, a1) || cmp(C_LOREG, a1)) { // More specific classification of large offset loads and stores. a1 = c.loadStorePairClass(p, a1, c.instoffset) } } p.From.Class = int8(a1) } a2 := C_NONE if p.Reg != 0 { a2 = rclass(p.Reg) } a3 := C_NONE if p.GetFrom3() != nil { a3 = int(p.GetFrom3().Class) if a3 == 0 { a3 = c.aclass(p.GetFrom3()) p.GetFrom3().Class = int8(a3) } } a4 := int(p.To.Class) if a4 == 0 { a4 = c.aclass(&p.To) if p.To.Type == obj.TYPE_MEM { if isMOVop(p.As) && (cmp(C_LAUTO, a4) || cmp(C_LOREG, a4)) { // More specific classification of large offset loads and stores. a4 = c.loadStoreClass(p, a4, c.instoffset) } if isLoadStorePairOp(p.As) && (cmp(C_LAUTO, a4) || cmp(C_LOREG, a4)) { // More specific classification of large offset loads and stores. a4 = c.loadStorePairClass(p, a4, c.instoffset) } } p.To.Class = int8(a4) } a5 := C_NONE if p.RegTo2 != 0 { a5 = rclass(p.RegTo2) } else if p.GetTo2() != nil { a5 = int(p.GetTo2().Class) if a5 == 0 { a5 = c.aclass(p.GetTo2()) p.GetTo2().Class = int8(a5) } } if false { fmt.Printf("oplook %v %d %d %d %d %d\n", p.As, a1, a2, a3, a4, a5) fmt.Printf("\t\t%d %d\n", p.From.Type, p.To.Type) } ops := oprange[p.As&obj.AMask] c1 := &xcmp[a1] c2 := &xcmp[a2] c3 := &xcmp[a3] c4 := &xcmp[a4] c5 := &xcmp[a5] for i := range ops { op := &ops[i] if c1[op.a1] && c2[op.a2] && c3[op.a3] && c4[op.a4] && c5[op.a5] && p.Scond == op.scond { p.Optab = uint16(cap(optab) - cap(ops) + i + 1) return op } } c.ctxt.Diag("illegal combination: %v %v %v %v %v %v, %d %d", p, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4), DRconv(a5), p.From.Type, p.To.Type) // Turn illegal instruction into an UNDEF, avoid crashing in asmout return &Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 90, 4, 0, 0, 0} } func cmp(a int, b int) bool { if a == b { return true } switch a { case C_RSP: if b == C_REG { return true } case C_ZREG: if b == C_REG { return true } case C_ADDCON0: if b == C_ZCON || b == C_ABCON0 { return true } case C_ADDCON: if b == C_ZCON || b == C_ABCON0 || b == C_ADDCON0 || b == C_ABCON || b == C_AMCON { return true } case C_MBCON: if b == C_ABCON0 { return true } case C_BITCON: if b == C_ABCON0 || b == C_ABCON || b == C_MBCON { return true } case C_MOVCON: if b == C_MBCON || b == C_ZCON || b == C_ADDCON0 || b == C_ABCON0 || b == C_AMCON { return true } case C_ADDCON2: if b == C_ZCON || b == C_ADDCON || b == C_ADDCON0 { return true } case C_LCON: if b == C_ZCON || b == C_BITCON || b == C_ADDCON || b == C_ADDCON0 || b == C_ABCON || b == C_ABCON0 || b == C_MBCON || b == C_MOVCON || b == C_ADDCON2 || b == C_AMCON { return true } case C_MOVCON2: return cmp(C_LCON, b) case C_VCON: return cmp(C_LCON, b) case C_LACON: if b == C_AACON || b == C_AACON2 { return true } case C_SEXT2: if b == C_SEXT1 { return true } case C_SEXT4: if b == C_SEXT1 || b == C_SEXT2 { return true } case C_SEXT8: if b >= C_SEXT1 && b <= C_SEXT4 { return true } case C_SEXT16: if b >= C_SEXT1 && b <= C_SEXT8 { return true } case C_LEXT: if b >= C_SEXT1 && b <= C_SEXT16 { return true } case C_NSAUTO_8: if b == C_NSAUTO_16 { return true } case C_NSAUTO_4: if b == C_NSAUTO_16 || b == C_NSAUTO_8 { return true } case C_NSAUTO: switch b { case C_NSAUTO_4, C_NSAUTO_8, C_NSAUTO_16: return true } case C_NPAUTO_16: switch b { case C_NSAUTO_16: return true } case C_NPAUTO: switch b { case C_NSAUTO_16, C_NSAUTO_8, C_NPAUTO_16: return true } case C_NQAUTO_16: switch b { case C_NSAUTO_16, C_NPAUTO_16: return true } case C_NAUTO4K: switch b { case C_NSAUTO_16, C_NSAUTO_8, C_NSAUTO_4, C_NSAUTO, C_NPAUTO_16, C_NPAUTO, C_NQAUTO_16: return true } case C_PSAUTO_16: if b == C_ZAUTO { return true } case C_PSAUTO_8: if b == C_ZAUTO || b == C_PSAUTO_16 { return true } case C_PSAUTO_4: switch b { case C_ZAUTO, C_PSAUTO_16, C_PSAUTO_8: return true } case C_PSAUTO: switch b { case C_ZAUTO, C_PSAUTO_16, C_PSAUTO_8, C_PSAUTO_4: return true } case C_PPAUTO_16: switch b { case C_ZAUTO, C_PSAUTO_16: return true } case C_PPAUTO: switch b { case C_ZAUTO, C_PSAUTO_16, C_PSAUTO_8, C_PPAUTO_16: return true } case C_PQAUTO_16: switch b { case C_ZAUTO, C_PSAUTO_16, C_PPAUTO_16: return true } case C_UAUTO4K: switch b { case C_ZAUTO, C_PSAUTO, C_PSAUTO_4, C_PSAUTO_8, C_PSAUTO_16, C_PPAUTO, C_PPAUTO_16, C_PQAUTO_16, C_UAUTO4K_2, C_UAUTO4K_4, C_UAUTO4K_8, C_UAUTO4K_16: return true } case C_UAUTO8K: switch b { case C_ZAUTO, C_PSAUTO, C_PSAUTO_4, C_PSAUTO_8, C_PSAUTO_16, C_PPAUTO, C_PPAUTO_16, C_PQAUTO_16, C_UAUTO4K_2, C_UAUTO4K_4, C_UAUTO4K_8, C_UAUTO4K_16, C_UAUTO8K_4, C_UAUTO8K_8, C_UAUTO8K_16: return true } case C_UAUTO16K: switch b { case C_ZAUTO, C_PSAUTO, C_PSAUTO_4, C_PSAUTO_8, C_PSAUTO_16, C_PPAUTO, C_PPAUTO_16, C_PQAUTO_16, C_UAUTO4K_4, C_UAUTO4K_8, C_UAUTO4K_16, C_UAUTO8K_4, C_UAUTO8K_8, C_UAUTO8K_16, C_UAUTO16K_8, C_UAUTO16K_16: return true } case C_UAUTO32K: switch b { case C_ZAUTO, C_PSAUTO, C_PSAUTO_4, C_PSAUTO_8, C_PSAUTO_16, C_PPAUTO, C_PPAUTO_16, C_PQAUTO_16, C_UAUTO4K_8, C_UAUTO4K_16, C_UAUTO8K_8, C_UAUTO8K_16, C_UAUTO16K_8, C_UAUTO16K_16, C_UAUTO32K_16: return true } case C_UAUTO64K: switch b { case C_ZAUTO, C_PSAUTO, C_PSAUTO_4, C_PSAUTO_8, C_PSAUTO_16, C_PPAUTO_16, C_PQAUTO_16, C_UAUTO4K_16, C_UAUTO8K_16, C_UAUTO16K_16, C_UAUTO32K_16: return true } case C_LAUTO: switch b { case C_ZAUTO, C_NSAUTO, C_NSAUTO_4, C_NSAUTO_8, C_NSAUTO_16, C_NPAUTO_16, C_NPAUTO, C_NQAUTO_16, C_NAUTO4K, C_PSAUTO, C_PSAUTO_4, C_PSAUTO_8, C_PSAUTO_16, C_PPAUTO, C_PPAUTO_16, C_PQAUTO_16, C_UAUTO4K, C_UAUTO4K_2, C_UAUTO4K_4, C_UAUTO4K_8, C_UAUTO4K_16, C_UAUTO8K, C_UAUTO8K_4, C_UAUTO8K_8, C_UAUTO8K_16, C_UAUTO16K, C_UAUTO16K_8, C_UAUTO16K_16, C_UAUTO32K, C_UAUTO32K_16, C_UAUTO64K: return true } case C_NSOREG_8: if b == C_NSOREG_16 { return true } case C_NSOREG_4: if b == C_NSOREG_8 || b == C_NSOREG_16 { return true } case C_NSOREG: switch b { case C_NSOREG_4, C_NSOREG_8, C_NSOREG_16: return true } case C_NPOREG_16: switch b { case C_NSOREG_16: return true } case C_NPOREG: switch b { case C_NSOREG_16, C_NSOREG_8, C_NPOREG_16: return true } case C_NQOREG_16: switch b { case C_NSOREG_16, C_NPOREG_16: return true } case C_NOREG4K: switch b { case C_NSOREG_16, C_NSOREG_8, C_NSOREG_4, C_NSOREG, C_NPOREG_16, C_NPOREG, C_NQOREG_16: return true } case C_PSOREG_16: if b == C_ZOREG { return true } case C_PSOREG_8: if b == C_ZOREG || b == C_PSOREG_16 { return true } case C_PSOREG_4: switch b { case C_ZOREG, C_PSOREG_16, C_PSOREG_8: return true } case C_PSOREG: switch b { case C_ZOREG, C_PSOREG_16, C_PSOREG_8, C_PSOREG_4: return true } case C_PPOREG_16: switch b { case C_ZOREG, C_PSOREG_16: return true } case C_PPOREG: switch b { case C_ZOREG, C_PSOREG_16, C_PSOREG_8, C_PPOREG_16: return true } case C_PQOREG_16: switch b { case C_ZOREG, C_PSOREG_16, C_PPOREG_16: return true } case C_UOREG4K: switch b { case C_ZOREG, C_PSOREG, C_PSOREG_4, C_PSOREG_8, C_PSOREG_16, C_PPOREG, C_PPOREG_16, C_PQOREG_16, C_UOREG4K_2, C_UOREG4K_4, C_UOREG4K_8, C_UOREG4K_16: return true } case C_UOREG8K: switch b { case C_ZOREG, C_PSOREG, C_PSOREG_4, C_PSOREG_8, C_PSOREG_16, C_PPOREG, C_PPOREG_16, C_PQOREG_16, C_UOREG4K_2, C_UOREG4K_4, C_UOREG4K_8, C_UOREG4K_16, C_UOREG8K_4, C_UOREG8K_8, C_UOREG8K_16: return true } case C_UOREG16K: switch b { case C_ZOREG, C_PSOREG, C_PSOREG_4, C_PSOREG_8, C_PSOREG_16, C_PPOREG, C_PPOREG_16, C_PQOREG_16, C_UOREG4K_4, C_UOREG4K_8, C_UOREG4K_16, C_UOREG8K_4, C_UOREG8K_8, C_UOREG8K_16, C_UOREG16K_8, C_UOREG16K_16: return true } case C_UOREG32K: switch b { case C_ZOREG, C_PSOREG, C_PSOREG_4, C_PSOREG_8, C_PSOREG_16, C_PPOREG, C_PPOREG_16, C_PQOREG_16, C_UOREG4K_8, C_UOREG4K_16, C_UOREG8K_8, C_UOREG8K_16, C_UOREG16K_8, C_UOREG16K_16, C_UOREG32K_16: return true } case C_UOREG64K: switch b { case C_ZOREG, C_PSOREG, C_PSOREG_4, C_PSOREG_8, C_PSOREG_16, C_PPOREG_16, C_PQOREG_16, C_UOREG4K_16, C_UOREG8K_16, C_UOREG16K_16, C_UOREG32K_16: return true } case C_LOREG: switch b { case C_ZOREG, C_NSOREG, C_NSOREG_4, C_NSOREG_8, C_NSOREG_16, C_NPOREG, C_NPOREG_16, C_NQOREG_16, C_NOREG4K, C_PSOREG, C_PSOREG_4, C_PSOREG_8, C_PSOREG_16, C_PPOREG, C_PPOREG_16, C_PQOREG_16, C_UOREG4K, C_UOREG4K_2, C_UOREG4K_4, C_UOREG4K_8, C_UOREG4K_16, C_UOREG8K, C_UOREG8K_4, C_UOREG8K_8, C_UOREG8K_16, C_UOREG16K, C_UOREG16K_8, C_UOREG16K_16, C_UOREG32K, C_UOREG32K_16, C_UOREG64K: return true } case C_LBRA: if b == C_SBRA { return true } } return false } func ocmp(p1, p2 Optab) int { if p1.as != p2.as { return int(p1.as) - int(p2.as) } if p1.a1 != p2.a1 { return int(p1.a1) - int(p2.a1) } if p1.a2 != p2.a2 { return int(p1.a2) - int(p2.a2) } if p1.a3 != p2.a3 { return int(p1.a3) - int(p2.a3) } if p1.a4 != p2.a4 { return int(p1.a4) - int(p2.a4) } if p1.scond != p2.scond { return int(p1.scond) - int(p2.scond) } return 0 } func oprangeset(a obj.As, t []Optab) { oprange[a&obj.AMask] = t } func buildop(ctxt *obj.Link) { if oprange[AAND&obj.AMask] != nil { // Already initialized; stop now. // This happens in the cmd/asm tests, // each of which re-initializes the arch. return } for i := 0; i < C_GOK; i++ { for j := 0; j < C_GOK; j++ { if cmp(j, i) { xcmp[i][j] = true } } } slices.SortFunc(optab, ocmp) for i := 0; i < len(optab); i++ { as, start := optab[i].as, i for ; i < len(optab)-1; i++ { if optab[i+1].as != as { break } } t := optab[start : i+1] oprangeset(as, t) switch as { default: ctxt.Diag("unknown op in build: %v", as) ctxt.DiagFlush() log.Fatalf("bad code") case AADD: oprangeset(AADDS, t) oprangeset(ASUB, t) oprangeset(ASUBS, t) oprangeset(AADDW, t) oprangeset(AADDSW, t) oprangeset(ASUBW, t) oprangeset(ASUBSW, t) case AAND: /* logical immediate, logical shifted register */ oprangeset(AANDW, t) oprangeset(AEOR, t) oprangeset(AEORW, t) oprangeset(AORR, t) oprangeset(AORRW, t) oprangeset(ABIC, t) oprangeset(ABICW, t) oprangeset(AEON, t) oprangeset(AEONW, t) oprangeset(AORN, t) oprangeset(AORNW, t) case AANDS: /* logical immediate, logical shifted register, set flags, cannot target RSP */ oprangeset(AANDSW, t) oprangeset(ABICS, t) oprangeset(ABICSW, t) case ANEG: oprangeset(ANEGS, t) oprangeset(ANEGSW, t) oprangeset(ANEGW, t) case AADC: /* rn=Rd */ oprangeset(AADCW, t) oprangeset(AADCS, t) oprangeset(AADCSW, t) oprangeset(ASBC, t) oprangeset(ASBCW, t) oprangeset(ASBCS, t) oprangeset(ASBCSW, t) case ANGC: /* rn=REGZERO */ oprangeset(ANGCW, t) oprangeset(ANGCS, t) oprangeset(ANGCSW, t) case ACMP: oprangeset(ACMPW, t) oprangeset(ACMN, t) oprangeset(ACMNW, t) case ATST: oprangeset(ATSTW, t) /* register/register, and shifted */ case AMVN: oprangeset(AMVNW, t) case AMOVK: oprangeset(AMOVKW, t) oprangeset(AMOVN, t) oprangeset(AMOVNW, t) oprangeset(AMOVZ, t) oprangeset(AMOVZW, t) case ASWPD: for i := range atomicLDADD { oprangeset(i, t) } for i := range atomicSWP { if i == ASWPD { continue } oprangeset(i, t) } case ACASPD: oprangeset(ACASPW, t) case ABEQ: oprangeset(ABNE, t) oprangeset(ABCS, t) oprangeset(ABHS, t) oprangeset(ABCC, t) oprangeset(ABLO, t) oprangeset(ABMI, t) oprangeset(ABPL, t) oprangeset(ABVS, t) oprangeset(ABVC, t) oprangeset(ABHI, t) oprangeset(ABLS, t) oprangeset(ABGE, t) oprangeset(ABLT, t) oprangeset(ABGT, t) oprangeset(ABLE, t) case ALSL: oprangeset(ALSLW, t) oprangeset(ALSR, t) oprangeset(ALSRW, t) oprangeset(AASR, t) oprangeset(AASRW, t) oprangeset(AROR, t) oprangeset(ARORW, t) case ACLS: oprangeset(ACLSW, t) oprangeset(ACLZ, t) oprangeset(ACLZW, t) oprangeset(ARBIT, t) oprangeset(ARBITW, t) oprangeset(AREV, t) oprangeset(AREVW, t) oprangeset(AREV16, t) oprangeset(AREV16W, t) oprangeset(AREV32, t) case ASDIV: oprangeset(ASDIVW, t) oprangeset(AUDIV, t) oprangeset(AUDIVW, t) oprangeset(ACRC32B, t) oprangeset(ACRC32CB, t) oprangeset(ACRC32CH, t) oprangeset(ACRC32CW, t) oprangeset(ACRC32CX, t) oprangeset(ACRC32H, t) oprangeset(ACRC32W, t) oprangeset(ACRC32X, t) case AMADD: oprangeset(AMADDW, t) oprangeset(AMSUB, t) oprangeset(AMSUBW, t) oprangeset(ASMADDL, t) oprangeset(ASMSUBL, t) oprangeset(AUMADDL, t) oprangeset(AUMSUBL, t) case AREM: oprangeset(AREMW, t) oprangeset(AUREM, t) oprangeset(AUREMW, t) case AMUL: oprangeset(AMULW, t) oprangeset(AMNEG, t) oprangeset(AMNEGW, t) oprangeset(ASMNEGL, t) oprangeset(ASMULL, t) oprangeset(ASMULH, t) oprangeset(AUMNEGL, t) oprangeset(AUMULH, t) oprangeset(AUMULL, t) case AMOVB: oprangeset(AMOVBU, t) case AMOVH: oprangeset(AMOVHU, t) case AMOVW: oprangeset(AMOVWU, t) case ABFM: oprangeset(ABFMW, t) oprangeset(ASBFM, t) oprangeset(ASBFMW, t) oprangeset(AUBFM, t) oprangeset(AUBFMW, t) case ABFI: oprangeset(ABFIW, t) oprangeset(ABFXIL, t) oprangeset(ABFXILW, t) oprangeset(ASBFIZ, t) oprangeset(ASBFIZW, t) oprangeset(ASBFX, t) oprangeset(ASBFXW, t) oprangeset(AUBFIZ, t) oprangeset(AUBFIZW, t) oprangeset(AUBFX, t) oprangeset(AUBFXW, t) case AEXTR: oprangeset(AEXTRW, t) case ASXTB: oprangeset(ASXTBW, t) oprangeset(ASXTH, t) oprangeset(ASXTHW, t) oprangeset(ASXTW, t) oprangeset(AUXTB, t) oprangeset(AUXTH, t) oprangeset(AUXTW, t) oprangeset(AUXTBW, t) oprangeset(AUXTHW, t) case ACCMN: oprangeset(ACCMNW, t) oprangeset(ACCMP, t) oprangeset(ACCMPW, t) case ACSEL: oprangeset(ACSELW, t) oprangeset(ACSINC, t) oprangeset(ACSINCW, t) oprangeset(ACSINV, t) oprangeset(ACSINVW, t) oprangeset(ACSNEG, t) oprangeset(ACSNEGW, t) case ACINC: // aliases Rm=Rn, !cond oprangeset(ACINCW, t) oprangeset(ACINV, t) oprangeset(ACINVW, t) oprangeset(ACNEG, t) oprangeset(ACNEGW, t) // aliases, Rm=Rn=REGZERO, !cond case ACSET: oprangeset(ACSETW, t) oprangeset(ACSETM, t) oprangeset(ACSETMW, t) case AMOVD, AB, ABL, AWORD, ADWORD, obj.ARET, obj.ATEXT: break case AFLDPQ: break case AFSTPQ: break case ALDP: oprangeset(AFLDPD, t) case ASTP: oprangeset(AFSTPD, t) case ASTPW: oprangeset(AFSTPS, t) case ALDPW: oprangeset(ALDPSW, t) oprangeset(AFLDPS, t) case AERET: oprangeset(AWFE, t) oprangeset(AWFI, t) oprangeset(AYIELD, t) oprangeset(ASEV, t) oprangeset(ASEVL, t) oprangeset(ANOOP, t) oprangeset(ADRPS, t) case ACBZ: oprangeset(ACBZW, t) oprangeset(ACBNZ, t) oprangeset(ACBNZW, t) case ATBZ: oprangeset(ATBNZ, t) case AADR, AADRP: break case ACLREX: break case ASVC: oprangeset(AHVC, t) oprangeset(AHLT, t) oprangeset(ASMC, t) oprangeset(ABRK, t) oprangeset(ADCPS1, t) oprangeset(ADCPS2, t) oprangeset(ADCPS3, t) case AFADDS: oprangeset(AFADDD, t) oprangeset(AFSUBS, t) oprangeset(AFSUBD, t) oprangeset(AFMULS, t) oprangeset(AFMULD, t) oprangeset(AFNMULS, t) oprangeset(AFNMULD, t) oprangeset(AFDIVS, t) oprangeset(AFMAXD, t) oprangeset(AFMAXS, t) oprangeset(AFMIND, t) oprangeset(AFMINS, t) oprangeset(AFMAXNMD, t) oprangeset(AFMAXNMS, t) oprangeset(AFMINNMD, t) oprangeset(AFMINNMS, t) oprangeset(AFDIVD, t) case AFMSUBD: oprangeset(AFMSUBS, t) oprangeset(AFMADDS, t) oprangeset(AFMADDD, t) oprangeset(AFNMSUBS, t) oprangeset(AFNMSUBD, t) oprangeset(AFNMADDS, t) oprangeset(AFNMADDD, t) case AFCVTSD: oprangeset(AFCVTDS, t) oprangeset(AFABSD, t) oprangeset(AFABSS, t) oprangeset(AFNEGD, t) oprangeset(AFNEGS, t) oprangeset(AFSQRTD, t) oprangeset(AFSQRTS, t) oprangeset(AFRINTNS, t) oprangeset(AFRINTND, t) oprangeset(AFRINTPS, t) oprangeset(AFRINTPD, t) oprangeset(AFRINTMS, t) oprangeset(AFRINTMD, t) oprangeset(AFRINTZS, t) oprangeset(AFRINTZD, t) oprangeset(AFRINTAS, t) oprangeset(AFRINTAD, t) oprangeset(AFRINTXS, t) oprangeset(AFRINTXD, t) oprangeset(AFRINTIS, t) oprangeset(AFRINTID, t) oprangeset(AFCVTDH, t) oprangeset(AFCVTHS, t) oprangeset(AFCVTHD, t) oprangeset(AFCVTSH, t) case AFCMPS: oprangeset(AFCMPD, t) oprangeset(AFCMPES, t) oprangeset(AFCMPED, t) case AFCCMPS: oprangeset(AFCCMPD, t) oprangeset(AFCCMPES, t) oprangeset(AFCCMPED, t) case AFCSELD: oprangeset(AFCSELS, t) case AFMOVQ, AFMOVD, AFMOVS, AVMOVQ, AVMOVD, AVMOVS: break case AFCVTZSD: oprangeset(AFCVTZSDW, t) oprangeset(AFCVTZSS, t) oprangeset(AFCVTZSSW, t) oprangeset(AFCVTZUD, t) oprangeset(AFCVTZUDW, t) oprangeset(AFCVTZUS, t) oprangeset(AFCVTZUSW, t) case ASCVTFD: oprangeset(ASCVTFS, t) oprangeset(ASCVTFWD, t) oprangeset(ASCVTFWS, t) oprangeset(AUCVTFD, t) oprangeset(AUCVTFS, t) oprangeset(AUCVTFWD, t) oprangeset(AUCVTFWS, t) case ASYS: oprangeset(AAT, t) oprangeset(AIC, t) case ATLBI: oprangeset(ADC, t) case ASYSL, AHINT: break case ADMB: oprangeset(ADSB, t) oprangeset(AISB, t) case AMRS, AMSR: break case ALDAR: oprangeset(ALDARW, t) oprangeset(ALDARB, t) oprangeset(ALDARH, t) fallthrough case ALDXR: oprangeset(ALDXRB, t) oprangeset(ALDXRH, t) oprangeset(ALDXRW, t) case ALDAXR: oprangeset(ALDAXRB, t) oprangeset(ALDAXRH, t) oprangeset(ALDAXRW, t) case ALDXP: oprangeset(ALDXPW, t) oprangeset(ALDAXP, t) oprangeset(ALDAXPW, t) case ASTLR: oprangeset(ASTLRB, t) oprangeset(ASTLRH, t) oprangeset(ASTLRW, t) case ASTXR: oprangeset(ASTXRB, t) oprangeset(ASTXRH, t) oprangeset(ASTXRW, t) case ASTLXR: oprangeset(ASTLXRB, t) oprangeset(ASTLXRH, t) oprangeset(ASTLXRW, t) case ASTXP: oprangeset(ASTLXP, t) oprangeset(ASTLXPW, t) oprangeset(ASTXPW, t) case AVADDP: oprangeset(AVAND, t) oprangeset(AVCMEQ, t) oprangeset(AVORR, t) oprangeset(AVEOR, t) oprangeset(AVBSL, t) oprangeset(AVBIT, t) oprangeset(AVCMTST, t) oprangeset(AVUMAX, t) oprangeset(AVUMIN, t) oprangeset(AVUZP1, t) oprangeset(AVUZP2, t) oprangeset(AVBIF, t) case AVADD: oprangeset(AVSUB, t) oprangeset(AVRAX1, t) case AAESD: oprangeset(AAESE, t) oprangeset(AAESMC, t) oprangeset(AAESIMC, t) oprangeset(ASHA1SU1, t) oprangeset(ASHA256SU0, t) oprangeset(ASHA512SU0, t) oprangeset(ASHA1H, t) case ASHA1C: oprangeset(ASHA1P, t) oprangeset(ASHA1M, t) oprangeset(ASHA256H, t) oprangeset(ASHA256H2, t) oprangeset(ASHA512H, t) oprangeset(ASHA512H2, t) case ASHA1SU0: oprangeset(ASHA256SU1, t) oprangeset(ASHA512SU1, t) case AVADDV: oprangeset(AVUADDLV, t) case AVFMLA: oprangeset(AVFMLS, t) case AVPMULL: oprangeset(AVPMULL2, t) case AVUSHR: oprangeset(AVSHL, t) oprangeset(AVSRI, t) oprangeset(AVSLI, t) oprangeset(AVUSRA, t) case AVREV32: oprangeset(AVCNT, t) oprangeset(AVRBIT, t) oprangeset(AVREV64, t) oprangeset(AVREV16, t) case AVZIP1: oprangeset(AVZIP2, t) oprangeset(AVTRN1, t) oprangeset(AVTRN2, t) case AVUXTL: oprangeset(AVUXTL2, t) case AVUSHLL: oprangeset(AVUSHLL2, t) case AVLD1R: oprangeset(AVLD2, t) oprangeset(AVLD2R, t) oprangeset(AVLD3, t) oprangeset(AVLD3R, t) oprangeset(AVLD4, t) oprangeset(AVLD4R, t) case AVEOR3: oprangeset(AVBCAX, t) case AVUADDW: oprangeset(AVUADDW2, t) case AVTBL: oprangeset(AVTBX, t) case AVCNT, AVMOV, AVLD1, AVST1, AVST2, AVST3, AVST4, AVDUP, AVMOVI, APRFM, AVEXT, AVXAR: break case obj.ANOP, obj.AUNDEF, obj.AFUNCDATA, obj.APCALIGN, obj.APCALIGNMAX, obj.APCDATA, obj.ADUFFZERO, obj.ADUFFCOPY: break } } } // chipfloat7() checks if the immediate constants available in FMOVS/FMOVD instructions. // For details of the range of constants available, see // http://infocenter.arm.com/help/topic/com.arm.doc.dui0473m/dom1359731199385.html. func (c *ctxt7) chipfloat7(e float64) int { ei := math.Float64bits(e) l := uint32(int32(ei)) h := uint32(int32(ei >> 32)) if l != 0 || h&0xffff != 0 { return -1 } h1 := h & 0x7fc00000 if h1 != 0x40000000 && h1 != 0x3fc00000 { return -1 } n := 0 // sign bit (a) if h&0x80000000 != 0 { n |= 1 << 7 } // exp sign bit (b) if h1 == 0x3fc00000 { n |= 1 << 6 } // rest of exp and mantissa (cd-efgh) n |= int((h >> 16) & 0x3f) //print("match %.8lux %.8lux %d\n", l, h, n); return n } /* form offset parameter to SYS; special register number */ func SYSARG5(op0 int, op1 int, Cn int, Cm int, op2 int) int { return op0<<19 | op1<<16 | Cn<<12 | Cm<<8 | op2<<5 } func SYSARG4(op1 int, Cn int, Cm int, op2 int) int { return SYSARG5(0, op1, Cn, Cm, op2) } // checkUnpredictable checks if the source and transfer registers are the same register. // ARM64 manual says it is "constrained unpredictable" if the src and dst registers of STP/LDP are same. func (c *ctxt7) checkUnpredictable(p *obj.Prog, isload bool, wback bool, rn int16, rt1 int16, rt2 int16) { if wback && rn != REGSP && (rn == rt1 || rn == rt2) { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } if isload && rt1 == rt2 { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } } /* checkindex checks if index >= 0 && index <= maxindex */ func (c *ctxt7) checkindex(p *obj.Prog, index, maxindex int) { if index < 0 || index > maxindex { c.ctxt.Diag("register element index out of range 0 to %d: %v", maxindex, p) } } /* checkoffset checks whether the immediate offset is valid for VLD[1-4].P and VST[1-4].P */ func (c *ctxt7) checkoffset(p *obj.Prog, as obj.As) { var offset, list, n, expect int64 switch as { case AVLD1, AVLD2, AVLD3, AVLD4, AVLD1R, AVLD2R, AVLD3R, AVLD4R: offset = p.From.Offset list = p.To.Offset case AVST1, AVST2, AVST3, AVST4: offset = p.To.Offset list = p.From.Offset default: c.ctxt.Diag("invalid operation on op %v", p.As) } opcode := (list >> 12) & 15 q := (list >> 30) & 1 size := (list >> 10) & 3 if offset == 0 { return } switch opcode { case 0x7: n = 1 // one register case 0xa: n = 2 // two registers case 0x6: n = 3 // three registers case 0x2: n = 4 // four registers default: c.ctxt.Diag("invalid register numbers in ARM64 register list: %v", p) } switch as { case AVLD1R, AVLD2R, AVLD3R, AVLD4R: if offset != n*(1<> 5) & 7 switch p.As { case AMOVB, AMOVBU: if amount != 0 { c.ctxt.Diag("invalid index shift amount: %v", p) } case AMOVH, AMOVHU: if amount != 1 && amount != 0 { c.ctxt.Diag("invalid index shift amount: %v", p) } case AMOVW, AMOVWU, AFMOVS: if amount != 2 && amount != 0 { c.ctxt.Diag("invalid index shift amount: %v", p) } case AMOVD, AFMOVD: if amount != 3 && amount != 0 { c.ctxt.Diag("invalid index shift amount: %v", p) } default: panic("invalid operation") } } func (c *ctxt7) asmout(p *obj.Prog, out []uint32) (count int) { o := c.oplook(p) var os [5]uint32 o1 := uint32(0) o2 := uint32(0) o3 := uint32(0) o4 := uint32(0) o5 := uint32(0) if false { /*debug['P']*/ fmt.Printf("%x: %v\ttype %d\n", uint32(p.Pc), p, o.type_) } switch o.type_ { default: c.ctxt.Diag("%v: unknown asm %d", p, o.type_) case 0: /* pseudo ops */ break case 1: /* op Rm,[Rn],Rd; default Rn=Rd -> op Rm<<0,[Rn,]Rd (shifted register) */ o1 = c.oprrr(p, p.As) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } if r == obj.REG_NONE { r = rt } o1 |= (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) case 2: /* add/sub $(uimm12|uimm24)[,R],R; cmp $(uimm12|uimm24),R */ if p.To.Reg == REG_RSP && isADDSop(p.As) { c.ctxt.Diag("illegal destination register: %v\n", p) } o1 = c.opirr(p, p.As) rt, r := p.To.Reg, p.Reg if p.To.Type == obj.TYPE_NONE { if (o1 & Sbit) == 0 { c.ctxt.Diag("ineffective ZR destination\n%v", p) } rt = REGZERO } if r == obj.REG_NONE { r = rt } v := c.regoff(&p.From) o1 = c.oaddi(p, p.As, v, rt, r) case 3: /* op R<> 10) & 63 is64bit := o1 & (1 << 31) if is64bit == 0 && amount >= 32 { c.ctxt.Diag("shift amount out of range 0 to 31: %v", p) } shift := (p.From.Offset >> 22) & 3 if (shift > 2 || shift < 0) && (isADDop(p.As) || isADDWop(p.As) || isNEGop(p.As)) { c.ctxt.Diag("unsupported shift operator: %v", p) } o1 |= uint32(p.From.Offset) /* includes reg, op, etc */ rt := int(p.To.Reg) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } r := int(p.Reg) if p.As == AMVN || p.As == AMVNW || isNEGop(p.As) { r = REGZERO } else if r == obj.REG_NONE { r = rt } o1 |= (uint32(r&31) << 5) | uint32(rt&31) case 4: /* mov $addcon, R; mov $recon, R; mov $racon, R; mov $addcon2, R */ rt, r := p.To.Reg, o.param if r == obj.REG_NONE { r = REGZERO } else if r == REGFROM { r = p.From.Reg } if r == obj.REG_NONE { r = REGSP } v := c.regoff(&p.From) a := AADD if v < 0 { a = ASUB v = -v } if o.size(c.ctxt, p) == 8 { // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = c.oaddi(p, a, v&0xfff000, rt, r) o2 = c.oaddi(p, a, v&0x000fff, rt, rt) break } o1 = c.oaddi(p, a, v, rt, r) case 5: /* b s; bl s */ o1 = c.opbra(p, p.As) if p.To.Sym == nil { o1 |= uint32(c.brdist(p, 0, 26, 2)) break } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_CALLARM64, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) case 6: /* b ,O(R); bl ,O(R) */ o1 = c.opbrr(p, p.As) o1 |= uint32(p.To.Reg&31) << 5 if p.As == obj.ACALL { c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_CALLIND, Off: int32(c.pc), }) } case 7: /* beq s */ o1 = c.opbra(p, p.As) o1 |= uint32(c.brdist(p, 0, 19, 2) << 5) case 8: /* lsl $c,[R],R -> ubfm $(W-1)-c,$(-c MOD (W-1)),Rn,Rd */ rt, rf := p.To.Reg, p.Reg if rf == obj.REG_NONE { rf = rt } v := p.From.Offset switch p.As { case AASR: o1 = c.opbfm(p, ASBFM, v, 63, rf, rt) case AASRW: o1 = c.opbfm(p, ASBFMW, v, 31, rf, rt) case ALSL: o1 = c.opbfm(p, AUBFM, (64-v)&63, 63-v, rf, rt) case ALSLW: o1 = c.opbfm(p, AUBFMW, (32-v)&31, 31-v, rf, rt) case ALSR: o1 = c.opbfm(p, AUBFM, v, 63, rf, rt) case ALSRW: o1 = c.opbfm(p, AUBFMW, v, 31, rf, rt) case AROR: o1 = c.opextr(p, AEXTR, v, rf, rf, rt) case ARORW: o1 = c.opextr(p, AEXTRW, v, rf, rf, rt) default: c.ctxt.Diag("bad shift $con\n%v", p) break } case 9: /* lsl Rm,[Rn],Rd -> lslv Rm, Rn, Rd */ o1 = c.oprrr(p, p.As) r := int(p.Reg) if r == obj.REG_NONE { r = int(p.To.Reg) } o1 |= (uint32(p.From.Reg&31) << 16) | (uint32(r&31) << 5) | uint32(p.To.Reg&31) case 10: /* brk/hvc/.../svc [$con] */ o1 = c.opimm(p, p.As) if p.From.Type != obj.TYPE_NONE { o1 |= uint32((p.From.Offset & 0xffff) << 5) } case 11: /* dword */ c.aclass(&p.To) o1 = uint32(c.instoffset) o2 = uint32(c.instoffset >> 32) if p.To.Sym != nil { c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDR, Off: int32(c.pc), Siz: 8, Sym: p.To.Sym, Add: p.To.Offset, }) o2 = 0 o1 = o2 } case 12: /* movT $vcon, reg */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. num := c.omovlconst(p.As, p, &p.From, int(p.To.Reg), os[:]) if num == 0 { c.ctxt.Diag("invalid constant: %v", p) } o1 = os[0] o2 = os[1] o3 = os[2] o4 = os[3] case 13: /* addop $vcon, [R], R (64 bit literal); cmp $lcon,R -> addop $lcon,R, ZR */ if p.Reg == REGTMP { c.ctxt.Diag("cannot use REGTMP as source: %v\n", p) } if p.To.Reg == REG_RSP && isADDSop(p.As) { c.ctxt.Diag("illegal destination register: %v\n", p) } o := uint32(0) num := uint8(0) cls := int(p.From.Class) if isADDWop(p.As) { if !cmp(C_LCON, cls) { c.ctxt.Diag("illegal combination: %v", p) } num = c.omovlconst(AMOVW, p, &p.From, REGTMP, os[:]) } else { num = c.omovlconst(AMOVD, p, &p.From, REGTMP, os[:]) } if num == 0 { c.ctxt.Diag("invalid constant: %v", p) } rt, r, rf := p.To.Reg, p.Reg, int16(REGTMP) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } if r == obj.REG_NONE { r = rt } if p.To.Type != obj.TYPE_NONE && (rt == REGSP || r == REGSP) { o = c.opxrrr(p, p.As, rt, r, rf, false) o |= LSL0_64 } else { o = c.oprrr(p, p.As) o |= uint32(rf&31) << 16 /* shift is 0 */ o |= uint32(r&31) << 5 o |= uint32(rt & 31) } os[num] = o o1 = os[0] o2 = os[1] o3 = os[2] o4 = os[3] o5 = os[4] case 14: /* word */ if c.aclass(&p.To) == C_ADDR { c.ctxt.Diag("address constant needs DWORD\n%v", p) } o1 = uint32(c.instoffset) if p.To.Sym != nil { // This case happens with words generated // in the PC stream as part of the literal pool. c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDR, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) o1 = 0 } case 15: /* mul/mneg/umulh/umull r,[r,]r; madd/msub/fmadd/fmsub/fnmadd/fnmsub Rm,Ra,Rn,Rd */ o1 = c.oprrr(p, p.As) rf := int(p.From.Reg) rt := int(p.To.Reg) var r int var ra int if p.From3Type() == obj.TYPE_REG { r = int(p.GetFrom3().Reg) ra = int(p.Reg) if ra == obj.REG_NONE { ra = REGZERO } } else { r = int(p.Reg) if r == obj.REG_NONE { r = rt } ra = REGZERO } o1 |= (uint32(rf&31) << 16) | (uint32(ra&31) << 10) | (uint32(r&31) << 5) | uint32(rt&31) case 16: /* XremY R[,R],R -> XdivY; XmsubY */ o1 = c.oprrr(p, p.As) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == obj.REG_NONE { r = rt } o1 |= (uint32(rf&31) << 16) | (uint32(r&31) << 5) | REGTMP&31 o2 = c.oprrr(p, AMSUBW) o2 |= o1 & (1 << 31) /* same size */ o2 |= (uint32(rf&31) << 16) | (uint32(r&31) << 10) | (REGTMP & 31 << 5) | uint32(rt&31) case 17: /* op Rm,[Rn],Rd; default Rn=ZR */ o1 = c.oprrr(p, p.As) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } if r == obj.REG_NONE { r = REGZERO } o1 |= (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) case 18: /* csel cond,Rn,Rm,Rd; cinc/cinv/cneg cond,Rn,Rd; cset cond,Rd */ o1 = c.oprrr(p, p.As) cond := SpecialOperand(p.From.Offset) if cond < SPOP_EQ || cond > SPOP_NV || (cond == SPOP_AL || cond == SPOP_NV) && p.From3Type() == obj.TYPE_NONE { c.ctxt.Diag("invalid condition: %v", p) } else { cond -= SPOP_EQ } r := int(p.Reg) var rf int = r if p.From3Type() == obj.TYPE_NONE { /* CINC/CINV/CNEG or CSET/CSETM*/ if r == obj.REG_NONE { /* CSET/CSETM */ rf = REGZERO r = rf } cond ^= 1 } else { rf = int(p.GetFrom3().Reg) /* CSEL */ } rt := int(p.To.Reg) o1 |= (uint32(rf&31) << 16) | (uint32(cond&15) << 12) | (uint32(r&31) << 5) | uint32(rt&31) case 19: /* CCMN cond, (Rm|uimm5),Rn, uimm4 -> ccmn Rn,Rm,uimm4,cond */ nzcv := int(p.To.Offset) cond := SpecialOperand(p.From.Offset) if cond < SPOP_EQ || cond > SPOP_NV { c.ctxt.Diag("invalid condition\n%v", p) } else { cond -= SPOP_EQ } var rf int if p.GetFrom3().Type == obj.TYPE_REG { o1 = c.oprrr(p, p.As) rf = int(p.GetFrom3().Reg) /* Rm */ } else { o1 = c.opirr(p, p.As) rf = int(p.GetFrom3().Offset & 0x1F) } o1 |= (uint32(rf&31) << 16) | (uint32(cond&15) << 12) | (uint32(p.Reg&31) << 5) | uint32(nzcv) case 20: /* movT R,O(R) -> strT */ v := c.regoff(&p.To) sz := int32(1 << uint(movesize(p.As))) rt, rf := p.To.Reg, p.From.Reg if rt == obj.REG_NONE { rt = o.param } if v < 0 || v%sz != 0 { /* unscaled 9-bit signed */ o1 = c.olsr9s(p, c.opstr(p, p.As), v, rt, rf) } else { v = int32(c.offsetshift(p, int64(v), int(o.a4))) o1 = c.olsr12u(p, c.opstr(p, p.As), v, rt, rf) } case 21: /* movT O(R),R -> ldrT */ v := c.regoff(&p.From) sz := int32(1 << uint(movesize(p.As))) rt, rf := p.To.Reg, p.From.Reg if rf == obj.REG_NONE { rf = o.param } if v < 0 || v%sz != 0 { /* unscaled 9-bit signed */ o1 = c.olsr9s(p, c.opldr(p, p.As), v, rf, rt) } else { v = int32(c.offsetshift(p, int64(v), int(o.a1))) o1 = c.olsr12u(p, c.opldr(p, p.As), v, rf, rt) } case 22: /* movT (R)O!,R; movT O(R)!, R -> ldrT */ if p.From.Reg != REGSP && p.From.Reg == p.To.Reg { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } v := int32(p.From.Offset) if v < -256 || v > 255 { c.ctxt.Diag("offset out of range [-256,255]: %v", p) } o1 = c.opldr(p, p.As) if o.scond == C_XPOST { o1 |= 1 << 10 } else { o1 |= 3 << 10 } o1 |= ((uint32(v) & 0x1FF) << 12) | (uint32(p.From.Reg&31) << 5) | uint32(p.To.Reg&31) case 23: /* movT R,(R)O!; movT O(R)!, R -> strT */ if p.To.Reg != REGSP && p.From.Reg == p.To.Reg { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } v := int32(p.To.Offset) if v < -256 || v > 255 { c.ctxt.Diag("offset out of range [-256,255]: %v", p) } o1 = c.opstr(p, p.As) if o.scond == C_XPOST { o1 |= 1 << 10 } else { o1 |= 3 << 10 } o1 |= ((uint32(v) & 0x1FF) << 12) | (uint32(p.To.Reg&31) << 5) | uint32(p.From.Reg&31) case 24: /* mov/mvn Rs,Rd -> add $0,Rs,Rd or orr Rs,ZR,Rd */ rf := int(p.From.Reg) rt := int(p.To.Reg) if rf == REGSP || rt == REGSP { if p.As == AMVN || p.As == AMVNW { c.ctxt.Diag("illegal SP reference\n%v", p) } o1 = c.opirr(p, p.As) o1 |= (uint32(rf&31) << 5) | uint32(rt&31) } else { o1 = c.oprrr(p, p.As) o1 |= (uint32(rf&31) << 16) | (REGZERO & 31 << 5) | uint32(rt&31) } case 25: /* negX Rs, Rd -> subX Rs<<0, ZR, Rd */ o1 = c.oprrr(p, p.As) rf := int(p.From.Reg) if rf == C_NONE { rf = int(p.To.Reg) } rt := int(p.To.Reg) o1 |= (uint32(rf&31) << 16) | (REGZERO & 31 << 5) | uint32(rt&31) case 26: /* op Vn, Vd; op Vn., Vd. */ o1 = c.oprrr(p, p.As) cf := c.aclass(&p.From) af := (p.From.Reg >> 5) & 15 at := (p.To.Reg >> 5) & 15 var sz int16 switch p.As { case AAESD, AAESE, AAESIMC, AAESMC: sz = ARNG_16B case ASHA1SU1, ASHA256SU0: sz = ARNG_4S case ASHA512SU0: sz = ARNG_2D } if cf == C_ARNG { if p.As == ASHA1H { c.ctxt.Diag("invalid operands: %v", p) } else { if af != sz || af != at { c.ctxt.Diag("invalid arrangement: %v", p) } } } o1 |= uint32(p.From.Reg&31)<<5 | uint32(p.To.Reg&31) case 27: /* op Rm<= REG_LSL && p.From.Reg < REG_ARNG) { amount := (p.From.Reg >> 5) & 7 if amount > 4 { c.ctxt.Diag("shift amount out of range 0 to 4: %v", p) } o1 = c.opxrrr(p, p.As, rt, r, obj.REG_NONE, true) o1 |= c.encRegShiftOrExt(p, &p.From, p.From.Reg) /* includes reg, op, etc */ } else { o1 = c.opxrrr(p, p.As, rt, r, rf, false) } case 28: /* logop $vcon, [R], R (64 bit literal) */ if p.Reg == REGTMP { c.ctxt.Diag("cannot use REGTMP as source: %v\n", p) } o := uint32(0) num := uint8(0) cls := int(p.From.Class) if isANDWop(p.As) { if !cmp(C_LCON, cls) { c.ctxt.Diag("illegal combination: %v", p) } num = c.omovlconst(AMOVW, p, &p.From, REGTMP, os[:]) } else { num = c.omovlconst(AMOVD, p, &p.From, REGTMP, os[:]) } if num == 0 { c.ctxt.Diag("invalid constant: %v", p) } rt := int(p.To.Reg) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } r := int(p.Reg) if r == obj.REG_NONE { r = rt } o = c.oprrr(p, p.As) o |= REGTMP & 31 << 16 /* shift is 0 */ o |= uint32(r&31) << 5 o |= uint32(rt & 31) os[num] = o o1 = os[0] o2 = os[1] o3 = os[2] o4 = os[3] o5 = os[4] case 29: /* op Rn, Rd */ fc := c.aclass(&p.From) tc := c.aclass(&p.To) if (p.As == AFMOVD || p.As == AFMOVS) && (fc == C_REG || fc == C_ZREG || tc == C_REG || tc == C_ZREG) { // FMOV Rx, Fy or FMOV Fy, Rx o1 = FPCVTI(0, 0, 0, 0, 6) if p.As == AFMOVD { o1 |= 1<<31 | 1<<22 // 64-bit } if fc == C_REG || fc == C_ZREG { o1 |= 1 << 16 // FMOV Rx, Fy } } else { o1 = c.oprrr(p, p.As) } o1 |= uint32(p.From.Reg&31)<<5 | uint32(p.To.Reg&31) case 30: /* movT R,L(R) -> strT */ // If offset L fits in a 12 bit unsigned immediate: // add $L, R, Rtmp or sub $L, R, Rtmp // str R, (Rtmp) // Otherwise, if offset L can be split into hi+lo, and both fit into instructions: // add $hi, R, Rtmp // str R, lo(Rtmp) // Otherwise, use constant pool: // mov $L, Rtmp (from constant pool) // str R, (R+Rtmp) s := movesize(o.as) if s < 0 { c.ctxt.Diag("unexpected long move, op %v tab %v\n%v", p.As, o.as, p) } r := p.To.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.To) if v >= -256 && v <= 256 { c.ctxt.Diag("%v: bad type for offset %d (should be 9 bit signed immediate store)", p, v) } if v >= 0 && v <= 4095 && v&((1<= -4095 && v <= 4095 { o1 = c.oaddi12(p, v, REGTMP, int16(r)) o2 = c.olsr12u(p, c.opstr(p, p.As), 0, REGTMP, p.From.Reg) break } hi, lo, err := splitImm24uScaled(v, s) if err != nil { goto storeusepool } if p.Pool != nil { c.ctxt.Diag("%v: unused constant in pool (%v)\n", p, v) } o1 = c.oaddi(p, AADD, hi, REGTMP, r) o2 = c.olsr12u(p, c.opstr(p, p.As), lo, REGTMP, p.From.Reg) break storeusepool: if p.Pool == nil { c.ctxt.Diag("%v: constant is not in pool", p) } if r == REGTMP || p.From.Reg == REGTMP { c.ctxt.Diag("REGTMP used in large offset store: %v", p) } o1 = c.omovlit(AMOVD, p, &p.To, REGTMP) o2 = c.olsxrr(p, int32(c.opstrr(p, p.As, false)), int(p.From.Reg), int(r), REGTMP) case 31: /* movT L(R), R -> ldrT */ // If offset L fits in a 12 bit unsigned immediate: // add $L, R, Rtmp or sub $L, R, Rtmp // ldr R, (Rtmp) // Otherwise, if offset L can be split into hi+lo, and both fit into instructions: // add $hi, R, Rtmp // ldr lo(Rtmp), R // Otherwise, use constant pool: // mov $L, Rtmp (from constant pool) // ldr (R+Rtmp), R s := movesize(o.as) if s < 0 { c.ctxt.Diag("unexpected long move, op %v tab %v\n%v", p.As, o.as, p) } r := p.From.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.From) if v >= -256 && v <= 256 { c.ctxt.Diag("%v: bad type for offset %d (should be 9 bit signed immediate load)", p, v) } if v >= 0 && v <= 4095 && v&((1<= -4095 && v <= 4095 { o1 = c.oaddi12(p, v, REGTMP, int16(r)) o2 = c.olsr12u(p, c.opldr(p, p.As), 0, REGTMP, p.To.Reg) break } hi, lo, err := splitImm24uScaled(v, s) if err != nil { goto loadusepool } if p.Pool != nil { c.ctxt.Diag("%v: unused constant in pool (%v)\n", p, v) } o1 = c.oaddi(p, AADD, hi, REGTMP, r) o2 = c.olsr12u(p, c.opldr(p, p.As), lo, REGTMP, p.To.Reg) break loadusepool: if p.Pool == nil { c.ctxt.Diag("%v: constant is not in pool", p) } if r == REGTMP || p.From.Reg == REGTMP { c.ctxt.Diag("REGTMP used in large offset load: %v", p) } o1 = c.omovlit(AMOVD, p, &p.From, REGTMP) o2 = c.olsxrr(p, int32(c.opldrr(p, p.As, false)), int(p.To.Reg), int(r), REGTMP) case 32: /* mov $con, R -> movz/movn */ o1 = c.omovconst(p.As, p, &p.From, int(p.To.Reg)) case 33: /* movk $uimm16 << pos */ o1 = c.opirr(p, p.As) d := p.From.Offset if d == 0 { c.ctxt.Diag("zero shifts cannot be handled correctly: %v", p) } s := movcon(d) if s < 0 || s >= 4 { c.ctxt.Diag("bad constant for MOVK: %#x\n%v", uint64(d), p) } if (o1&S64) == 0 && s >= 2 { c.ctxt.Diag("illegal bit position\n%v", p) } if ((uint64(d) >> uint(s*16)) >> 16) != 0 { c.ctxt.Diag("requires uimm16\n%v", p) } rt := int(p.To.Reg) o1 |= uint32((((d >> uint(s*16)) & 0xFFFF) << 5) | int64((uint32(s)&3)<<21) | int64(rt&31)) case 34: /* mov $lacon,R */ o1 = c.omovlit(AMOVD, p, &p.From, REGTMP) rt, r, rf := p.To.Reg, p.From.Reg, int16(REGTMP) if r == obj.REG_NONE { r = o.param } o2 = c.opxrrr(p, AADD, rt, r, rf, false) o2 |= LSL0_64 case 35: /* mov SPR,R -> mrs */ o1 = c.oprrr(p, AMRS) // SysRegEnc function returns the system register encoding and accessFlags. _, v, accessFlags := SysRegEnc(p.From.Reg) if v == 0 { c.ctxt.Diag("illegal system register:\n%v", p) } if (o1 & (v &^ (3 << 19))) != 0 { c.ctxt.Diag("MRS register value overlap\n%v", p) } if accessFlags&SR_READ == 0 { c.ctxt.Diag("system register is not readable: %v", p) } o1 |= v o1 |= uint32(p.To.Reg & 31) case 36: /* mov R,SPR */ o1 = c.oprrr(p, AMSR) // SysRegEnc function returns the system register encoding and accessFlags. _, v, accessFlags := SysRegEnc(p.To.Reg) if v == 0 { c.ctxt.Diag("illegal system register:\n%v", p) } if (o1 & (v &^ (3 << 19))) != 0 { c.ctxt.Diag("MSR register value overlap\n%v", p) } if accessFlags&SR_WRITE == 0 { c.ctxt.Diag("system register is not writable: %v", p) } o1 |= v o1 |= uint32(p.From.Reg & 31) case 37: /* mov $con,PSTATEfield -> MSR [immediate] */ if (uint64(p.From.Offset) &^ uint64(0xF)) != 0 { c.ctxt.Diag("illegal immediate for PSTATE field\n%v", p) } o1 = c.opirr(p, AMSR) o1 |= uint32((p.From.Offset & 0xF) << 8) /* Crm */ v := uint32(0) // PSTATEfield can be special registers and special operands. if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_SPSel { v = 0<<16 | 4<<12 | 5<<5 } else if p.To.Type == obj.TYPE_REG && p.To.Reg == REG_DIT { // op1 = 011 (3) op2 = 010 (2) v = 3<<16 | 2<<5 } else if p.To.Type == obj.TYPE_SPECIAL { opd := SpecialOperand(p.To.Offset) for _, pf := range pstatefield { if pf.opd == opd { v = pf.enc break } } } if v == 0 { c.ctxt.Diag("illegal PSTATE field for immediate move\n%v", p) } o1 |= v case 38: /* clrex [$imm] */ o1 = c.opimm(p, p.As) if p.To.Type == obj.TYPE_NONE { o1 |= 0xF << 8 } else { o1 |= uint32((p.To.Offset & 0xF) << 8) } case 39: /* cbz R, rel */ o1 = c.opirr(p, p.As) o1 |= uint32(p.From.Reg & 31) o1 |= uint32(c.brdist(p, 0, 19, 2) << 5) case 40: /* tbz */ o1 = c.opirr(p, p.As) v := int32(p.From.Offset) if v < 0 || v > 63 { c.ctxt.Diag("illegal bit number\n%v", p) } o1 |= ((uint32(v) & 0x20) << (31 - 5)) | ((uint32(v) & 0x1F) << 19) o1 |= uint32(c.brdist(p, 0, 14, 2) << 5) o1 |= uint32(p.Reg & 31) case 41: /* eret, nop, others with no operands */ o1 = c.op0(p, p.As) case 42: /* bfm R,r,s,R */ o1 = c.opbfm(p, p.As, p.From.Offset, p.GetFrom3().Offset, p.Reg, p.To.Reg) case 43: /* bfm aliases */ rt, rf := p.To.Reg, p.Reg if rf == obj.REG_NONE { rf = rt } r, s := p.From.Offset, p.GetFrom3().Offset switch p.As { case ABFI: if r != 0 { r = 64 - r } o1 = c.opbfm(p, ABFM, r, s-1, rf, rt) case ABFIW: if r != 0 { r = 32 - r } o1 = c.opbfm(p, ABFMW, r, s-1, rf, rt) case ABFXIL: o1 = c.opbfm(p, ABFM, r, r+s-1, rf, rt) case ABFXILW: o1 = c.opbfm(p, ABFMW, r, r+s-1, rf, rt) case ASBFIZ: if r != 0 { r = 64 - r } o1 = c.opbfm(p, ASBFM, r, s-1, rf, rt) case ASBFIZW: if r != 0 { r = 32 - r } o1 = c.opbfm(p, ASBFMW, r, s-1, rf, rt) case ASBFX: o1 = c.opbfm(p, ASBFM, r, r+s-1, rf, rt) case ASBFXW: o1 = c.opbfm(p, ASBFMW, r, r+s-1, rf, rt) case AUBFIZ: if r != 0 { r = 64 - r } o1 = c.opbfm(p, AUBFM, r, s-1, rf, rt) case AUBFIZW: if r != 0 { r = 32 - r } o1 = c.opbfm(p, AUBFMW, r, s-1, rf, rt) case AUBFX: o1 = c.opbfm(p, AUBFM, r, r+s-1, rf, rt) case AUBFXW: o1 = c.opbfm(p, AUBFMW, r, r+s-1, rf, rt) default: c.ctxt.Diag("bad bfm alias\n%v", p) break } case 44: /* extr $b, Rn, Rm, Rd */ o1 = c.opextr(p, p.As, p.From.Offset, p.GetFrom3().Reg, p.Reg, p.To.Reg) case 45: /* sxt/uxt[bhw] R,R; movT R,R -> sxtT R,R */ as := p.As rt, rf := p.To.Reg, p.From.Reg if rf == REGZERO { as = AMOVWU /* clearer in disassembly */ } switch as { case AMOVB, ASXTB: o1 = c.opbfm(p, ASBFM, 0, 7, rf, rt) case AMOVH, ASXTH: o1 = c.opbfm(p, ASBFM, 0, 15, rf, rt) case AMOVW, ASXTW: o1 = c.opbfm(p, ASBFM, 0, 31, rf, rt) case AMOVBU, AUXTB: o1 = c.opbfm(p, AUBFM, 0, 7, rf, rt) case AMOVHU, AUXTH: o1 = c.opbfm(p, AUBFM, 0, 15, rf, rt) case AMOVWU: o1 = c.oprrr(p, as) | (uint32(rf&31) << 16) | (REGZERO & 31 << 5) | uint32(rt&31) case AUXTW: o1 = c.opbfm(p, AUBFM, 0, 31, rf, rt) case ASXTBW: o1 = c.opbfm(p, ASBFMW, 0, 7, rf, rt) case ASXTHW: o1 = c.opbfm(p, ASBFMW, 0, 15, rf, rt) case AUXTBW: o1 = c.opbfm(p, AUBFMW, 0, 7, rf, rt) case AUXTHW: o1 = c.opbfm(p, AUBFMW, 0, 15, rf, rt) default: c.ctxt.Diag("bad sxt %v", as) break } case 46: /* cls */ o1 = c.opbit(p, p.As) o1 |= uint32(p.From.Reg&31) << 5 o1 |= uint32(p.To.Reg & 31) case 47: // SWPx/LDADDx/LDCLRx/LDEORx/LDORx/CASx Rs, (Rb), Rt rs := p.From.Reg rt := p.RegTo2 rb := p.To.Reg // rt can't be sp. if rt == REG_RSP { c.ctxt.Diag("illegal destination register: %v\n", p) } o1 = atomicLDADD[p.As] | atomicSWP[p.As] o1 |= uint32(rs&31)<<16 | uint32(rb&31)<<5 | uint32(rt&31) case 48: /* ADD $C_ADDCON2, Rm, Rd */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. op := c.opirr(p, p.As) if op&Sbit != 0 { c.ctxt.Diag("can not break addition/subtraction when S bit is set", p) } rt, r := p.To.Reg, p.Reg if r == obj.REG_NONE { r = rt } o1 = c.oaddi(p, p.As, c.regoff(&p.From)&0x000fff, rt, r) o2 = c.oaddi(p, p.As, c.regoff(&p.From)&0xfff000, rt, rt) case 49: /* op Vm., Vn, Vd */ o1 = c.oprrr(p, p.As) cf := c.aclass(&p.From) af := (p.From.Reg >> 5) & 15 sz := ARNG_4S if p.As == ASHA512H || p.As == ASHA512H2 { sz = ARNG_2D } if cf == C_ARNG && af != int16(sz) { c.ctxt.Diag("invalid arrangement: %v", p) } o1 |= uint32(p.From.Reg&31)<<16 | uint32(p.Reg&31)<<5 | uint32(p.To.Reg&31) case 50: /* sys/sysl */ o1 = c.opirr(p, p.As) if (p.From.Offset &^ int64(SYSARG4(0x7, 0xF, 0xF, 0x7))) != 0 { c.ctxt.Diag("illegal SYS argument\n%v", p) } o1 |= uint32(p.From.Offset) if p.To.Type == obj.TYPE_REG { o1 |= uint32(p.To.Reg & 31) } else { o1 |= 0x1F } case 51: /* dmb */ o1 = c.opirr(p, p.As) if p.From.Type == obj.TYPE_CONST { o1 |= uint32((p.From.Offset & 0xF) << 8) } case 52: /* hint */ o1 = c.opirr(p, p.As) o1 |= uint32((p.From.Offset & 0x7F) << 5) case 53: /* and/or/eor/bic/tst/... $bitcon, Rn, Rd */ a := p.As rt := int(p.To.Reg) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } r := int(p.Reg) if r == obj.REG_NONE { r = rt } if r == REG_RSP { c.ctxt.Diag("illegal source register: %v", p) break } mode := 64 v := uint64(p.From.Offset) switch p.As { case AANDW, AORRW, AEORW, AANDSW, ATSTW: mode = 32 case ABIC, AORN, AEON, ABICS: v = ^v case ABICW, AORNW, AEONW, ABICSW: v = ^v mode = 32 } o1 = c.opirr(p, a) o1 |= bitconEncode(v, mode) | uint32(r&31)<<5 | uint32(rt&31) case 54: /* floating point arith */ o1 = c.oprrr(p, p.As) rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if (o1&(0x1F<<24)) == (0x1E<<24) && (o1&(1<<11)) == 0 { /* monadic */ r = rf rf = 0 } else if r == obj.REG_NONE { r = rt } o1 |= (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) case 55: /* floating-point constant */ var rf int o1 = 0xf<<25 | 1<<21 | 1<<12 rf = c.chipfloat7(p.From.Val.(float64)) if rf < 0 { c.ctxt.Diag("invalid floating-point immediate\n%v", p) } if p.As == AFMOVD { o1 |= 1 << 22 } o1 |= (uint32(rf&0xff) << 13) | uint32(p.To.Reg&31) case 56: /* floating point compare */ o1 = c.oprrr(p, p.As) var rf int if p.From.Type == obj.TYPE_FCONST { o1 |= 8 /* zero */ rf = 0 } else { rf = int(p.From.Reg) } rt := int(p.Reg) o1 |= uint32(rf&31)<<16 | uint32(rt&31)<<5 case 57: /* floating point conditional compare */ o1 = c.oprrr(p, p.As) cond := SpecialOperand(p.From.Offset) if cond < SPOP_EQ || cond > SPOP_NV { c.ctxt.Diag("invalid condition\n%v", p) } else { cond -= SPOP_EQ } nzcv := int(p.To.Offset) if nzcv&^0xF != 0 { c.ctxt.Diag("implausible condition\n%v", p) } rf := int(p.Reg) if p.GetFrom3() == nil || p.GetFrom3().Reg < REG_F0 || p.GetFrom3().Reg > REG_F31 { c.ctxt.Diag("illegal FCCMP\n%v", p) break } rt := int(p.GetFrom3().Reg) o1 |= uint32(rf&31)<<16 | uint32(cond&15)<<12 | uint32(rt&31)<<5 | uint32(nzcv) case 58: /* ldar/ldarb/ldarh/ldaxp/ldxp/ldaxr/ldxr */ o1 = c.opload(p, p.As) o1 |= 0x1F << 16 o1 |= uint32(p.From.Reg&31) << 5 if p.As == ALDXP || p.As == ALDXPW || p.As == ALDAXP || p.As == ALDAXPW { if int(p.To.Reg) == int(p.To.Offset) { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } o1 |= uint32(p.To.Offset&31) << 10 } else { o1 |= 0x1F << 10 } o1 |= uint32(p.To.Reg & 31) case 59: /* stxr/stlxr/stxp/stlxp */ s := p.RegTo2 n := p.To.Reg t := p.From.Reg if isSTLXRop(p.As) { if s == t || (s == n && n != REGSP) { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } } else if isSTXPop(p.As) { t2 := int16(p.From.Offset) if (s == t || s == t2) || (s == n && n != REGSP) { c.ctxt.Diag("constrained unpredictable behavior: %v", p) } } if s == REG_RSP { c.ctxt.Diag("illegal destination register: %v\n", p) } o1 = c.opstore(p, p.As) if p.RegTo2 != obj.REG_NONE { o1 |= uint32(p.RegTo2&31) << 16 } else { o1 |= 0x1F << 16 } if isSTXPop(p.As) { o1 |= uint32(p.From.Offset&31) << 10 } o1 |= uint32(p.To.Reg&31)<<5 | uint32(p.From.Reg&31) case 60: /* adrp label,r */ d := c.brdist(p, 12, 21, 0) o1 = ADR(1, uint32(d), uint32(p.To.Reg)) case 61: /* adr label, r */ d := c.brdist(p, 0, 21, 0) o1 = ADR(0, uint32(d), uint32(p.To.Reg)) case 62: /* op $movcon, [R], R -> mov $movcon, REGTMP + op REGTMP, [R], R */ if p.Reg == REGTMP { c.ctxt.Diag("cannot use REGTMP as source: %v\n", p) } if p.To.Reg == REG_RSP && isADDSop(p.As) { c.ctxt.Diag("illegal destination register: %v\n", p) } lsl0 := LSL0_64 if isADDWop(p.As) || isANDWop(p.As) { o1 = c.omovconst(AMOVW, p, &p.From, REGTMP) lsl0 = LSL0_32 } else { o1 = c.omovconst(AMOVD, p, &p.From, REGTMP) } rt, r, rf := p.To.Reg, p.Reg, int16(REGTMP) if p.To.Type == obj.TYPE_NONE { rt = REGZERO } if r == obj.REG_NONE { r = rt } if rt == REGSP || r == REGSP { o2 = c.opxrrr(p, p.As, rt, r, rf, false) o2 |= uint32(lsl0) } else { o2 = c.oprrr(p, p.As) o2 |= uint32(rf&31) << 16 /* shift is 0 */ o2 |= uint32(r&31) << 5 o2 |= uint32(rt & 31) } case 63: /* op Vm., Vn., Vd. */ o1 |= c.oprrr(p, p.As) af := (p.From.Reg >> 5) & 15 at := (p.To.Reg >> 5) & 15 ar := (p.Reg >> 5) & 15 sz := ARNG_4S if p.As == ASHA512SU1 { sz = ARNG_2D } if af != at || af != ar || af != int16(sz) { c.ctxt.Diag("invalid arrangement: %v", p) } o1 |= uint32(p.From.Reg&31)<<16 | uint32(p.Reg&31)<<5 | uint32(p.To.Reg&31) /* reloc ops */ case 64: /* movT R,addr -> adrp + movT R, (REGTMP) */ if p.From.Reg == REGTMP { c.ctxt.Diag("cannot use REGTMP as source: %v\n", p) } o1 = ADR(1, 0, REGTMP) var typ objabi.RelocType // For unaligned access, fall back to adrp + add + movT R, (REGTMP). if o.size(c.ctxt, p) != 8 { o2 = c.opirr(p, AADD) | REGTMP&31<<5 | REGTMP&31 o3 = c.olsr12u(p, c.opstr(p, p.As), 0, REGTMP, p.From.Reg) typ = objabi.R_ADDRARM64 } else { o2 = c.olsr12u(p, c.opstr(p, p.As), 0, REGTMP, p.From.Reg) typ = c.addrRelocType(p) } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: typ, Off: int32(c.pc), Siz: 8, Sym: p.To.Sym, Add: p.To.Offset, }) case 65: /* movT addr,R -> adrp + movT (REGTMP), R */ o1 = ADR(1, 0, REGTMP) var typ objabi.RelocType // For unaligned access, fall back to adrp + add + movT (REGTMP), R. if o.size(c.ctxt, p) != 8 { o2 = c.opirr(p, AADD) | REGTMP&31<<5 | REGTMP&31 o3 = c.olsr12u(p, c.opldr(p, p.As), 0, REGTMP, p.To.Reg) typ = objabi.R_ADDRARM64 } else { o2 = c.olsr12u(p, c.opldr(p, p.As), 0, REGTMP, p.To.Reg) typ = c.addrRelocType(p) } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: typ, Off: int32(c.pc), Siz: 8, Sym: p.From.Sym, Add: p.From.Offset, }) case 66: /* ldp O(R)!, (r1, r2); ldp (R)O!, (r1, r2) */ rf, rt1, rt2 := p.From.Reg, p.To.Reg, int16(p.To.Offset) if rf == obj.REG_NONE { rf = o.param } if rf == obj.REG_NONE { c.ctxt.Diag("invalid ldp source: %v\n", p) } v := c.regoff(&p.From) o1 = c.opldpstp(p, o, v, rf, rt1, rt2, 1) case 67: /* stp (r1, r2), O(R)!; stp (r1, r2), (R)O! */ rt, rf1, rf2 := p.To.Reg, p.From.Reg, int16(p.From.Offset) if rt == obj.REG_NONE { rt = o.param } if rt == obj.REG_NONE { c.ctxt.Diag("invalid stp destination: %v\n", p) } v := c.regoff(&p.To) o1 = c.opldpstp(p, o, v, rt, rf1, rf2, 0) case 68: /* movT $vconaddr(SB), reg -> adrp + add + reloc */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. if p.As == AMOVW { c.ctxt.Diag("invalid load of 32-bit address: %v", p) } o1 = ADR(1, 0, uint32(p.To.Reg)) o2 = c.opirr(p, AADD) | uint32(p.To.Reg&31)<<5 | uint32(p.To.Reg&31) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRARM64, Off: int32(c.pc), Siz: 8, Sym: p.From.Sym, Add: p.From.Offset, }) case 69: /* LE model movd $tlsvar, reg -> movz reg, 0 + reloc */ o1 = c.opirr(p, AMOVZ) o1 |= uint32(p.To.Reg & 31) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ARM64_TLS_LE, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, }) if p.From.Offset != 0 { c.ctxt.Diag("invalid offset on MOVW $tlsvar") } case 70: /* IE model movd $tlsvar, reg -> adrp REGTMP, 0; ldr reg, [REGTMP, #0] + relocs */ o1 = ADR(1, 0, REGTMP) o2 = c.olsr12u(p, c.opldr(p, AMOVD), 0, REGTMP, p.To.Reg) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ARM64_TLS_IE, Off: int32(c.pc), Siz: 8, Sym: p.From.Sym, }) if p.From.Offset != 0 { c.ctxt.Diag("invalid offset on MOVW $tlsvar") } case 71: /* movd sym@GOT, reg -> adrp REGTMP, #0; ldr reg, [REGTMP, #0] + relocs */ o1 = ADR(1, 0, REGTMP) o2 = c.olsr12u(p, c.opldr(p, AMOVD), 0, REGTMP, p.To.Reg) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ARM64_GOTPCREL, Off: int32(c.pc), Siz: 8, Sym: p.From.Sym, }) case 72: /* vaddp/vand/vcmeq/vorr/vadd/veor/vfmla/vfmls/vbit/vbsl/vcmtst/vsub/vbif/vuzip1/vuzip2/vrax1 Vm., Vn., Vd. */ af := int((p.From.Reg >> 5) & 15) af3 := int((p.Reg >> 5) & 15) at := int((p.To.Reg >> 5) & 15) if af != af3 || af != at { c.ctxt.Diag("operand mismatch: %v", p) break } o1 = c.oprrr(p, p.As) rf := int((p.From.Reg) & 31) rt := int((p.To.Reg) & 31) r := int((p.Reg) & 31) Q := 0 size := 0 switch af { case ARNG_16B: Q = 1 size = 0 case ARNG_2D: Q = 1 size = 3 case ARNG_2S: Q = 0 size = 2 case ARNG_4H: Q = 0 size = 1 case ARNG_4S: Q = 1 size = 2 case ARNG_8B: Q = 0 size = 0 case ARNG_8H: Q = 1 size = 1 default: c.ctxt.Diag("invalid arrangement: %v", p) } switch p.As { case AVORR, AVAND, AVEOR, AVBIT, AVBSL, AVBIF: if af != ARNG_16B && af != ARNG_8B { c.ctxt.Diag("invalid arrangement: %v", p) } case AVFMLA, AVFMLS: if af != ARNG_2D && af != ARNG_2S && af != ARNG_4S { c.ctxt.Diag("invalid arrangement: %v", p) } case AVUMAX, AVUMIN: if af == ARNG_2D { c.ctxt.Diag("invalid arrangement: %v", p) } } switch p.As { case AVAND, AVEOR: size = 0 case AVBSL: size = 1 case AVORR, AVBIT, AVBIF: size = 2 case AVFMLA, AVFMLS: if af == ARNG_2D { size = 1 } else { size = 0 } case AVRAX1: if af != ARNG_2D { c.ctxt.Diag("invalid arrangement: %v", p) } size = 0 Q = 0 } o1 |= (uint32(Q&1) << 30) | (uint32(size&3) << 22) | (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) case 73: /* vmov V.[index], R */ rf := int(p.From.Reg) rt := int(p.To.Reg) imm5 := 0 o1 = 7<<25 | 0xf<<10 index := int(p.From.Index) switch (p.From.Reg >> 5) & 15 { case ARNG_B: c.checkindex(p, index, 15) imm5 |= 1 imm5 |= index << 1 case ARNG_H: c.checkindex(p, index, 7) imm5 |= 2 imm5 |= index << 2 case ARNG_S: c.checkindex(p, index, 3) imm5 |= 4 imm5 |= index << 3 case ARNG_D: c.checkindex(p, index, 1) imm5 |= 8 imm5 |= index << 4 o1 |= 1 << 30 default: c.ctxt.Diag("invalid arrangement: %v", p) } o1 |= (uint32(imm5&0x1f) << 16) | (uint32(rf&31) << 5) | uint32(rt&31) case 74: // add $O, R, Rtmp or sub $O, R, Rtmp // ldp (Rtmp), (R1, R2) rf, rt1, rt2 := p.From.Reg, p.To.Reg, int16(p.To.Offset) if rf == obj.REG_NONE { rf = o.param } if rf == obj.REG_NONE { c.ctxt.Diag("invalid ldp source: %v", p) } v := c.regoff(&p.From) o1 = c.oaddi12(p, v, REGTMP, rf) o2 = c.opldpstp(p, o, 0, REGTMP, rt1, rt2, 1) case 75: // If offset L fits in a 24 bit unsigned immediate: // add $lo, R, Rtmp // add $hi, Rtmp, Rtmp // ldr (Rtmp), R // Otherwise, use constant pool: // mov $L, Rtmp (from constant pool) // add Rtmp, R, Rtmp // ldp (Rtmp), (R1, R2) rf, rt1, rt2 := p.From.Reg, p.To.Reg, int16(p.To.Offset) if rf == REGTMP { c.ctxt.Diag("REGTMP used in large offset load: %v", p) } if rf == obj.REG_NONE { rf = o.param } if rf == obj.REG_NONE { c.ctxt.Diag("invalid ldp source: %v", p) } v := c.regoff(&p.From) if v >= -4095 && v <= 4095 { c.ctxt.Diag("%v: bad type for offset %d (should be add/sub+ldp)", p, v) } hi, lo, err := splitImm24uScaled(v, 0) if err != nil { goto loadpairusepool } if p.Pool != nil { c.ctxt.Diag("%v: unused constant in pool (%v)\n", p, v) } o1 = c.oaddi(p, AADD, lo, REGTMP, int16(rf)) o2 = c.oaddi(p, AADD, hi, REGTMP, REGTMP) o3 = c.opldpstp(p, o, 0, REGTMP, rt1, rt2, 1) break loadpairusepool: if p.Pool == nil { c.ctxt.Diag("%v: constant is not in pool", p) } if rf == REGTMP || p.From.Reg == REGTMP { c.ctxt.Diag("REGTMP used in large offset load: %v", p) } o1 = c.omovlit(AMOVD, p, &p.From, REGTMP) o2 = c.opxrrr(p, AADD, REGTMP, rf, REGTMP, false) o3 = c.opldpstp(p, o, 0, REGTMP, rt1, rt2, 1) case 76: // add $O, R, Rtmp or sub $O, R, Rtmp // stp (R1, R2), (Rtmp) rt, rf1, rf2 := p.To.Reg, p.From.Reg, int16(p.From.Offset) if rf1 == REGTMP || rf2 == REGTMP { c.ctxt.Diag("cannot use REGTMP as source: %v", p) } if rt == obj.REG_NONE { rt = o.param } if rt == obj.REG_NONE { c.ctxt.Diag("invalid stp destination: %v", p) } v := c.regoff(&p.To) o1 = c.oaddi12(p, v, REGTMP, rt) o2 = c.opldpstp(p, o, 0, REGTMP, rf1, rf2, 0) case 77: // If offset L fits in a 24 bit unsigned immediate: // add $lo, R, Rtmp // add $hi, Rtmp, Rtmp // stp (R1, R2), (Rtmp) // Otherwise, use constant pool: // mov $L, Rtmp (from constant pool) // add Rtmp, R, Rtmp // stp (R1, R2), (Rtmp) rt, rf1, rf2 := p.To.Reg, p.From.Reg, int16(p.From.Offset) if rt == REGTMP || rf1 == REGTMP || rf2 == REGTMP { c.ctxt.Diag("REGTMP used in large offset store: %v", p) } if rt == obj.REG_NONE { rt = o.param } if rt == obj.REG_NONE { c.ctxt.Diag("invalid stp destination: %v", p) } v := c.regoff(&p.To) if v >= -4095 && v <= 4095 { c.ctxt.Diag("%v: bad type for offset %d (should be add/sub+stp)", p, v) } hi, lo, err := splitImm24uScaled(v, 0) if err != nil { goto storepairusepool } if p.Pool != nil { c.ctxt.Diag("%v: unused constant in pool (%v)\n", p, v) } o1 = c.oaddi(p, AADD, lo, REGTMP, int16(rt)) o2 = c.oaddi(p, AADD, hi, REGTMP, REGTMP) o3 = c.opldpstp(p, o, 0, REGTMP, rf1, rf2, 0) break storepairusepool: if p.Pool == nil { c.ctxt.Diag("%v: constant is not in pool", p) } if rt == REGTMP || p.From.Reg == REGTMP { c.ctxt.Diag("REGTMP used in large offset store: %v", p) } o1 = c.omovlit(AMOVD, p, &p.To, REGTMP) o2 = c.opxrrr(p, AADD, REGTMP, rt, REGTMP, false) o3 = c.opldpstp(p, o, 0, REGTMP, rf1, rf2, 0) case 78: /* vmov R, V.[index] */ rf := int(p.From.Reg) rt := int(p.To.Reg) imm5 := 0 o1 = 1<<30 | 7<<25 | 7<<10 index := int(p.To.Index) switch (p.To.Reg >> 5) & 15 { case ARNG_B: c.checkindex(p, index, 15) imm5 |= 1 imm5 |= index << 1 case ARNG_H: c.checkindex(p, index, 7) imm5 |= 2 imm5 |= index << 2 case ARNG_S: c.checkindex(p, index, 3) imm5 |= 4 imm5 |= index << 3 case ARNG_D: c.checkindex(p, index, 1) imm5 |= 8 imm5 |= index << 4 default: c.ctxt.Diag("invalid arrangement: %v", p) } o1 |= (uint32(imm5&0x1f) << 16) | (uint32(rf&31) << 5) | uint32(rt&31) case 79: /* vdup Vn.[index], Vd. */ rf := int(p.From.Reg) rt := int(p.To.Reg) o1 = 7<<25 | 1<<10 var imm5, Q int index := int(p.From.Index) switch (p.To.Reg >> 5) & 15 { case ARNG_16B: c.checkindex(p, index, 15) Q = 1 imm5 = 1 imm5 |= index << 1 case ARNG_2D: c.checkindex(p, index, 1) Q = 1 imm5 = 8 imm5 |= index << 4 case ARNG_2S: c.checkindex(p, index, 3) Q = 0 imm5 = 4 imm5 |= index << 3 case ARNG_4H: c.checkindex(p, index, 7) Q = 0 imm5 = 2 imm5 |= index << 2 case ARNG_4S: c.checkindex(p, index, 3) Q = 1 imm5 = 4 imm5 |= index << 3 case ARNG_8B: c.checkindex(p, index, 15) Q = 0 imm5 = 1 imm5 |= index << 1 case ARNG_8H: c.checkindex(p, index, 7) Q = 1 imm5 = 2 imm5 |= index << 2 default: c.ctxt.Diag("invalid arrangement: %v", p) } o1 |= (uint32(Q&1) << 30) | (uint32(imm5&0x1f) << 16) o1 |= (uint32(rf&31) << 5) | uint32(rt&31) case 80: /* vmov/vdup V.[index], Vn */ rf := int(p.From.Reg) rt := int(p.To.Reg) imm5 := 0 index := int(p.From.Index) switch p.As { case AVMOV, AVDUP: o1 = 1<<30 | 15<<25 | 1<<10 switch (p.From.Reg >> 5) & 15 { case ARNG_B: c.checkindex(p, index, 15) imm5 |= 1 imm5 |= index << 1 case ARNG_H: c.checkindex(p, index, 7) imm5 |= 2 imm5 |= index << 2 case ARNG_S: c.checkindex(p, index, 3) imm5 |= 4 imm5 |= index << 3 case ARNG_D: c.checkindex(p, index, 1) imm5 |= 8 imm5 |= index << 4 default: c.ctxt.Diag("invalid arrangement: %v", p) } default: c.ctxt.Diag("unsupported op %v", p.As) } o1 |= (uint32(imm5&0x1f) << 16) | (uint32(rf&31) << 5) | uint32(rt&31) case 81: /* vld[1-4]|vld[1-4]r (Rn), [Vt1., Vt2., ...] */ c.checkoffset(p, p.As) r := int(p.From.Reg) o1 = c.oprrr(p, p.As) if o.scond == C_XPOST { o1 |= 1 << 23 if p.From.Index == 0 { // immediate offset variant o1 |= 0x1f << 16 } else { // register offset variant if isRegShiftOrExt(&p.From) { c.ctxt.Diag("invalid extended register op: %v\n", p) } o1 |= uint32(p.From.Index&0x1f) << 16 } } o1 |= uint32(p.To.Offset) // cmd/asm/internal/arch/arm64.go:ARM64RegisterListOffset // add opcode(bit 12-15) for vld1, mask it off if it's not vld1 o1 = c.maskOpvldvst(p, o1) o1 |= uint32(r&31) << 5 case 82: /* vmov/vdup Rn, Vd. */ rf := int(p.From.Reg) rt := int(p.To.Reg) o1 = 7<<25 | 3<<10 var imm5, Q uint32 switch (p.To.Reg >> 5) & 15 { case ARNG_16B: Q = 1 imm5 = 1 case ARNG_2D: Q = 1 imm5 = 8 case ARNG_2S: Q = 0 imm5 = 4 case ARNG_4H: Q = 0 imm5 = 2 case ARNG_4S: Q = 1 imm5 = 4 case ARNG_8B: Q = 0 imm5 = 1 case ARNG_8H: Q = 1 imm5 = 2 default: c.ctxt.Diag("invalid arrangement: %v\n", p) } o1 |= (Q & 1 << 30) | (imm5 & 0x1f << 16) o1 |= (uint32(rf&31) << 5) | uint32(rt&31) case 83: /* vmov Vn., Vd. */ af := int((p.From.Reg >> 5) & 15) at := int((p.To.Reg >> 5) & 15) if af != at { c.ctxt.Diag("invalid arrangement: %v\n", p) } o1 = c.oprrr(p, p.As) rf := int((p.From.Reg) & 31) rt := int((p.To.Reg) & 31) var Q, size uint32 switch af { case ARNG_8B: Q = 0 size = 0 case ARNG_16B: Q = 1 size = 0 case ARNG_4H: Q = 0 size = 1 case ARNG_8H: Q = 1 size = 1 case ARNG_2S: Q = 0 size = 2 case ARNG_4S: Q = 1 size = 2 default: c.ctxt.Diag("invalid arrangement: %v\n", p) } if (p.As == AVMOV || p.As == AVRBIT || p.As == AVCNT) && (af != ARNG_16B && af != ARNG_8B) { c.ctxt.Diag("invalid arrangement: %v", p) } if p.As == AVREV32 && (af == ARNG_2S || af == ARNG_4S) { c.ctxt.Diag("invalid arrangement: %v", p) } if p.As == AVREV16 && af != ARNG_8B && af != ARNG_16B { c.ctxt.Diag("invalid arrangement: %v", p) } if p.As == AVMOV { o1 |= uint32(rf&31) << 16 } if p.As == AVRBIT { size = 1 } o1 |= (Q&1)<<30 | (size&3)<<22 | uint32(rf&31)<<5 | uint32(rt&31) case 84: /* vst[1-4] [Vt1., Vt2., ...], (Rn) */ c.checkoffset(p, p.As) r := int(p.To.Reg) o1 = 3 << 26 if o.scond == C_XPOST { o1 |= 1 << 23 if p.To.Index == 0 { // immediate offset variant o1 |= 0x1f << 16 } else { // register offset variant if isRegShiftOrExt(&p.To) { c.ctxt.Diag("invalid extended register: %v\n", p) } o1 |= uint32(p.To.Index&31) << 16 } } o1 |= uint32(p.From.Offset) // cmd/asm/internal/arch/arm64.go:ARM64RegisterListOffset // add opcode(bit 12-15) for vst1, mask it off if it's not vst1 o1 = c.maskOpvldvst(p, o1) o1 |= uint32(r&31) << 5 case 85: /* vaddv/vuaddlv Vn., Vd*/ af := int((p.From.Reg >> 5) & 15) o1 = c.oprrr(p, p.As) rf := int((p.From.Reg) & 31) rt := int((p.To.Reg) & 31) Q := 0 size := 0 switch af { case ARNG_8B: Q = 0 size = 0 case ARNG_16B: Q = 1 size = 0 case ARNG_4H: Q = 0 size = 1 case ARNG_8H: Q = 1 size = 1 case ARNG_4S: Q = 1 size = 2 default: c.ctxt.Diag("invalid arrangement: %v\n", p) } o1 |= (uint32(Q&1) << 30) | (uint32(size&3) << 22) | (uint32(rf&31) << 5) | uint32(rt&31) case 86: /* vmovi $imm8, Vd.*/ at := int((p.To.Reg >> 5) & 15) r := int(p.From.Offset) if r > 255 || r < 0 { c.ctxt.Diag("immediate constant out of range: %v\n", p) } rt := int((p.To.Reg) & 31) Q := 0 switch at { case ARNG_8B: Q = 0 case ARNG_16B: Q = 1 default: c.ctxt.Diag("invalid arrangement: %v\n", p) } o1 = 0xf<<24 | 0xe<<12 | 1<<10 o1 |= (uint32(Q&1) << 30) | (uint32((r>>5)&7) << 16) | (uint32(r&0x1f) << 5) | uint32(rt&31) case 87: /* stp (r,r), addr(SB) -> adrp + add + stp */ rf1, rf2 := p.From.Reg, int16(p.From.Offset) if rf1 == REGTMP || rf2 == REGTMP { c.ctxt.Diag("cannot use REGTMP as source: %v", p) } o1 = ADR(1, 0, REGTMP) o2 = c.opirr(p, AADD) | REGTMP&31<<5 | REGTMP&31 c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRARM64, Off: int32(c.pc), Siz: 8, Sym: p.To.Sym, Add: p.To.Offset, }) o3 = c.opldpstp(p, o, 0, REGTMP, rf1, rf2, 0) case 88: /* ldp addr(SB), (r,r) -> adrp + add + ldp */ rt1, rt2 := p.To.Reg, int16(p.To.Offset) o1 = ADR(1, 0, REGTMP) o2 = c.opirr(p, AADD) | REGTMP&31<<5 | REGTMP&31 c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRARM64, Off: int32(c.pc), Siz: 8, Sym: p.From.Sym, Add: p.From.Offset, }) o3 = c.opldpstp(p, o, 0, REGTMP, rt1, rt2, 1) case 89: /* vadd/vsub Vm, Vn, Vd */ switch p.As { case AVADD: o1 = 5<<28 | 7<<25 | 7<<21 | 1<<15 | 1<<10 case AVSUB: o1 = 7<<28 | 7<<25 | 7<<21 | 1<<15 | 1<<10 default: c.ctxt.Diag("bad opcode: %v\n", p) break } rf := int(p.From.Reg) rt := int(p.To.Reg) r := int(p.Reg) if r == obj.REG_NONE { r = rt } o1 |= (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) // This is supposed to be something that stops execution. // It's not supposed to be reached, ever, but if it is, we'd // like to be able to tell how we got there. Assemble as // UDF which is guaranteed to raise the undefined instruction // exception. case 90: o1 = 0x0 case 91: /* prfm imm(Rn), */ imm := uint32(p.From.Offset) r := p.From.Reg var v uint32 var ok bool if p.To.Type == obj.TYPE_CONST { v = uint32(p.To.Offset) ok = v <= 31 } else { v, ok = prfopfield[SpecialOperand(p.To.Offset)] } if !ok { c.ctxt.Diag("illegal prefetch operation:\n%v", p) } o1 = c.opirr(p, p.As) o1 |= (uint32(r&31) << 5) | (uint32((imm>>3)&0xfff) << 10) | (uint32(v & 31)) case 92: /* vmov Vn.[index], Vd.[index] */ rf := int(p.From.Reg) rt := int(p.To.Reg) imm4 := 0 imm5 := 0 o1 = 3<<29 | 7<<25 | 1<<10 index1 := int(p.To.Index) index2 := int(p.From.Index) if ((p.To.Reg >> 5) & 15) != ((p.From.Reg >> 5) & 15) { c.ctxt.Diag("operand mismatch: %v", p) } switch (p.To.Reg >> 5) & 15 { case ARNG_B: c.checkindex(p, index1, 15) c.checkindex(p, index2, 15) imm5 |= 1 imm5 |= index1 << 1 imm4 |= index2 case ARNG_H: c.checkindex(p, index1, 7) c.checkindex(p, index2, 7) imm5 |= 2 imm5 |= index1 << 2 imm4 |= index2 << 1 case ARNG_S: c.checkindex(p, index1, 3) c.checkindex(p, index2, 3) imm5 |= 4 imm5 |= index1 << 3 imm4 |= index2 << 2 case ARNG_D: c.checkindex(p, index1, 1) c.checkindex(p, index2, 1) imm5 |= 8 imm5 |= index1 << 4 imm4 |= index2 << 3 default: c.ctxt.Diag("invalid arrangement: %v", p) } o1 |= (uint32(imm5&0x1f) << 16) | (uint32(imm4&0xf) << 11) | (uint32(rf&31) << 5) | uint32(rt&31) case 93: /* vpmull{2} Vm., Vn., Vd. */ af := uint8((p.From.Reg >> 5) & 15) at := uint8((p.To.Reg >> 5) & 15) a := uint8((p.Reg >> 5) & 15) if af != a { c.ctxt.Diag("invalid arrangement: %v", p) } var Q, size uint32 if p.As == AVPMULL2 { Q = 1 } switch pack(Q, at, af) { case pack(0, ARNG_8H, ARNG_8B), pack(1, ARNG_8H, ARNG_16B): size = 0 case pack(0, ARNG_1Q, ARNG_1D), pack(1, ARNG_1Q, ARNG_2D): size = 3 default: c.ctxt.Diag("operand mismatch: %v\n", p) } o1 = c.oprrr(p, p.As) rf := int((p.From.Reg) & 31) rt := int((p.To.Reg) & 31) r := int((p.Reg) & 31) o1 |= ((Q & 1) << 30) | ((size & 3) << 22) | (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) case 94: /* vext $imm4, Vm., Vn., Vd. */ af := int(((p.GetFrom3().Reg) >> 5) & 15) at := int((p.To.Reg >> 5) & 15) a := int((p.Reg >> 5) & 15) index := int(p.From.Offset) if af != a || af != at { c.ctxt.Diag("invalid arrangement: %v", p) break } var Q uint32 var b int if af == ARNG_8B { Q = 0 b = 7 } else if af == ARNG_16B { Q = 1 b = 15 } else { c.ctxt.Diag("invalid arrangement, should be B8 or B16: %v", p) break } if index < 0 || index > b { c.ctxt.Diag("illegal offset: %v", p) } o1 = c.opirr(p, p.As) rf := int((p.GetFrom3().Reg) & 31) rt := int((p.To.Reg) & 31) r := int((p.Reg) & 31) o1 |= ((Q & 1) << 30) | (uint32(r&31) << 16) | (uint32(index&15) << 11) | (uint32(rf&31) << 5) | uint32(rt&31) case 95: /* vushr/vshl/vsri/vsli/vusra $shift, Vn., Vd. */ at := int((p.To.Reg >> 5) & 15) af := int((p.Reg >> 5) & 15) shift := int(p.From.Offset) if af != at { c.ctxt.Diag("invalid arrangement on op Vn., Vd.: %v", p) } var Q uint32 var imax, esize int switch af { case ARNG_8B, ARNG_4H, ARNG_2S: Q = 0 case ARNG_16B, ARNG_8H, ARNG_4S, ARNG_2D: Q = 1 default: c.ctxt.Diag("invalid arrangement on op Vn., Vd.: %v", p) } switch af { case ARNG_8B, ARNG_16B: imax = 15 esize = 8 case ARNG_4H, ARNG_8H: imax = 31 esize = 16 case ARNG_2S, ARNG_4S: imax = 63 esize = 32 case ARNG_2D: imax = 127 esize = 64 } imm := 0 switch p.As { case AVUSHR, AVSRI, AVUSRA: imm = esize*2 - shift if imm < esize || imm > imax { c.ctxt.Diag("shift out of range: %v", p) } case AVSHL, AVSLI: imm = esize + shift if imm > imax { c.ctxt.Diag("shift out of range: %v", p) } default: c.ctxt.Diag("invalid instruction %v\n", p) } o1 = c.opirr(p, p.As) rt := int((p.To.Reg) & 31) rf := int((p.Reg) & 31) o1 |= ((Q & 1) << 30) | (uint32(imm&0x7f) << 16) | (uint32(rf&31) << 5) | uint32(rt&31) case 96: /* vst1 Vt1.[index], offset(Rn) */ af := int((p.From.Reg >> 5) & 15) rt := int((p.From.Reg) & 31) rf := int((p.To.Reg) & 31) r := int(p.To.Index & 31) index := int(p.From.Index) offset := c.regoff(&p.To) if o.scond == C_XPOST { if (p.To.Index != 0) && (offset != 0) { c.ctxt.Diag("invalid offset: %v", p) } if p.To.Index == 0 && offset == 0 { c.ctxt.Diag("invalid offset: %v", p) } } if offset != 0 { r = 31 } var Q, S, size int var opcode uint32 switch af { case ARNG_B: c.checkindex(p, index, 15) if o.scond == C_XPOST && offset != 0 && offset != 1 { c.ctxt.Diag("invalid offset: %v", p) } Q = index >> 3 S = (index >> 2) & 1 size = index & 3 opcode = 0 case ARNG_H: c.checkindex(p, index, 7) if o.scond == C_XPOST && offset != 0 && offset != 2 { c.ctxt.Diag("invalid offset: %v", p) } Q = index >> 2 S = (index >> 1) & 1 size = (index & 1) << 1 opcode = 2 case ARNG_S: c.checkindex(p, index, 3) if o.scond == C_XPOST && offset != 0 && offset != 4 { c.ctxt.Diag("invalid offset: %v", p) } Q = index >> 1 S = index & 1 size = 0 opcode = 4 case ARNG_D: c.checkindex(p, index, 1) if o.scond == C_XPOST && offset != 0 && offset != 8 { c.ctxt.Diag("invalid offset: %v", p) } Q = index S = 0 size = 1 opcode = 4 default: c.ctxt.Diag("invalid arrangement: %v", p) } if o.scond == C_XPOST { o1 |= 27 << 23 } else { o1 |= 26 << 23 } o1 |= (uint32(Q&1) << 30) | (uint32(r&31) << 16) | ((opcode & 7) << 13) | (uint32(S&1) << 12) | (uint32(size&3) << 10) | (uint32(rf&31) << 5) | uint32(rt&31) case 97: /* vld1 offset(Rn), vt.[index] */ at := int((p.To.Reg >> 5) & 15) rt := int((p.To.Reg) & 31) rf := int((p.From.Reg) & 31) r := int(p.From.Index & 31) index := int(p.To.Index) offset := c.regoff(&p.From) if o.scond == C_XPOST { if (p.From.Index != 0) && (offset != 0) { c.ctxt.Diag("invalid offset: %v", p) } if p.From.Index == 0 && offset == 0 { c.ctxt.Diag("invalid offset: %v", p) } } if offset != 0 { r = 31 } Q := 0 S := 0 size := 0 var opcode uint32 switch at { case ARNG_B: c.checkindex(p, index, 15) if o.scond == C_XPOST && offset != 0 && offset != 1 { c.ctxt.Diag("invalid offset: %v", p) } Q = index >> 3 S = (index >> 2) & 1 size = index & 3 opcode = 0 case ARNG_H: c.checkindex(p, index, 7) if o.scond == C_XPOST && offset != 0 && offset != 2 { c.ctxt.Diag("invalid offset: %v", p) } Q = index >> 2 S = (index >> 1) & 1 size = (index & 1) << 1 opcode = 2 case ARNG_S: c.checkindex(p, index, 3) if o.scond == C_XPOST && offset != 0 && offset != 4 { c.ctxt.Diag("invalid offset: %v", p) } Q = index >> 1 S = index & 1 size = 0 opcode = 4 case ARNG_D: c.checkindex(p, index, 1) if o.scond == C_XPOST && offset != 0 && offset != 8 { c.ctxt.Diag("invalid offset: %v", p) } Q = index S = 0 size = 1 opcode = 4 default: c.ctxt.Diag("invalid arrangement: %v", p) } if o.scond == C_XPOST { o1 |= 110 << 21 } else { o1 |= 106 << 21 } o1 |= (uint32(Q&1) << 30) | (uint32(r&31) << 16) | ((opcode & 7) << 13) | (uint32(S&1) << 12) | (uint32(size&3) << 10) | (uint32(rf&31) << 5) | uint32(rt&31) case 98: /* MOVD (Rn)(Rm.SXTW[<, [Vt1., Vt2., ...], Vd. */ af := int((p.From.Reg >> 5) & 15) at := int((p.To.Reg >> 5) & 15) if af != at { c.ctxt.Diag("invalid arrangement: %v\n", p) } var q, len uint32 switch af { case ARNG_8B: q = 0 case ARNG_16B: q = 1 default: c.ctxt.Diag("invalid arrangement: %v", p) } rf := int(p.From.Reg) rt := int(p.To.Reg) offset := int(p.GetFrom3().Offset) opcode := (offset >> 12) & 15 switch opcode { case 0x7: len = 0 // one register case 0xa: len = 1 // two register case 0x6: len = 2 // three registers case 0x2: len = 3 // four registers default: c.ctxt.Diag("invalid register numbers in ARM64 register list: %v", p) } var op uint32 switch p.As { case AVTBL: op = 0 case AVTBX: op = 1 } o1 = q<<30 | 0xe<<24 | len<<13 | op<<12 o1 |= (uint32(rf&31) << 16) | uint32(offset&31)<<5 | uint32(rt&31) case 102: /* vushll, vushll2, vuxtl, vuxtl2 */ o1 = c.opirr(p, p.As) rf := p.Reg af := uint8((p.Reg >> 5) & 15) at := uint8((p.To.Reg >> 5) & 15) shift := int(p.From.Offset) if p.As == AVUXTL || p.As == AVUXTL2 { rf = p.From.Reg af = uint8((p.From.Reg >> 5) & 15) shift = 0 } Q := (o1 >> 30) & 1 var immh, width uint8 switch pack(Q, af, at) { case pack(0, ARNG_8B, ARNG_8H): immh, width = 1, 8 case pack(1, ARNG_16B, ARNG_8H): immh, width = 1, 8 case pack(0, ARNG_4H, ARNG_4S): immh, width = 2, 16 case pack(1, ARNG_8H, ARNG_4S): immh, width = 2, 16 case pack(0, ARNG_2S, ARNG_2D): immh, width = 4, 32 case pack(1, ARNG_4S, ARNG_2D): immh, width = 4, 32 default: c.ctxt.Diag("operand mismatch: %v\n", p) } if !(0 <= shift && shift <= int(width-1)) { c.ctxt.Diag("shift amount out of range: %v\n", p) } o1 |= uint32(immh)<<19 | uint32(shift)<<16 | uint32(rf&31)<<5 | uint32(p.To.Reg&31) case 103: /* VEOR3/VBCAX Va.B16, Vm.B16, Vn.B16, Vd.B16 */ ta := (p.From.Reg >> 5) & 15 tm := (p.Reg >> 5) & 15 td := (p.To.Reg >> 5) & 15 tn := ((p.GetFrom3().Reg) >> 5) & 15 if ta != tm || ta != tn || ta != td || ta != ARNG_16B { c.ctxt.Diag("invalid arrangement: %v", p) break } o1 = c.oprrr(p, p.As) ra := int(p.From.Reg) rm := int(p.Reg) rn := int(p.GetFrom3().Reg) rd := int(p.To.Reg) o1 |= uint32(rm&31)<<16 | uint32(ra&31)<<10 | uint32(rn&31)<<5 | uint32(rd)&31 case 104: /* vxar $imm4, Vm., Vn., Vd. */ af := ((p.GetFrom3().Reg) >> 5) & 15 at := (p.To.Reg >> 5) & 15 a := (p.Reg >> 5) & 15 index := int(p.From.Offset) if af != a || af != at { c.ctxt.Diag("invalid arrangement: %v", p) break } if af != ARNG_2D { c.ctxt.Diag("invalid arrangement, should be D2: %v", p) break } if index < 0 || index > 63 { c.ctxt.Diag("illegal offset: %v", p) } o1 = c.opirr(p, p.As) rf := (p.GetFrom3().Reg) & 31 rt := (p.To.Reg) & 31 r := (p.Reg) & 31 o1 |= (uint32(r&31) << 16) | (uint32(index&63) << 10) | (uint32(rf&31) << 5) | uint32(rt&31) case 105: /* vuaddw{2} Vm., Vn., Vd. */ af := uint8((p.From.Reg >> 5) & 15) at := uint8((p.To.Reg >> 5) & 15) a := uint8((p.Reg >> 5) & 15) if at != a { c.ctxt.Diag("invalid arrangement: %v", p) break } var Q, size uint32 if p.As == AVUADDW2 { Q = 1 } switch pack(Q, at, af) { case pack(0, ARNG_8H, ARNG_8B), pack(1, ARNG_8H, ARNG_16B): size = 0 case pack(0, ARNG_4S, ARNG_4H), pack(1, ARNG_4S, ARNG_8H): size = 1 case pack(0, ARNG_2D, ARNG_2S), pack(1, ARNG_2D, ARNG_4S): size = 2 default: c.ctxt.Diag("operand mismatch: %v\n", p) } o1 = c.oprrr(p, p.As) rf := int((p.From.Reg) & 31) rt := int((p.To.Reg) & 31) r := int((p.Reg) & 31) o1 |= ((Q & 1) << 30) | ((size & 3) << 22) | (uint32(rf&31) << 16) | (uint32(r&31) << 5) | uint32(rt&31) case 106: // CASPx (Rs, Rs+1), (Rb), (Rt, Rt+1) rs := p.From.Reg rt := p.GetTo2().Reg rb := p.To.Reg rs1 := int16(p.From.Offset) rt1 := int16(p.GetTo2().Offset) enc, ok := atomicCASP[p.As] if !ok { c.ctxt.Diag("invalid CASP-like atomic instructions: %v\n", p) } // for CASPx-like instructions, Rs<0> != 1 && Rt<0> != 1 switch { case rs&1 != 0: c.ctxt.Diag("source register pair must start from even register: %v\n", p) break case rt&1 != 0: c.ctxt.Diag("destination register pair must start from even register: %v\n", p) break case rs != rs1-1: c.ctxt.Diag("source register pair must be contiguous: %v\n", p) break case rt != rt1-1: c.ctxt.Diag("destination register pair must be contiguous: %v\n", p) break } // rt can't be sp. if rt == REG_RSP { c.ctxt.Diag("illegal destination register: %v\n", p) } o1 |= enc | uint32(rs&31)<<16 | uint32(rb&31)<<5 | uint32(rt&31) case 107: /* tlbi, dc */ op, ok := sysInstFields[SpecialOperand(p.From.Offset)] if !ok || (p.As == ATLBI && op.cn != 8) || (p.As == ADC && op.cn != 7) { c.ctxt.Diag("illegal argument: %v\n", p) break } o1 = c.opirr(p, p.As) if op.hasOperand2 { if p.To.Reg == obj.REG_NONE { c.ctxt.Diag("missing register at operand 2: %v\n", p) } o1 |= uint32(p.To.Reg & 0x1F) } else { if p.To.Reg != obj.REG_NONE || p.Reg != obj.REG_NONE { c.ctxt.Diag("extraneous register at operand 2: %v\n", p) } o1 |= uint32(0x1F) } o1 |= uint32(SYSARG4(int(op.op1), int(op.cn), int(op.cm), int(op.op2))) } out[0] = o1 out[1] = o2 out[2] = o3 out[3] = o4 out[4] = o5 return int(o.size(c.ctxt, p) / 4) } func (c *ctxt7) addrRelocType(p *obj.Prog) objabi.RelocType { switch movesize(p.As) { case 0: return objabi.R_ARM64_PCREL_LDST8 case 1: return objabi.R_ARM64_PCREL_LDST16 case 2: return objabi.R_ARM64_PCREL_LDST32 case 3: return objabi.R_ARM64_PCREL_LDST64 default: c.ctxt.Diag("use R_ADDRARM64 relocation type for: %v\n", p) } return -1 } /* * basic Rm op Rn -> Rd (using shifted register with 0) * also op Rn -> Rt * also Rm*Rn op Ra -> Rd * also Vm op Vn -> Vd */ func (c *ctxt7) oprrr(p *obj.Prog, a obj.As) uint32 { switch a { case AADC: return S64 | 0<<30 | 0<<29 | 0xd0<<21 | 0<<10 case AADCW: return S32 | 0<<30 | 0<<29 | 0xd0<<21 | 0<<10 case AADCS: return S64 | 0<<30 | 1<<29 | 0xd0<<21 | 0<<10 case AADCSW: return S32 | 0<<30 | 1<<29 | 0xd0<<21 | 0<<10 case ANGC, ASBC: return S64 | 1<<30 | 0<<29 | 0xd0<<21 | 0<<10 case ANGCS, ASBCS: return S64 | 1<<30 | 1<<29 | 0xd0<<21 | 0<<10 case ANGCW, ASBCW: return S32 | 1<<30 | 0<<29 | 0xd0<<21 | 0<<10 case ANGCSW, ASBCSW: return S32 | 1<<30 | 1<<29 | 0xd0<<21 | 0<<10 case AADD: return S64 | 0<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case AADDW: return S32 | 0<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case ACMN, AADDS: return S64 | 0<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case ACMNW, AADDSW: return S32 | 0<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case ASUB: return S64 | 1<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case ASUBW: return S32 | 1<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case ACMP, ASUBS: return S64 | 1<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case ACMPW, ASUBSW: return S32 | 1<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 0<<21 | 0<<10 case AAND: return S64 | 0<<29 | 0xA<<24 case AANDW: return S32 | 0<<29 | 0xA<<24 case AMOVD, AORR: return S64 | 1<<29 | 0xA<<24 // case AMOVW: case AMOVWU, AORRW: return S32 | 1<<29 | 0xA<<24 case AEOR: return S64 | 2<<29 | 0xA<<24 case AEORW: return S32 | 2<<29 | 0xA<<24 case AANDS, ATST: return S64 | 3<<29 | 0xA<<24 case AANDSW, ATSTW: return S32 | 3<<29 | 0xA<<24 case ABIC: return S64 | 0<<29 | 0xA<<24 | 1<<21 case ABICW: return S32 | 0<<29 | 0xA<<24 | 1<<21 case ABICS: return S64 | 3<<29 | 0xA<<24 | 1<<21 case ABICSW: return S32 | 3<<29 | 0xA<<24 | 1<<21 case AEON: return S64 | 2<<29 | 0xA<<24 | 1<<21 case AEONW: return S32 | 2<<29 | 0xA<<24 | 1<<21 case AMVN, AORN: return S64 | 1<<29 | 0xA<<24 | 1<<21 case AMVNW, AORNW: return S32 | 1<<29 | 0xA<<24 | 1<<21 case AASR: return S64 | OPDP2(10) /* also ASRV */ case AASRW: return S32 | OPDP2(10) case ALSL: return S64 | OPDP2(8) case ALSLW: return S32 | OPDP2(8) case ALSR: return S64 | OPDP2(9) case ALSRW: return S32 | OPDP2(9) case AROR: return S64 | OPDP2(11) case ARORW: return S32 | OPDP2(11) case ACCMN: return S64 | 0<<30 | 1<<29 | 0xD2<<21 | 0<<11 | 0<<10 | 0<<4 /* cond<<12 | nzcv<<0 */ case ACCMNW: return S32 | 0<<30 | 1<<29 | 0xD2<<21 | 0<<11 | 0<<10 | 0<<4 case ACCMP: return S64 | 1<<30 | 1<<29 | 0xD2<<21 | 0<<11 | 0<<10 | 0<<4 /* imm5<<16 | cond<<12 | nzcv<<0 */ case ACCMPW: return S32 | 1<<30 | 1<<29 | 0xD2<<21 | 0<<11 | 0<<10 | 0<<4 case ACRC32B: return S32 | OPDP2(16) case ACRC32H: return S32 | OPDP2(17) case ACRC32W: return S32 | OPDP2(18) case ACRC32X: return S64 | OPDP2(19) case ACRC32CB: return S32 | OPDP2(20) case ACRC32CH: return S32 | OPDP2(21) case ACRC32CW: return S32 | OPDP2(22) case ACRC32CX: return S64 | OPDP2(23) case ACSEL: return S64 | 0<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 0<<10 case ACSELW: return S32 | 0<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 0<<10 case ACSET: return S64 | 0<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 1<<10 case ACSETW: return S32 | 0<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 1<<10 case ACSETM: return S64 | 1<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 0<<10 case ACSETMW: return S32 | 1<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 0<<10 case ACINC, ACSINC: return S64 | 0<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 1<<10 case ACINCW, ACSINCW: return S32 | 0<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 1<<10 case ACINV, ACSINV: return S64 | 1<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 0<<10 case ACINVW, ACSINVW: return S32 | 1<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 0<<10 case ACNEG, ACSNEG: return S64 | 1<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 1<<10 case ACNEGW, ACSNEGW: return S32 | 1<<30 | 0<<29 | 0xD4<<21 | 0<<11 | 1<<10 case AMUL, AMADD: return S64 | 0<<29 | 0x1B<<24 | 0<<21 | 0<<15 case AMULW, AMADDW: return S32 | 0<<29 | 0x1B<<24 | 0<<21 | 0<<15 case AMNEG, AMSUB: return S64 | 0<<29 | 0x1B<<24 | 0<<21 | 1<<15 case AMNEGW, AMSUBW: return S32 | 0<<29 | 0x1B<<24 | 0<<21 | 1<<15 case AMRS: return SYSOP(1, 2, 0, 0, 0, 0, 0) case AMSR: return SYSOP(0, 2, 0, 0, 0, 0, 0) case ANEG: return S64 | 1<<30 | 0<<29 | 0xB<<24 | 0<<21 case ANEGW: return S32 | 1<<30 | 0<<29 | 0xB<<24 | 0<<21 case ANEGS: return S64 | 1<<30 | 1<<29 | 0xB<<24 | 0<<21 case ANEGSW: return S32 | 1<<30 | 1<<29 | 0xB<<24 | 0<<21 case AREM, ASDIV: return S64 | OPDP2(3) case AREMW, ASDIVW: return S32 | OPDP2(3) case ASMULL, ASMADDL: return OPDP3(1, 0, 1, 0) case ASMNEGL, ASMSUBL: return OPDP3(1, 0, 1, 1) case ASMULH: return OPDP3(1, 0, 2, 0) case AUMULL, AUMADDL: return OPDP3(1, 0, 5, 0) case AUMNEGL, AUMSUBL: return OPDP3(1, 0, 5, 1) case AUMULH: return OPDP3(1, 0, 6, 0) case AUREM, AUDIV: return S64 | OPDP2(2) case AUREMW, AUDIVW: return S32 | OPDP2(2) case AAESE: return 0x4E<<24 | 2<<20 | 8<<16 | 4<<12 | 2<<10 case AAESD: return 0x4E<<24 | 2<<20 | 8<<16 | 5<<12 | 2<<10 case AAESMC: return 0x4E<<24 | 2<<20 | 8<<16 | 6<<12 | 2<<10 case AAESIMC: return 0x4E<<24 | 2<<20 | 8<<16 | 7<<12 | 2<<10 case ASHA1C: return 0x5E<<24 | 0<<12 case ASHA1P: return 0x5E<<24 | 1<<12 case ASHA1M: return 0x5E<<24 | 2<<12 case ASHA1SU0: return 0x5E<<24 | 3<<12 case ASHA256H: return 0x5E<<24 | 4<<12 case ASHA256H2: return 0x5E<<24 | 5<<12 case ASHA256SU1: return 0x5E<<24 | 6<<12 case ASHA1H: return 0x5E<<24 | 2<<20 | 8<<16 | 0<<12 | 2<<10 case ASHA1SU1: return 0x5E<<24 | 2<<20 | 8<<16 | 1<<12 | 2<<10 case ASHA256SU0: return 0x5E<<24 | 2<<20 | 8<<16 | 2<<12 | 2<<10 case ASHA512H: return 0xCE<<24 | 3<<21 | 8<<12 case ASHA512H2: return 0xCE<<24 | 3<<21 | 8<<12 | 4<<8 case ASHA512SU1: return 0xCE<<24 | 3<<21 | 8<<12 | 8<<8 case ASHA512SU0: return 0xCE<<24 | 3<<22 | 8<<12 case AFCVTZSD: return FPCVTI(1, 0, 1, 3, 0) case AFCVTZSDW: return FPCVTI(0, 0, 1, 3, 0) case AFCVTZSS: return FPCVTI(1, 0, 0, 3, 0) case AFCVTZSSW: return FPCVTI(0, 0, 0, 3, 0) case AFCVTZUD: return FPCVTI(1, 0, 1, 3, 1) case AFCVTZUDW: return FPCVTI(0, 0, 1, 3, 1) case AFCVTZUS: return FPCVTI(1, 0, 0, 3, 1) case AFCVTZUSW: return FPCVTI(0, 0, 0, 3, 1) case ASCVTFD: return FPCVTI(1, 0, 1, 0, 2) case ASCVTFS: return FPCVTI(1, 0, 0, 0, 2) case ASCVTFWD: return FPCVTI(0, 0, 1, 0, 2) case ASCVTFWS: return FPCVTI(0, 0, 0, 0, 2) case AUCVTFD: return FPCVTI(1, 0, 1, 0, 3) case AUCVTFS: return FPCVTI(1, 0, 0, 0, 3) case AUCVTFWD: return FPCVTI(0, 0, 1, 0, 3) case AUCVTFWS: return FPCVTI(0, 0, 0, 0, 3) case AFADDS: return FPOP2S(0, 0, 0, 2) case AFADDD: return FPOP2S(0, 0, 1, 2) case AFSUBS: return FPOP2S(0, 0, 0, 3) case AFSUBD: return FPOP2S(0, 0, 1, 3) case AFMADDD: return FPOP3S(0, 0, 1, 0, 0) case AFMADDS: return FPOP3S(0, 0, 0, 0, 0) case AFMSUBD: return FPOP3S(0, 0, 1, 0, 1) case AFMSUBS: return FPOP3S(0, 0, 0, 0, 1) case AFNMADDD: return FPOP3S(0, 0, 1, 1, 0) case AFNMADDS: return FPOP3S(0, 0, 0, 1, 0) case AFNMSUBD: return FPOP3S(0, 0, 1, 1, 1) case AFNMSUBS: return FPOP3S(0, 0, 0, 1, 1) case AFMULS: return FPOP2S(0, 0, 0, 0) case AFMULD: return FPOP2S(0, 0, 1, 0) case AFDIVS: return FPOP2S(0, 0, 0, 1) case AFDIVD: return FPOP2S(0, 0, 1, 1) case AFMAXS: return FPOP2S(0, 0, 0, 4) case AFMINS: return FPOP2S(0, 0, 0, 5) case AFMAXD: return FPOP2S(0, 0, 1, 4) case AFMIND: return FPOP2S(0, 0, 1, 5) case AFMAXNMS: return FPOP2S(0, 0, 0, 6) case AFMAXNMD: return FPOP2S(0, 0, 1, 6) case AFMINNMS: return FPOP2S(0, 0, 0, 7) case AFMINNMD: return FPOP2S(0, 0, 1, 7) case AFNMULS: return FPOP2S(0, 0, 0, 8) case AFNMULD: return FPOP2S(0, 0, 1, 8) case AFCMPS: return FPCMP(0, 0, 0, 0, 0) case AFCMPD: return FPCMP(0, 0, 1, 0, 0) case AFCMPES: return FPCMP(0, 0, 0, 0, 16) case AFCMPED: return FPCMP(0, 0, 1, 0, 16) case AFCCMPS: return FPCCMP(0, 0, 0, 0) case AFCCMPD: return FPCCMP(0, 0, 1, 0) case AFCCMPES: return FPCCMP(0, 0, 0, 1) case AFCCMPED: return FPCCMP(0, 0, 1, 1) case AFCSELS: return 0x1E<<24 | 0<<22 | 1<<21 | 3<<10 case AFCSELD: return 0x1E<<24 | 1<<22 | 1<<21 | 3<<10 case AFMOVS: return FPOP1S(0, 0, 0, 0) case AFABSS: return FPOP1S(0, 0, 0, 1) case AFNEGS: return FPOP1S(0, 0, 0, 2) case AFSQRTS: return FPOP1S(0, 0, 0, 3) case AFCVTSD: return FPOP1S(0, 0, 0, 5) case AFCVTSH: return FPOP1S(0, 0, 0, 7) case AFRINTNS: return FPOP1S(0, 0, 0, 8) case AFRINTPS: return FPOP1S(0, 0, 0, 9) case AFRINTMS: return FPOP1S(0, 0, 0, 10) case AFRINTZS: return FPOP1S(0, 0, 0, 11) case AFRINTAS: return FPOP1S(0, 0, 0, 12) case AFRINTXS: return FPOP1S(0, 0, 0, 14) case AFRINTIS: return FPOP1S(0, 0, 0, 15) case AFMOVD: return FPOP1S(0, 0, 1, 0) case AFABSD: return FPOP1S(0, 0, 1, 1) case AFNEGD: return FPOP1S(0, 0, 1, 2) case AFSQRTD: return FPOP1S(0, 0, 1, 3) case AFCVTDS: return FPOP1S(0, 0, 1, 4) case AFCVTDH: return FPOP1S(0, 0, 1, 7) case AFRINTND: return FPOP1S(0, 0, 1, 8) case AFRINTPD: return FPOP1S(0, 0, 1, 9) case AFRINTMD: return FPOP1S(0, 0, 1, 10) case AFRINTZD: return FPOP1S(0, 0, 1, 11) case AFRINTAD: return FPOP1S(0, 0, 1, 12) case AFRINTXD: return FPOP1S(0, 0, 1, 14) case AFRINTID: return FPOP1S(0, 0, 1, 15) case AFCVTHS: return FPOP1S(0, 0, 3, 4) case AFCVTHD: return FPOP1S(0, 0, 3, 5) case AVADD: return 7<<25 | 1<<21 | 1<<15 | 1<<10 case AVSUB: return 0x17<<25 | 1<<21 | 1<<15 | 1<<10 case AVADDP: return 7<<25 | 1<<21 | 1<<15 | 15<<10 case AVAND: return 7<<25 | 1<<21 | 7<<10 case AVBCAX: return 0xCE<<24 | 1<<21 case AVCMEQ: return 1<<29 | 0x71<<21 | 0x23<<10 case AVCNT: return 0xE<<24 | 0x10<<17 | 5<<12 | 2<<10 case AVZIP1: return 0xE<<24 | 3<<12 | 2<<10 case AVZIP2: return 0xE<<24 | 1<<14 | 3<<12 | 2<<10 case AVEOR: return 1<<29 | 0x71<<21 | 7<<10 case AVEOR3: return 0xCE << 24 case AVORR: return 7<<25 | 5<<21 | 7<<10 case AVREV16: return 3<<26 | 2<<24 | 1<<21 | 3<<11 case AVRAX1: return 0xCE<<24 | 3<<21 | 1<<15 | 3<<10 case AVREV32: return 11<<26 | 2<<24 | 1<<21 | 1<<11 case AVREV64: return 3<<26 | 2<<24 | 1<<21 | 1<<11 case AVMOV: return 7<<25 | 5<<21 | 7<<10 case AVADDV: return 7<<25 | 3<<20 | 3<<15 | 7<<11 case AVUADDLV: return 1<<29 | 7<<25 | 3<<20 | 7<<11 case AVFMLA: return 7<<25 | 0<<23 | 1<<21 | 3<<14 | 3<<10 case AVFMLS: return 7<<25 | 1<<23 | 1<<21 | 3<<14 | 3<<10 case AVPMULL, AVPMULL2: return 0xE<<24 | 1<<21 | 0x38<<10 case AVRBIT: return 0x2E<<24 | 1<<22 | 0x10<<17 | 5<<12 | 2<<10 case AVLD1, AVLD2, AVLD3, AVLD4: return 3<<26 | 1<<22 case AVLD1R, AVLD3R: return 0xD<<24 | 1<<22 case AVLD2R, AVLD4R: return 0xD<<24 | 3<<21 case AVBIF: return 1<<29 | 7<<25 | 7<<21 | 7<<10 case AVBIT: return 1<<29 | 0x75<<21 | 7<<10 case AVBSL: return 1<<29 | 0x73<<21 | 7<<10 case AVCMTST: return 0xE<<24 | 1<<21 | 0x23<<10 case AVUMAX: return 1<<29 | 7<<25 | 1<<21 | 0x19<<10 case AVUMIN: return 1<<29 | 7<<25 | 1<<21 | 0x1b<<10 case AVUZP1: return 7<<25 | 3<<11 case AVUZP2: return 7<<25 | 1<<14 | 3<<11 case AVUADDW, AVUADDW2: return 0x17<<25 | 1<<21 | 1<<12 case AVTRN1: return 7<<25 | 5<<11 case AVTRN2: return 7<<25 | 1<<14 | 5<<11 } c.ctxt.Diag("%v: bad rrr %d %v", p, a, a) return 0 } /* * imm -> Rd * imm op Rn -> Rd */ func (c *ctxt7) opirr(p *obj.Prog, a obj.As) uint32 { switch a { /* op $addcon, Rn, Rd */ case AMOVD, AADD: return S64 | 0<<30 | 0<<29 | 0x11<<24 case ACMN, AADDS: return S64 | 0<<30 | 1<<29 | 0x11<<24 case AMOVW, AADDW: return S32 | 0<<30 | 0<<29 | 0x11<<24 case ACMNW, AADDSW: return S32 | 0<<30 | 1<<29 | 0x11<<24 case ASUB: return S64 | 1<<30 | 0<<29 | 0x11<<24 case ACMP, ASUBS: return S64 | 1<<30 | 1<<29 | 0x11<<24 case ASUBW: return S32 | 1<<30 | 0<<29 | 0x11<<24 case ACMPW, ASUBSW: return S32 | 1<<30 | 1<<29 | 0x11<<24 /* op $imm(SB), Rd; op label, Rd */ case AADR: return 0<<31 | 0x10<<24 case AADRP: return 1<<31 | 0x10<<24 /* op $bimm, Rn, Rd */ case AAND, ABIC: return S64 | 0<<29 | 0x24<<23 case AANDW, ABICW: return S32 | 0<<29 | 0x24<<23 | 0<<22 case AORR, AORN: return S64 | 1<<29 | 0x24<<23 case AORRW, AORNW: return S32 | 1<<29 | 0x24<<23 | 0<<22 case AEOR, AEON: return S64 | 2<<29 | 0x24<<23 case AEORW, AEONW: return S32 | 2<<29 | 0x24<<23 | 0<<22 case AANDS, ABICS, ATST: return S64 | 3<<29 | 0x24<<23 case AANDSW, ABICSW, ATSTW: return S32 | 3<<29 | 0x24<<23 | 0<<22 case AASR: return S64 | 0<<29 | 0x26<<23 /* alias of SBFM */ case AASRW: return S32 | 0<<29 | 0x26<<23 | 0<<22 /* op $width, $lsb, Rn, Rd */ case ABFI: return S64 | 2<<29 | 0x26<<23 | 1<<22 /* alias of BFM */ case ABFIW: return S32 | 2<<29 | 0x26<<23 | 0<<22 /* op $imms, $immr, Rn, Rd */ case ABFM: return S64 | 1<<29 | 0x26<<23 | 1<<22 case ABFMW: return S32 | 1<<29 | 0x26<<23 | 0<<22 case ASBFM: return S64 | 0<<29 | 0x26<<23 | 1<<22 case ASBFMW: return S32 | 0<<29 | 0x26<<23 | 0<<22 case AUBFM: return S64 | 2<<29 | 0x26<<23 | 1<<22 case AUBFMW: return S32 | 2<<29 | 0x26<<23 | 0<<22 case ABFXIL: return S64 | 1<<29 | 0x26<<23 | 1<<22 /* alias of BFM */ case ABFXILW: return S32 | 1<<29 | 0x26<<23 | 0<<22 case AEXTR: return S64 | 0<<29 | 0x27<<23 | 1<<22 | 0<<21 case AEXTRW: return S32 | 0<<29 | 0x27<<23 | 0<<22 | 0<<21 case ACBNZ: return S64 | 0x1A<<25 | 1<<24 case ACBNZW: return S32 | 0x1A<<25 | 1<<24 case ACBZ: return S64 | 0x1A<<25 | 0<<24 case ACBZW: return S32 | 0x1A<<25 | 0<<24 case ACCMN: return S64 | 0<<30 | 1<<29 | 0xD2<<21 | 1<<11 | 0<<10 | 0<<4 /* imm5<<16 | cond<<12 | nzcv<<0 */ case ACCMNW: return S32 | 0<<30 | 1<<29 | 0xD2<<21 | 1<<11 | 0<<10 | 0<<4 case ACCMP: return S64 | 1<<30 | 1<<29 | 0xD2<<21 | 1<<11 | 0<<10 | 0<<4 /* imm5<<16 | cond<<12 | nzcv<<0 */ case ACCMPW: return S32 | 1<<30 | 1<<29 | 0xD2<<21 | 1<<11 | 0<<10 | 0<<4 case AMOVK: return S64 | 3<<29 | 0x25<<23 case AMOVKW: return S32 | 3<<29 | 0x25<<23 case AMOVN: return S64 | 0<<29 | 0x25<<23 case AMOVNW: return S32 | 0<<29 | 0x25<<23 case AMOVZ: return S64 | 2<<29 | 0x25<<23 case AMOVZW: return S32 | 2<<29 | 0x25<<23 case AMSR: return SYSOP(0, 0, 0, 4, 0, 0, 0x1F) /* MSR (immediate) */ case AAT, ADC, AIC, ATLBI, ASYS: return SYSOP(0, 1, 0, 0, 0, 0, 0) case ASYSL: return SYSOP(1, 1, 0, 0, 0, 0, 0) case ATBZ: return 0x36 << 24 case ATBNZ: return 0x37 << 24 case ADSB: return SYSOP(0, 0, 3, 3, 0, 4, 0x1F) case ADMB: return SYSOP(0, 0, 3, 3, 0, 5, 0x1F) case AISB: return SYSOP(0, 0, 3, 3, 0, 6, 0x1F) case AHINT: return SYSOP(0, 0, 3, 2, 0, 0, 0x1F) case AVEXT: return 0x2E<<24 | 0<<23 | 0<<21 | 0<<15 case AVUSHR: return 0x5E<<23 | 1<<10 case AVSHL: return 0x1E<<23 | 21<<10 case AVSRI: return 0x5E<<23 | 17<<10 case AVSLI: return 0x5E<<23 | 21<<10 case AVUSHLL, AVUXTL: return 1<<29 | 15<<24 | 0x29<<10 case AVUSHLL2, AVUXTL2: return 3<<29 | 15<<24 | 0x29<<10 case AVXAR: return 0xCE<<24 | 1<<23 case AVUSRA: return 1<<29 | 15<<24 | 5<<10 case APRFM: return 0xf9<<24 | 2<<22 } c.ctxt.Diag("%v: bad irr %v", p, a) return 0 } func (c *ctxt7) opbit(p *obj.Prog, a obj.As) uint32 { switch a { case ACLS: return S64 | OPBIT(5) case ACLSW: return S32 | OPBIT(5) case ACLZ: return S64 | OPBIT(4) case ACLZW: return S32 | OPBIT(4) case ARBIT: return S64 | OPBIT(0) case ARBITW: return S32 | OPBIT(0) case AREV: return S64 | OPBIT(3) case AREVW: return S32 | OPBIT(2) case AREV16: return S64 | OPBIT(1) case AREV16W: return S32 | OPBIT(1) case AREV32: return S64 | OPBIT(2) default: c.ctxt.Diag("bad bit op\n%v", p) return 0 } } /* * add/subtract sign or zero-extended register */ func (c *ctxt7) opxrrr(p *obj.Prog, a obj.As, rd, rn, rm int16, extend bool) uint32 { extension := uint32(0) if !extend { if isADDop(a) { extension = LSL0_64 } if isADDWop(a) { extension = LSL0_32 } } var op uint32 switch a { case AADD: op = S64 | 0<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case AADDW: op = S32 | 0<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case ACMN, AADDS: op = S64 | 0<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case ACMNW, AADDSW: op = S32 | 0<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case ASUB: op = S64 | 1<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case ASUBW: op = S32 | 1<<30 | 0<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case ACMP, ASUBS: op = S64 | 1<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension case ACMPW, ASUBSW: op = S32 | 1<<30 | 1<<29 | 0x0b<<24 | 0<<22 | 1<<21 | extension default: c.ctxt.Diag("bad opxrrr %v\n%v", a, p) return 0 } op |= uint32(rm&0x1f)<<16 | uint32(rn&0x1f)<<5 | uint32(rd&0x1f) return op } func (c *ctxt7) opimm(p *obj.Prog, a obj.As) uint32 { switch a { case ASVC: return 0xD4<<24 | 0<<21 | 1 /* imm16<<5 */ case AHVC: return 0xD4<<24 | 0<<21 | 2 case ASMC: return 0xD4<<24 | 0<<21 | 3 case ABRK: return 0xD4<<24 | 1<<21 | 0 case AHLT: return 0xD4<<24 | 2<<21 | 0 case ADCPS1: return 0xD4<<24 | 5<<21 | 1 case ADCPS2: return 0xD4<<24 | 5<<21 | 2 case ADCPS3: return 0xD4<<24 | 5<<21 | 3 case ACLREX: return SYSOP(0, 0, 3, 3, 0, 2, 0x1F) } c.ctxt.Diag("%v: bad imm %v", p, a) return 0 } func (c *ctxt7) brdist(p *obj.Prog, preshift int, flen int, shift int) int64 { v := int64(0) t := int64(0) var q *obj.Prog if p.To.Type == obj.TYPE_BRANCH { q = p.To.Target() } else if p.From.Type == obj.TYPE_BRANCH { // adr, adrp q = p.From.Target() } if q == nil { // TODO: don't use brdist for this case, as it isn't a branch. // (Calls from omovlit, and maybe adr/adrp opcodes as well.) q = p.Pool } if q != nil { v = (q.Pc >> uint(preshift)) - (c.pc >> uint(preshift)) if (v & ((1 << uint(shift)) - 1)) != 0 { c.ctxt.Diag("misaligned label\n%v", p) } v >>= uint(shift) t = int64(1) << uint(flen-1) if v < -t || v >= t { c.ctxt.Diag("branch too far %#x vs %#x [%p]\n%v\n%v", v, t, c.blitrl, p, q) panic("branch too far") } } return v & ((t << 1) - 1) } /* * pc-relative branches */ func (c *ctxt7) opbra(p *obj.Prog, a obj.As) uint32 { switch a { case ABEQ: return OPBcc(0x0) case ABNE: return OPBcc(0x1) case ABCS: return OPBcc(0x2) case ABHS: return OPBcc(0x2) case ABCC: return OPBcc(0x3) case ABLO: return OPBcc(0x3) case ABMI: return OPBcc(0x4) case ABPL: return OPBcc(0x5) case ABVS: return OPBcc(0x6) case ABVC: return OPBcc(0x7) case ABHI: return OPBcc(0x8) case ABLS: return OPBcc(0x9) case ABGE: return OPBcc(0xa) case ABLT: return OPBcc(0xb) case ABGT: return OPBcc(0xc) case ABLE: return OPBcc(0xd) /* imm19<<5 | cond */ case AB: return 0<<31 | 5<<26 /* imm26 */ case obj.ADUFFZERO, obj.ADUFFCOPY, ABL: return 1<<31 | 5<<26 } c.ctxt.Diag("%v: bad bra %v", p, a) return 0 } func (c *ctxt7) opbrr(p *obj.Prog, a obj.As) uint32 { switch a { case ABL: return OPBLR(1) /* BLR */ case AB: return OPBLR(0) /* BR */ case obj.ARET: return OPBLR(2) /* RET */ } c.ctxt.Diag("%v: bad brr %v", p, a) return 0 } func (c *ctxt7) op0(p *obj.Prog, a obj.As) uint32 { switch a { case ADRPS: return 0x6B<<25 | 5<<21 | 0x1F<<16 | 0x1F<<5 case AERET: return 0x6B<<25 | 4<<21 | 0x1F<<16 | 0<<10 | 0x1F<<5 case ANOOP: return SYSHINT(0) case AYIELD: return SYSHINT(1) case AWFE: return SYSHINT(2) case AWFI: return SYSHINT(3) case ASEV: return SYSHINT(4) case ASEVL: return SYSHINT(5) } c.ctxt.Diag("%v: bad op0 %v", p, a) return 0 } /* * register offset */ func (c *ctxt7) opload(p *obj.Prog, a obj.As) uint32 { switch a { case ALDAR: return LDSTX(3, 1, 1, 0, 1) | 0x1F<<10 case ALDARW: return LDSTX(2, 1, 1, 0, 1) | 0x1F<<10 case ALDARB: return LDSTX(0, 1, 1, 0, 1) | 0x1F<<10 case ALDARH: return LDSTX(1, 1, 1, 0, 1) | 0x1F<<10 case ALDAXP: return LDSTX(3, 0, 1, 1, 1) case ALDAXPW: return LDSTX(2, 0, 1, 1, 1) case ALDAXR: return LDSTX(3, 0, 1, 0, 1) | 0x1F<<10 case ALDAXRW: return LDSTX(2, 0, 1, 0, 1) | 0x1F<<10 case ALDAXRB: return LDSTX(0, 0, 1, 0, 1) | 0x1F<<10 case ALDAXRH: return LDSTX(1, 0, 1, 0, 1) | 0x1F<<10 case ALDXR: return LDSTX(3, 0, 1, 0, 0) | 0x1F<<10 case ALDXRB: return LDSTX(0, 0, 1, 0, 0) | 0x1F<<10 case ALDXRH: return LDSTX(1, 0, 1, 0, 0) | 0x1F<<10 case ALDXRW: return LDSTX(2, 0, 1, 0, 0) | 0x1F<<10 case ALDXP: return LDSTX(3, 0, 1, 1, 0) case ALDXPW: return LDSTX(2, 0, 1, 1, 0) } c.ctxt.Diag("bad opload %v\n%v", a, p) return 0 } func (c *ctxt7) opstore(p *obj.Prog, a obj.As) uint32 { switch a { case ASTLR: return LDSTX(3, 1, 0, 0, 1) | 0x1F<<10 case ASTLRB: return LDSTX(0, 1, 0, 0, 1) | 0x1F<<10 case ASTLRH: return LDSTX(1, 1, 0, 0, 1) | 0x1F<<10 case ASTLRW: return LDSTX(2, 1, 0, 0, 1) | 0x1F<<10 case ASTLXP: return LDSTX(3, 0, 0, 1, 1) case ASTLXPW: return LDSTX(2, 0, 0, 1, 1) case ASTLXR: return LDSTX(3, 0, 0, 0, 1) | 0x1F<<10 case ASTLXRB: return LDSTX(0, 0, 0, 0, 1) | 0x1F<<10 case ASTLXRH: return LDSTX(1, 0, 0, 0, 1) | 0x1F<<10 case ASTLXRW: return LDSTX(2, 0, 0, 0, 1) | 0x1F<<10 case ASTXR: return LDSTX(3, 0, 0, 0, 0) | 0x1F<<10 case ASTXRB: return LDSTX(0, 0, 0, 0, 0) | 0x1F<<10 case ASTXRH: return LDSTX(1, 0, 0, 0, 0) | 0x1F<<10 case ASTXP: return LDSTX(3, 0, 0, 1, 0) case ASTXPW: return LDSTX(2, 0, 0, 1, 0) case ASTXRW: return LDSTX(2, 0, 0, 0, 0) | 0x1F<<10 } c.ctxt.Diag("bad opstore %v\n%v", a, p) return 0 } /* * load/store register (scaled 12-bit unsigned immediate) C3.3.13 * these produce 64-bit values (when there's an option) */ func (c *ctxt7) olsr12u(p *obj.Prog, o uint32, v int32, rn, rt int16) uint32 { if v < 0 || v >= (1<<12) { c.ctxt.Diag("offset out of range: %d\n%v", v, p) } o |= uint32(v&0xFFF) << 10 o |= uint32(rn&31) << 5 o |= uint32(rt & 31) o |= 1 << 24 return o } /* * load/store register (unscaled 9-bit signed immediate) C3.3.12 */ func (c *ctxt7) olsr9s(p *obj.Prog, o uint32, v int32, rn, rt int16) uint32 { if v < -256 || v > 255 { c.ctxt.Diag("offset out of range: %d\n%v", v, p) } o |= uint32((v & 0x1FF) << 12) o |= uint32(rn&31) << 5 o |= uint32(rt & 31) return o } // store(immediate) // scaled 12-bit unsigned immediate offset. // unscaled 9-bit signed immediate offset. // pre/post-indexed store. // and the 12-bit and 9-bit are distinguished in olsr12u and oslr9s. func (c *ctxt7) opstr(p *obj.Prog, a obj.As) uint32 { enc := c.opldr(p, a) switch p.As { case AFMOVQ: enc = enc &^ (1 << 22) default: enc = LD2STR(enc) } return enc } // load(immediate) // scaled 12-bit unsigned immediate offset. // unscaled 9-bit signed immediate offset. // pre/post-indexed load. // and the 12-bit and 9-bit are distinguished in olsr12u and oslr9s. func (c *ctxt7) opldr(p *obj.Prog, a obj.As) uint32 { switch a { case AMOVD: return LDSTR(3, 0, 1) /* simm9<<12 | Rn<<5 | Rt */ case AMOVW: return LDSTR(2, 0, 2) case AMOVWU: return LDSTR(2, 0, 1) case AMOVH: return LDSTR(1, 0, 2) case AMOVHU: return LDSTR(1, 0, 1) case AMOVB: return LDSTR(0, 0, 2) case AMOVBU: return LDSTR(0, 0, 1) case AFMOVS, AVMOVS: return LDSTR(2, 1, 1) case AFMOVD, AVMOVD: return LDSTR(3, 1, 1) case AFMOVQ, AVMOVQ: return LDSTR(0, 1, 3) } c.ctxt.Diag("bad opldr %v\n%v", a, p) return 0 } // olsxrr attaches register operands to a load/store opcode supplied in o. // The result either encodes a load of r from (r1+r2) or a store of r to (r1+r2). func (c *ctxt7) olsxrr(p *obj.Prog, o int32, r int, r1 int, r2 int) uint32 { o |= int32(r1&31) << 5 o |= int32(r2&31) << 16 o |= int32(r & 31) return uint32(o) } // opldrr returns the ARM64 opcode encoding corresponding to the obj.As opcode // for load instruction with register offset. // The offset register can be (Rn)(Rm.UXTW<<2) or (Rn)(Rm<<2) or (Rn)(Rm). func (c *ctxt7) opldrr(p *obj.Prog, a obj.As, extension bool) uint32 { OptionS := uint32(0x1a) if extension { OptionS = uint32(0) // option value and S value have been encoded into p.From.Offset. } switch a { case AMOVD: return OptionS<<10 | 0x3<<21 | 0x1f<<27 case AMOVW: return OptionS<<10 | 0x5<<21 | 0x17<<27 case AMOVWU: return OptionS<<10 | 0x3<<21 | 0x17<<27 case AMOVH: return OptionS<<10 | 0x5<<21 | 0x0f<<27 case AMOVHU: return OptionS<<10 | 0x3<<21 | 0x0f<<27 case AMOVB: return OptionS<<10 | 0x5<<21 | 0x07<<27 case AMOVBU: return OptionS<<10 | 0x3<<21 | 0x07<<27 case AFMOVS: return OptionS<<10 | 0x3<<21 | 0x17<<27 | 1<<26 case AFMOVD: return OptionS<<10 | 0x3<<21 | 0x1f<<27 | 1<<26 } c.ctxt.Diag("bad opldrr %v\n%v", a, p) return 0 } // opstrr returns the ARM64 opcode encoding corresponding to the obj.As opcode // for store instruction with register offset. // The offset register can be (Rn)(Rm.UXTW<<2) or (Rn)(Rm<<2) or (Rn)(Rm). func (c *ctxt7) opstrr(p *obj.Prog, a obj.As, extension bool) uint32 { OptionS := uint32(0x1a) if extension { OptionS = uint32(0) // option value and S value have been encoded into p.To.Offset. } switch a { case AMOVD: return OptionS<<10 | 0x1<<21 | 0x1f<<27 case AMOVW, AMOVWU: return OptionS<<10 | 0x1<<21 | 0x17<<27 case AMOVH, AMOVHU: return OptionS<<10 | 0x1<<21 | 0x0f<<27 case AMOVB, AMOVBU: return OptionS<<10 | 0x1<<21 | 0x07<<27 case AFMOVS: return OptionS<<10 | 0x1<<21 | 0x17<<27 | 1<<26 case AFMOVD: return OptionS<<10 | 0x1<<21 | 0x1f<<27 | 1<<26 } c.ctxt.Diag("bad opstrr %v\n%v", a, p) return 0 } func (c *ctxt7) oaddi(p *obj.Prog, a obj.As, v int32, rd, rn int16) uint32 { op := c.opirr(p, a) if (v & 0xFFF000) != 0 { if v&0xFFF != 0 { c.ctxt.Diag("%v misuses oaddi", p) } v >>= 12 op |= 1 << 22 } op |= (uint32(v&0xFFF) << 10) | (uint32(rn&31) << 5) | uint32(rd&31) return op } func (c *ctxt7) oaddi12(p *obj.Prog, v int32, rd, rn int16) uint32 { if v < -4095 || v > 4095 { c.ctxt.Diag("%v is not a 12 bit immediate: %v", v, p) return 0 } a := AADD if v < 0 { a = ASUB v = -v } return c.oaddi(p, a, v, rd, rn) } /* * load a literal value into dr */ func (c *ctxt7) omovlit(as obj.As, p *obj.Prog, a *obj.Addr, dr int) uint32 { var o1 int32 if p.Pool == nil { /* not in literal pool */ c.aclass(a) c.ctxt.Logf("omovlit add %d (%#x)\n", c.instoffset, uint64(c.instoffset)) /* TODO: could be clever, and use general constant builder */ o1 = int32(c.opirr(p, AADD)) v := int32(c.instoffset) if v != 0 && (v&0xFFF) == 0 { v >>= 12 o1 |= 1 << 22 /* shift, by 12 */ } o1 |= ((v & 0xFFF) << 10) | (REGZERO & 31 << 5) | int32(dr&31) } else { fp, w := 0, 0 switch as { case AFMOVS, AVMOVS: fp = 1 w = 0 /* 32-bit SIMD/FP */ case AFMOVD, AVMOVD: fp = 1 w = 1 /* 64-bit SIMD/FP */ case AVMOVQ: fp = 1 w = 2 /* 128-bit SIMD/FP */ case AMOVD: if p.Pool.As == ADWORD { w = 1 /* 64-bit */ } else if p.Pool.To.Offset < 0 { w = 2 /* 32-bit, sign-extended to 64-bit */ } else if p.Pool.To.Offset >= 0 { w = 0 /* 32-bit, zero-extended to 64-bit */ } else { c.ctxt.Diag("invalid operand %v in %v", a, p) } case AMOVBU, AMOVHU, AMOVWU: w = 0 /* 32-bit, zero-extended to 64-bit */ case AMOVB, AMOVH, AMOVW: w = 2 /* 32-bit, sign-extended to 64-bit */ default: c.ctxt.Diag("invalid operation %v in %v", as, p) } v := int32(c.brdist(p, 0, 19, 2)) o1 = (int32(w) << 30) | (int32(fp) << 26) | (3 << 27) o1 |= (v & 0x7FFFF) << 5 o1 |= int32(dr & 31) } return uint32(o1) } // load a constant (MOVCON or BITCON) in a into rt func (c *ctxt7) omovconst(as obj.As, p *obj.Prog, a *obj.Addr, rt int) (o1 uint32) { if cls := int(a.Class); (cls == C_BITCON || cls == C_ABCON || cls == C_ABCON0) && rt != REGZERO { // or $bitcon, REGZERO, rt. rt can't be ZR. mode := 64 var as1 obj.As switch as { case AMOVW: as1 = AORRW mode = 32 case AMOVD: as1 = AORR } o1 = c.opirr(p, as1) o1 |= bitconEncode(uint64(a.Offset), mode) | uint32(REGZERO&31)<<5 | uint32(rt&31) return o1 } if as == AMOVW { d := uint32(a.Offset) s := movcon(int64(d)) if s < 0 || 16*s >= 32 { d = ^d s = movcon(int64(d)) if s < 0 || 16*s >= 32 { c.ctxt.Diag("impossible 32-bit move wide: %#x\n%v", uint32(a.Offset), p) } o1 = c.opirr(p, AMOVNW) } else { o1 = c.opirr(p, AMOVZW) } o1 |= MOVCONST(int64(d), s, rt) } if as == AMOVD { d := a.Offset s := movcon(d) if s < 0 || 16*s >= 64 { d = ^d s = movcon(d) if s < 0 || 16*s >= 64 { c.ctxt.Diag("impossible 64-bit move wide: %#x\n%v", uint64(a.Offset), p) } o1 = c.opirr(p, AMOVN) } else { o1 = c.opirr(p, AMOVZ) } o1 |= MOVCONST(d, s, rt) } return o1 } // load a 32-bit/64-bit large constant (LCON or VCON) in a.Offset into rt // put the instruction sequence in os and return the number of instructions. func (c *ctxt7) omovlconst(as obj.As, p *obj.Prog, a *obj.Addr, rt int, os []uint32) (num uint8) { switch as { case AMOVW: d := uint32(a.Offset) // use MOVZW and MOVKW to load a constant to rt os[0] = c.opirr(p, AMOVZW) os[0] |= MOVCONST(int64(d), 0, rt) os[1] = c.opirr(p, AMOVKW) os[1] |= MOVCONST(int64(d), 1, rt) return 2 case AMOVD: d := a.Offset dn := ^d var immh [4]uint64 var i int zeroCount := int(0) negCount := int(0) for i = 0; i < 4; i++ { immh[i] = uint64((d >> uint(i*16)) & 0xffff) if immh[i] == 0 { zeroCount++ } else if immh[i] == 0xffff { negCount++ } } if zeroCount == 4 || negCount == 4 { c.ctxt.Diag("the immediate should be MOVCON: %v", p) } switch { case zeroCount == 3: // one MOVZ for i = 0; i < 4; i++ { if immh[i] != 0 { os[0] = c.opirr(p, AMOVZ) os[0] |= MOVCONST(d, i, rt) break } } return 1 case negCount == 3: // one MOVN for i = 0; i < 4; i++ { if immh[i] != 0xffff { os[0] = c.opirr(p, AMOVN) os[0] |= MOVCONST(dn, i, rt) break } } return 1 case zeroCount == 2: // one MOVZ and one MOVK for i = 0; i < 4; i++ { if immh[i] != 0 { os[0] = c.opirr(p, AMOVZ) os[0] |= MOVCONST(d, i, rt) i++ break } } for ; i < 4; i++ { if immh[i] != 0 { os[1] = c.opirr(p, AMOVK) os[1] |= MOVCONST(d, i, rt) } } return 2 case negCount == 2: // one MOVN and one MOVK for i = 0; i < 4; i++ { if immh[i] != 0xffff { os[0] = c.opirr(p, AMOVN) os[0] |= MOVCONST(dn, i, rt) i++ break } } for ; i < 4; i++ { if immh[i] != 0xffff { os[1] = c.opirr(p, AMOVK) os[1] |= MOVCONST(d, i, rt) } } return 2 case zeroCount == 1: // one MOVZ and two MOVKs for i = 0; i < 4; i++ { if immh[i] != 0 { os[0] = c.opirr(p, AMOVZ) os[0] |= MOVCONST(d, i, rt) i++ break } } for j := 1; i < 4; i++ { if immh[i] != 0 { os[j] = c.opirr(p, AMOVK) os[j] |= MOVCONST(d, i, rt) j++ } } return 3 case negCount == 1: // one MOVN and two MOVKs for i = 0; i < 4; i++ { if immh[i] != 0xffff { os[0] = c.opirr(p, AMOVN) os[0] |= MOVCONST(dn, i, rt) i++ break } } for j := 1; i < 4; i++ { if immh[i] != 0xffff { os[j] = c.opirr(p, AMOVK) os[j] |= MOVCONST(d, i, rt) j++ } } return 3 default: // one MOVZ and 3 MOVKs os[0] = c.opirr(p, AMOVZ) os[0] |= MOVCONST(d, 0, rt) for i = 1; i < 4; i++ { os[i] = c.opirr(p, AMOVK) os[i] |= MOVCONST(d, i, rt) } return 4 } default: return 0 } } func (c *ctxt7) opbfm(p *obj.Prog, a obj.As, r, s int64, rf, rt int16) uint32 { var b uint32 o := c.opirr(p, a) if (o & (1 << 31)) == 0 { b = 32 } else { b = 64 } if r < 0 || uint32(r) >= b { c.ctxt.Diag("illegal bit number\n%v", p) } o |= (uint32(r) & 0x3F) << 16 if s < 0 || uint32(s) >= b { c.ctxt.Diag("illegal bit number\n%v", p) } o |= (uint32(s) & 0x3F) << 10 o |= (uint32(rf&31) << 5) | uint32(rt&31) return o } func (c *ctxt7) opextr(p *obj.Prog, a obj.As, v int64, rn, rm, rt int16) uint32 { var b uint32 o := c.opirr(p, a) if (o & (1 << 31)) != 0 { b = 63 } else { b = 31 } if v < 0 || uint32(v) > b { c.ctxt.Diag("illegal bit number\n%v", p) } o |= uint32(v) << 10 o |= uint32(rn&31) << 5 o |= uint32(rm&31) << 16 o |= uint32(rt & 31) return o } /* generate instruction encoding for ldp and stp series */ func (c *ctxt7) opldpstp(p *obj.Prog, o *Optab, vo int32, rbase, rl, rh int16, ldp uint32) uint32 { wback := false if o.scond == C_XPOST || o.scond == C_XPRE { wback = true } switch p.As { case ALDP, ALDPW, ALDPSW: c.checkUnpredictable(p, true, wback, p.From.Reg, p.To.Reg, int16(p.To.Offset)) case ASTP, ASTPW: if wback { c.checkUnpredictable(p, false, true, p.To.Reg, p.From.Reg, int16(p.From.Offset)) } case AFLDPD, AFLDPQ, AFLDPS: c.checkUnpredictable(p, true, false, p.From.Reg, p.To.Reg, int16(p.To.Offset)) } var ret uint32 // check offset switch p.As { case AFLDPQ, AFSTPQ: if vo < -1024 || vo > 1008 || vo%16 != 0 { c.ctxt.Diag("invalid offset %v\n", p) } vo /= 16 ret = 2<<30 | 1<<26 case AFLDPD, AFSTPD: if vo < -512 || vo > 504 || vo%8 != 0 { c.ctxt.Diag("invalid offset %v\n", p) } vo /= 8 ret = 1<<30 | 1<<26 case AFLDPS, AFSTPS: if vo < -256 || vo > 252 || vo%4 != 0 { c.ctxt.Diag("invalid offset %v\n", p) } vo /= 4 ret = 1 << 26 case ALDP, ASTP: if vo < -512 || vo > 504 || vo%8 != 0 { c.ctxt.Diag("invalid offset %v\n", p) } vo /= 8 ret = 2 << 30 case ALDPW, ASTPW: if vo < -256 || vo > 252 || vo%4 != 0 { c.ctxt.Diag("invalid offset %v\n", p) } vo /= 4 ret = 0 case ALDPSW: if vo < -256 || vo > 252 || vo%4 != 0 { c.ctxt.Diag("invalid offset %v\n", p) } vo /= 4 ret = 1 << 30 default: c.ctxt.Diag("invalid instruction %v\n", p) } // check register pair switch p.As { case AFLDPQ, AFLDPD, AFLDPS, AFSTPQ, AFSTPD, AFSTPS: if rl < REG_F0 || REG_F31 < rl || rh < REG_F0 || REG_F31 < rh { c.ctxt.Diag("invalid register pair %v\n", p) } case ALDP, ALDPW, ALDPSW: if rl < REG_R0 || REG_R31 < rl || rh < REG_R0 || REG_R31 < rh { c.ctxt.Diag("invalid register pair %v\n", p) } case ASTP, ASTPW: if rl < REG_R0 || REG_R31 < rl || rh < REG_R0 || REG_R31 < rh { c.ctxt.Diag("invalid register pair %v\n", p) } } // other conditional flag bits switch o.scond { case C_XPOST: ret |= 1 << 23 case C_XPRE: ret |= 3 << 23 default: ret |= 2 << 23 } ret |= 5<<27 | (ldp&1)<<22 | uint32(vo&0x7f)<<15 | uint32(rh&31)<<10 | uint32(rbase&31)<<5 | uint32(rl&31) return ret } func (c *ctxt7) maskOpvldvst(p *obj.Prog, o1 uint32) uint32 { if p.As == AVLD1 || p.As == AVST1 { return o1 } o1 &^= 0xf000 // mask out "opcode" field (bit 12-15) switch p.As { case AVLD1R, AVLD2R: o1 |= 0xC << 12 case AVLD3R, AVLD4R: o1 |= 0xE << 12 case AVLD2, AVST2: o1 |= 8 << 12 case AVLD3, AVST3: o1 |= 4 << 12 case AVLD4, AVST4: default: c.ctxt.Diag("unsupported instruction:%v\n", p.As) } return o1 } /* * size in log2(bytes) */ func movesize(a obj.As) int { switch a { case AFMOVQ: return 4 case AMOVD, AFMOVD: return 3 case AMOVW, AMOVWU, AFMOVS: return 2 case AMOVH, AMOVHU: return 1 case AMOVB, AMOVBU: return 0 default: return -1 } } // rm is the Rm register value, o is the extension, amount is the left shift value. func roff(rm int16, o uint32, amount int16) uint32 { return uint32(rm&31)<<16 | o<<13 | uint32(amount)<<10 } // encRegShiftOrExt returns the encoding of shifted/extended register, Rx<> 5) & 7 rm = r & 31 switch { case REG_UXTB <= r && r < REG_UXTH: return roff(rm, 0, num) case REG_UXTH <= r && r < REG_UXTW: return roff(rm, 1, num) case REG_UXTW <= r && r < REG_UXTX: if a.Type == obj.TYPE_MEM { if num == 0 { // According to the arm64 specification, for instructions MOVB, MOVBU and FMOVB, // the extension amount must be 0, encoded in "S" as 0 if omitted, or as 1 if present. // But in Go, we don't distinguish between Rn.UXTW and Rn.UXTW<<0, so we encode it as // that does not present. This makes no difference to the function of the instruction. // This is also true for extensions LSL, SXTW and SXTX. return roff(rm, 2, 2) } else { return roff(rm, 2, 6) } } else { return roff(rm, 2, num) } case REG_UXTX <= r && r < REG_SXTB: return roff(rm, 3, num) case REG_SXTB <= r && r < REG_SXTH: return roff(rm, 4, num) case REG_SXTH <= r && r < REG_SXTW: return roff(rm, 5, num) case REG_SXTW <= r && r < REG_SXTX: if a.Type == obj.TYPE_MEM { if num == 0 { return roff(rm, 6, 2) } else { return roff(rm, 6, 6) } } else { return roff(rm, 6, num) } case REG_SXTX <= r && r < REG_SPECIAL: if a.Type == obj.TYPE_MEM { if num == 0 { return roff(rm, 7, 2) } else { return roff(rm, 7, 6) } } else { return roff(rm, 7, num) } case REG_LSL <= r && r < REG_ARNG: if a.Type == obj.TYPE_MEM { // (R1)(R2<<1) if num == 0 { return roff(rm, 3, 2) } else { return roff(rm, 3, 6) } } else if isADDWop(p.As) { return roff(rm, 2, num) } return roff(rm, 3, num) default: c.ctxt.Diag("unsupported register extension type.") } return 0 } // pack returns the encoding of the "Q" field and two arrangement specifiers. func pack(q uint32, arngA, arngB uint8) uint32 { return uint32(q)<<16 | uint32(arngA)<<8 | uint32(arngB) }