// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package loadelf implements an ELF file reader. package loadelf import ( "bytes" "cmd/internal/bio" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "encoding/binary" "fmt" "io" "log" "strings" ) /* Derived from Plan 9 from User Space's src/libmach/elf.h, elf.c https://github.com/9fans/plan9port/tree/master/src/libmach/ Copyright © 2004 Russ Cox. Portions Copyright © 2008-2010 Google Inc. Portions Copyright © 2010 The Go Authors. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ const ( SHT_ARM_ATTRIBUTES = 0x70000003 ) type ElfSect struct { name string nameoff uint32 type_ elf.SectionType flags elf.SectionFlag addr uint64 off uint64 size uint64 link uint32 info uint32 align uint64 entsize uint64 base []byte readOnlyMem bool // Is this section in readonly memory? sym loader.Sym } type ElfObj struct { f *bio.Reader base int64 // offset in f where ELF begins length int64 // length of ELF is64 int name string e binary.ByteOrder sect []ElfSect nsect uint nsymtab int symtab *ElfSect symstr *ElfSect type_ uint32 machine uint32 version uint32 entry uint64 phoff uint64 shoff uint64 flags uint32 ehsize uint32 phentsize uint32 phnum uint32 shentsize uint32 shnum uint32 shstrndx uint32 } type ElfSym struct { name string value uint64 size uint64 bind elf.SymBind type_ elf.SymType other uint8 shndx elf.SectionIndex sym loader.Sym } const ( TagFile = 1 TagCPUName = 4 TagCPURawName = 5 TagCompatibility = 32 TagNoDefaults = 64 TagAlsoCompatibleWith = 65 TagABIVFPArgs = 28 ) type elfAttribute struct { tag uint64 sval string ival uint64 } type elfAttributeList struct { data []byte err error } func (a *elfAttributeList) string() string { if a.err != nil { return "" } nul := bytes.IndexByte(a.data, 0) if nul < 0 { a.err = io.EOF return "" } s := string(a.data[:nul]) a.data = a.data[nul+1:] return s } func (a *elfAttributeList) uleb128() uint64 { if a.err != nil { return 0 } v, size := binary.Uvarint(a.data) a.data = a.data[size:] return v } // Read an elfAttribute from the list following the rules used on ARM systems. func (a *elfAttributeList) armAttr() elfAttribute { attr := elfAttribute{tag: a.uleb128()} switch { case attr.tag == TagCompatibility: attr.ival = a.uleb128() attr.sval = a.string() case attr.tag == TagNoDefaults: // Tag_nodefaults has no argument case attr.tag == TagAlsoCompatibleWith: // Not really, but we don't actually care about this tag. attr.sval = a.string() // Tag with string argument case attr.tag == TagCPUName || attr.tag == TagCPURawName || (attr.tag >= 32 && attr.tag&1 != 0): attr.sval = a.string() default: // Tag with integer argument attr.ival = a.uleb128() } return attr } func (a *elfAttributeList) done() bool { if a.err != nil || len(a.data) == 0 { return true } return false } // Look for the attribute that indicates the object uses the hard-float ABI (a // file-level attribute with tag Tag_VFP_arch and value 1). Unfortunately the // format used means that we have to parse all of the file-level attributes to // find the one we are looking for. This format is slightly documented in "ELF // for the ARM Architecture" but mostly this is derived from reading the source // to gold and readelf. func parseArmAttributes(e binary.ByteOrder, data []byte) (found bool, ehdrFlags uint32, err error) { found = false if data[0] != 'A' { return false, 0, fmt.Errorf(".ARM.attributes has unexpected format %c\n", data[0]) } data = data[1:] for len(data) != 0 { sectionlength := e.Uint32(data) sectiondata := data[4:sectionlength] data = data[sectionlength:] nulIndex := bytes.IndexByte(sectiondata, 0) if nulIndex < 0 { return false, 0, fmt.Errorf("corrupt .ARM.attributes (section name not NUL-terminated)\n") } name := string(sectiondata[:nulIndex]) sectiondata = sectiondata[nulIndex+1:] if name != "aeabi" { continue } for len(sectiondata) != 0 { subsectiontag, sz := binary.Uvarint(sectiondata) subsectionsize := e.Uint32(sectiondata[sz:]) subsectiondata := sectiondata[sz+4 : subsectionsize] sectiondata = sectiondata[subsectionsize:] if subsectiontag != TagFile { continue } attrList := elfAttributeList{data: subsectiondata} for !attrList.done() { attr := attrList.armAttr() if attr.tag == TagABIVFPArgs && attr.ival == 1 { found = true ehdrFlags = 0x5000402 // has entry point, Version5 EABI, hard-float ABI } } if attrList.err != nil { return false, 0, fmt.Errorf("could not parse .ARM.attributes\n") } } } return found, ehdrFlags, nil } // Load loads the ELF file pn from f. // Symbols are installed into the loader, and a slice of the text symbols is returned. // // On ARM systems, Load will attempt to determine what ELF header flags to // emit by scanning the attributes in the ELF file being loaded. The // parameter initEhdrFlags contains the current header flags for the output // object, and the returned ehdrFlags contains what this Load function computes. // TODO: find a better place for this logic. func Load(l *loader.Loader, arch *sys.Arch, localSymVersion int, f *bio.Reader, pkg string, length int64, pn string, initEhdrFlags uint32) (textp []loader.Sym, ehdrFlags uint32, err error) { errorf := func(str string, args ...interface{}) ([]loader.Sym, uint32, error) { return nil, 0, fmt.Errorf("loadelf: %s: %v", pn, fmt.Sprintf(str, args...)) } ehdrFlags = initEhdrFlags base := f.Offset() var hdrbuf [64]byte if _, err := io.ReadFull(f, hdrbuf[:]); err != nil { return errorf("malformed elf file: %v", err) } var e binary.ByteOrder switch elf.Data(hdrbuf[elf.EI_DATA]) { case elf.ELFDATA2LSB: e = binary.LittleEndian case elf.ELFDATA2MSB: e = binary.BigEndian default: return errorf("malformed elf file, unknown header") } hdr := new(elf.Header32) binary.Read(bytes.NewReader(hdrbuf[:]), e, hdr) if string(hdr.Ident[:elf.EI_CLASS]) != elf.ELFMAG { return errorf("malformed elf file, bad header") } // read header elfobj := new(ElfObj) elfobj.e = e elfobj.f = f elfobj.base = base elfobj.length = length elfobj.name = pn is64 := 0 class := elf.Class(hdrbuf[elf.EI_CLASS]) if class == elf.ELFCLASS64 { is64 = 1 hdr := new(elf.Header64) binary.Read(bytes.NewReader(hdrbuf[:]), e, hdr) elfobj.type_ = uint32(hdr.Type) elfobj.machine = uint32(hdr.Machine) elfobj.version = hdr.Version elfobj.entry = hdr.Entry elfobj.phoff = hdr.Phoff elfobj.shoff = hdr.Shoff elfobj.flags = hdr.Flags elfobj.ehsize = uint32(hdr.Ehsize) elfobj.phentsize = uint32(hdr.Phentsize) elfobj.phnum = uint32(hdr.Phnum) elfobj.shentsize = uint32(hdr.Shentsize) elfobj.shnum = uint32(hdr.Shnum) elfobj.shstrndx = uint32(hdr.Shstrndx) } else { elfobj.type_ = uint32(hdr.Type) elfobj.machine = uint32(hdr.Machine) elfobj.version = hdr.Version elfobj.entry = uint64(hdr.Entry) elfobj.phoff = uint64(hdr.Phoff) elfobj.shoff = uint64(hdr.Shoff) elfobj.flags = hdr.Flags elfobj.ehsize = uint32(hdr.Ehsize) elfobj.phentsize = uint32(hdr.Phentsize) elfobj.phnum = uint32(hdr.Phnum) elfobj.shentsize = uint32(hdr.Shentsize) elfobj.shnum = uint32(hdr.Shnum) elfobj.shstrndx = uint32(hdr.Shstrndx) } elfobj.is64 = is64 if v := uint32(hdrbuf[elf.EI_VERSION]); v != elfobj.version { return errorf("malformed elf version: got %d, want %d", v, elfobj.version) } if elf.Type(elfobj.type_) != elf.ET_REL { return errorf("elf but not elf relocatable object") } mach := elf.Machine(elfobj.machine) switch arch.Family { default: return errorf("elf %s unimplemented", arch.Name) case sys.MIPS: if mach != elf.EM_MIPS || class != elf.ELFCLASS32 { return errorf("elf object but not mips") } case sys.MIPS64: if mach != elf.EM_MIPS || class != elf.ELFCLASS64 { return errorf("elf object but not mips64") } case sys.Loong64: if mach != elf.EM_LOONGARCH || class != elf.ELFCLASS64 { return errorf("elf object but not loong64") } case sys.ARM: if e != binary.LittleEndian || mach != elf.EM_ARM || class != elf.ELFCLASS32 { return errorf("elf object but not arm") } case sys.AMD64: if e != binary.LittleEndian || mach != elf.EM_X86_64 || class != elf.ELFCLASS64 { return errorf("elf object but not amd64") } case sys.ARM64: if e != binary.LittleEndian || mach != elf.EM_AARCH64 || class != elf.ELFCLASS64 { return errorf("elf object but not arm64") } case sys.I386: if e != binary.LittleEndian || mach != elf.EM_386 || class != elf.ELFCLASS32 { return errorf("elf object but not 386") } case sys.PPC64: if mach != elf.EM_PPC64 || class != elf.ELFCLASS64 { return errorf("elf object but not ppc64") } case sys.RISCV64: if mach != elf.EM_RISCV || class != elf.ELFCLASS64 { return errorf("elf object but not riscv64") } case sys.S390X: if mach != elf.EM_S390 || class != elf.ELFCLASS64 { return errorf("elf object but not s390x") } } // load section list into memory. elfobj.sect = make([]ElfSect, elfobj.shnum) elfobj.nsect = uint(elfobj.shnum) for i := 0; uint(i) < elfobj.nsect; i++ { f.MustSeek(int64(uint64(base)+elfobj.shoff+uint64(int64(i)*int64(elfobj.shentsize))), 0) sect := &elfobj.sect[i] if is64 != 0 { var b elf.Section64 if err := binary.Read(f, e, &b); err != nil { return errorf("malformed elf file: %v", err) } sect.nameoff = b.Name sect.type_ = elf.SectionType(b.Type) sect.flags = elf.SectionFlag(b.Flags) sect.addr = b.Addr sect.off = b.Off sect.size = b.Size sect.link = b.Link sect.info = b.Info sect.align = b.Addralign sect.entsize = b.Entsize } else { var b elf.Section32 if err := binary.Read(f, e, &b); err != nil { return errorf("malformed elf file: %v", err) } sect.nameoff = b.Name sect.type_ = elf.SectionType(b.Type) sect.flags = elf.SectionFlag(b.Flags) sect.addr = uint64(b.Addr) sect.off = uint64(b.Off) sect.size = uint64(b.Size) sect.link = b.Link sect.info = b.Info sect.align = uint64(b.Addralign) sect.entsize = uint64(b.Entsize) } } // read section string table and translate names if elfobj.shstrndx >= uint32(elfobj.nsect) { return errorf("malformed elf file: shstrndx out of range %d >= %d", elfobj.shstrndx, elfobj.nsect) } sect := &elfobj.sect[elfobj.shstrndx] if err := elfmap(elfobj, sect); err != nil { return errorf("malformed elf file: %v", err) } for i := 0; uint(i) < elfobj.nsect; i++ { if elfobj.sect[i].nameoff != 0 { elfobj.sect[i].name = cstring(sect.base[elfobj.sect[i].nameoff:]) } } // load string table for symbols into memory. elfobj.symtab = section(elfobj, ".symtab") if elfobj.symtab == nil { // our work is done here - no symbols means nothing can refer to this file return } if elfobj.symtab.link <= 0 || elfobj.symtab.link >= uint32(elfobj.nsect) { return errorf("elf object has symbol table with invalid string table link") } elfobj.symstr = &elfobj.sect[elfobj.symtab.link] if is64 != 0 { elfobj.nsymtab = int(elfobj.symtab.size / elf.Sym64Size) } else { elfobj.nsymtab = int(elfobj.symtab.size / elf.Sym32Size) } if err := elfmap(elfobj, elfobj.symtab); err != nil { return errorf("malformed elf file: %v", err) } if err := elfmap(elfobj, elfobj.symstr); err != nil { return errorf("malformed elf file: %v", err) } // load text and data segments into memory. // they are not as small as the section lists, but we'll need // the memory anyway for the symbol images, so we might // as well use one large chunk. // create symbols for elfmapped sections sectsymNames := make(map[string]bool) counter := 0 for i := 0; uint(i) < elfobj.nsect; i++ { sect = &elfobj.sect[i] if sect.type_ == SHT_ARM_ATTRIBUTES && sect.name == ".ARM.attributes" { if err := elfmap(elfobj, sect); err != nil { return errorf("%s: malformed elf file: %v", pn, err) } // We assume the soft-float ABI unless we see a tag indicating otherwise. if initEhdrFlags == 0x5000002 { ehdrFlags = 0x5000202 } else { ehdrFlags = initEhdrFlags } found, newEhdrFlags, err := parseArmAttributes(e, sect.base[:sect.size]) if err != nil { // TODO(dfc) should this return an error? log.Printf("%s: %v", pn, err) } if found { ehdrFlags = newEhdrFlags } } if (sect.type_ != elf.SHT_PROGBITS && sect.type_ != elf.SHT_NOBITS) || sect.flags&elf.SHF_ALLOC == 0 { continue } if sect.type_ != elf.SHT_NOBITS { if err := elfmap(elfobj, sect); err != nil { return errorf("%s: malformed elf file: %v", pn, err) } } name := fmt.Sprintf("%s(%s)", pkg, sect.name) for sectsymNames[name] { counter++ name = fmt.Sprintf("%s(%s%d)", pkg, sect.name, counter) } sectsymNames[name] = true sb := l.MakeSymbolUpdater(l.LookupOrCreateCgoExport(name, localSymVersion)) switch sect.flags & (elf.SHF_ALLOC | elf.SHF_WRITE | elf.SHF_EXECINSTR) { default: return errorf("%s: unexpected flags for ELF section %s", pn, sect.name) case elf.SHF_ALLOC: sb.SetType(sym.SRODATA) case elf.SHF_ALLOC + elf.SHF_WRITE: if sect.type_ == elf.SHT_NOBITS { sb.SetType(sym.SNOPTRBSS) } else { sb.SetType(sym.SNOPTRDATA) } case elf.SHF_ALLOC + elf.SHF_EXECINSTR: sb.SetType(sym.STEXT) } if sect.name == ".got" || sect.name == ".toc" { sb.SetType(sym.SELFGOT) } if sect.type_ == elf.SHT_PROGBITS { sb.SetData(sect.base[:sect.size]) sb.SetExternal(true) } sb.SetSize(int64(sect.size)) sb.SetAlign(int32(sect.align)) sb.SetReadOnly(sect.readOnlyMem) sect.sym = sb.Sym() } // enter sub-symbols into symbol table. // symbol 0 is the null symbol. symbols := make([]loader.Sym, elfobj.nsymtab) for i := 1; i < elfobj.nsymtab; i++ { var elfsym ElfSym if err := readelfsym(l, arch, elfobj, i, &elfsym, 1, localSymVersion); err != nil { return errorf("%s: malformed elf file: %v", pn, err) } symbols[i] = elfsym.sym if elfsym.type_ != elf.STT_FUNC && elfsym.type_ != elf.STT_OBJECT && elfsym.type_ != elf.STT_NOTYPE && elfsym.type_ != elf.STT_COMMON { continue } if elfsym.shndx == elf.SHN_COMMON || elfsym.type_ == elf.STT_COMMON { sb := l.MakeSymbolUpdater(elfsym.sym) if uint64(sb.Size()) < elfsym.size { sb.SetSize(int64(elfsym.size)) } if sb.Type() == 0 || sb.Type() == sym.SXREF { sb.SetType(sym.SNOPTRBSS) } continue } if uint(elfsym.shndx) >= elfobj.nsect || elfsym.shndx == 0 { continue } // even when we pass needSym == 1 to readelfsym, it might still return nil to skip some unwanted symbols if elfsym.sym == 0 { continue } sect = &elfobj.sect[elfsym.shndx] if sect.sym == 0 { if elfsym.type_ == 0 { if strings.HasPrefix(sect.name, ".debug_") && elfsym.name == "" { // clang on arm and riscv64. // This reportedly happens with clang 3.7 on ARM. // See issue 13139. continue } if strings.HasPrefix(elfsym.name, ".Ldebug_") || elfsym.name == ".L0 " { // gcc on riscv64. continue } if elfsym.name == ".Lline_table_start0" { // clang on riscv64. continue } if strings.HasPrefix(elfsym.name, "$d") && sect.name == ".debug_frame" { // "$d" is a marker, not a real symbol. // This happens with gcc on ARM64. // See https://sourceware.org/bugzilla/show_bug.cgi?id=21809 continue } } if strings.HasPrefix(elfsym.name, ".Linfo_string") { // clang does this continue } if strings.HasPrefix(elfsym.name, ".LASF") || strings.HasPrefix(elfsym.name, ".LLRL") || strings.HasPrefix(elfsym.name, ".LLST") { // gcc on s390x and riscv64 does this. continue } return errorf("%v: sym#%d (%q): ignoring symbol in section %d (%q) (type %d)", elfsym.sym, i, elfsym.name, elfsym.shndx, sect.name, elfsym.type_) } s := elfsym.sym if l.OuterSym(s) != 0 { if l.AttrDuplicateOK(s) { continue } return errorf("duplicate symbol reference: %s in both %s and %s", l.SymName(s), l.SymName(l.OuterSym(s)), l.SymName(sect.sym)) } sectsb := l.MakeSymbolUpdater(sect.sym) sb := l.MakeSymbolUpdater(s) sb.SetType(sectsb.Type()) sectsb.AddInteriorSym(s) if !l.AttrCgoExportDynamic(s) { sb.SetDynimplib("") // satisfy dynimport } sb.SetValue(int64(elfsym.value)) sb.SetSize(int64(elfsym.size)) if sectsb.Type().IsText() { if l.AttrExternal(s) && !l.AttrDuplicateOK(s) { return errorf("%s: duplicate symbol definition", sb.Name()) } l.SetAttrExternal(s, true) } if elf.Machine(elfobj.machine) == elf.EM_PPC64 { flag := int(elfsym.other) >> 5 switch flag { case 0: // No local entry. R2 is preserved. case 1: // This is kind of a hack, but pass the hint about this symbol's // usage of R2 (R2 is a caller-save register not a TOC pointer, and // this function does not have a distinct local entry) by setting // its SymLocalentry to 1. l.SetSymLocalentry(s, 1) case 7: return errorf("%s: invalid sym.other 0x%x", sb.Name(), elfsym.other) default: // Convert the word sized offset into bytes. l.SetSymLocalentry(s, 4<= uint32(elfobj.nsect) || elfobj.sect[rsect.info].base == nil { continue } sect = &elfobj.sect[rsect.info] if err := elfmap(elfobj, rsect); err != nil { return errorf("malformed elf file: %v", err) } rela := 0 if rsect.type_ == elf.SHT_RELA { rela = 1 } n := int(rsect.size / uint64(4+4*is64) / uint64(2+rela)) p := rsect.base sb := l.MakeSymbolUpdater(sect.sym) for j := 0; j < n; j++ { var add uint64 var symIdx int var relocType uint64 var rOff int32 var rAdd int64 var rSym loader.Sym if is64 != 0 { // 64-bit rel/rela rOff = int32(e.Uint64(p)) p = p[8:] switch arch.Family { case sys.MIPS64: // https://www.linux-mips.org/pub/linux/mips/doc/ABI/elf64-2.4.pdf // The doc shows it's different with general Linux ELF symIdx = int(e.Uint32(p)) relocType = uint64(p[7]) default: info := e.Uint64(p) relocType = info & 0xffffffff symIdx = int(info >> 32) } p = p[8:] if rela != 0 { add = e.Uint64(p) p = p[8:] } } else { // 32-bit rel/rela rOff = int32(e.Uint32(p)) p = p[4:] info := e.Uint32(p) relocType = uint64(info & 0xff) symIdx = int(info >> 8) p = p[4:] if rela != 0 { add = uint64(e.Uint32(p)) p = p[4:] } } if relocType == 0 { // skip R_*_NONE relocation j-- n-- continue } if symIdx == 0 { // absolute relocation, don't bother reading the null symbol rSym = 0 } else { var elfsym ElfSym if err := readelfsym(l, arch, elfobj, int(symIdx), &elfsym, 0, 0); err != nil { return errorf("malformed elf file: %v", err) } elfsym.sym = symbols[symIdx] if elfsym.sym == 0 { return errorf("malformed elf file: %s#%d: reloc of invalid sym #%d %s shndx=%d type=%d", l.SymName(sect.sym), j, int(symIdx), elfsym.name, elfsym.shndx, elfsym.type_) } rSym = elfsym.sym } rType := objabi.ElfRelocOffset + objabi.RelocType(relocType) rSize, addendSize, err := relSize(arch, pn, uint32(relocType)) if err != nil { return nil, 0, err } if rela != 0 { rAdd = int64(add) } else { // load addend from image if rSize == 4 { rAdd = int64(e.Uint32(sect.base[rOff:])) } else if rSize == 8 { rAdd = int64(e.Uint64(sect.base[rOff:])) } else { return errorf("invalid rela size %d", rSize) } } if addendSize == 2 { rAdd = int64(int16(rAdd)) } if addendSize == 4 { rAdd = int64(int32(rAdd)) } r, _ := sb.AddRel(rType) r.SetOff(rOff) r.SetSiz(rSize) r.SetSym(rSym) r.SetAdd(rAdd) } sb.SortRelocs() // just in case } return textp, ehdrFlags, nil } func section(elfobj *ElfObj, name string) *ElfSect { for i := 0; uint(i) < elfobj.nsect; i++ { if elfobj.sect[i].name != "" && name != "" && elfobj.sect[i].name == name { return &elfobj.sect[i] } } return nil } func elfmap(elfobj *ElfObj, sect *ElfSect) (err error) { if sect.base != nil { return nil } if sect.off+sect.size > uint64(elfobj.length) { err = fmt.Errorf("elf section past end of file") return err } elfobj.f.MustSeek(int64(uint64(elfobj.base)+sect.off), 0) sect.base, sect.readOnlyMem, err = elfobj.f.Slice(uint64(sect.size)) if err != nil { return fmt.Errorf("short read: %v", err) } return nil } func readelfsym(l *loader.Loader, arch *sys.Arch, elfobj *ElfObj, i int, elfsym *ElfSym, needSym int, localSymVersion int) (err error) { if i >= elfobj.nsymtab || i < 0 { err = fmt.Errorf("invalid elf symbol index") return err } if i == 0 { return fmt.Errorf("readym: read null symbol!") } if elfobj.is64 != 0 { b := new(elf.Sym64) binary.Read(bytes.NewReader(elfobj.symtab.base[i*elf.Sym64Size:(i+1)*elf.Sym64Size]), elfobj.e, b) elfsym.name = cstring(elfobj.symstr.base[b.Name:]) elfsym.value = b.Value elfsym.size = b.Size elfsym.shndx = elf.SectionIndex(b.Shndx) elfsym.bind = elf.ST_BIND(b.Info) elfsym.type_ = elf.ST_TYPE(b.Info) elfsym.other = b.Other } else { b := new(elf.Sym32) binary.Read(bytes.NewReader(elfobj.symtab.base[i*elf.Sym32Size:(i+1)*elf.Sym32Size]), elfobj.e, b) elfsym.name = cstring(elfobj.symstr.base[b.Name:]) elfsym.value = uint64(b.Value) elfsym.size = uint64(b.Size) elfsym.shndx = elf.SectionIndex(b.Shndx) elfsym.bind = elf.ST_BIND(b.Info) elfsym.type_ = elf.ST_TYPE(b.Info) elfsym.other = b.Other } var s loader.Sym if elfsym.name == "_GLOBAL_OFFSET_TABLE_" { elfsym.name = ".got" } if elfsym.name == ".TOC." { // Magic symbol on ppc64. Will be set to this object // file's .got+0x8000. elfsym.bind = elf.STB_LOCAL } switch elfsym.type_ { case elf.STT_SECTION: s = elfobj.sect[elfsym.shndx].sym case elf.STT_OBJECT, elf.STT_FUNC, elf.STT_NOTYPE, elf.STT_COMMON: switch elfsym.bind { case elf.STB_GLOBAL: if needSym != 0 { s = l.LookupOrCreateCgoExport(elfsym.name, 0) // for global scoped hidden symbols we should insert it into // symbol hash table, but mark them as hidden. // __i686.get_pc_thunk.bx is allowed to be duplicated, to // workaround that we set dupok. // TODO(minux): correctly handle __i686.get_pc_thunk.bx without // set dupok generally. See https://golang.org/cl/5823055 // comment #5 for details. if s != 0 && elfsym.other == 2 { if !l.IsExternal(s) { l.MakeSymbolUpdater(s) } l.SetAttrDuplicateOK(s, true) l.SetAttrVisibilityHidden(s, true) } } case elf.STB_LOCAL: if (arch.Family == sys.ARM || arch.Family == sys.ARM64) && (strings.HasPrefix(elfsym.name, "$a") || strings.HasPrefix(elfsym.name, "$d") || strings.HasPrefix(elfsym.name, "$x")) { // binutils for arm and arm64 generate these mapping // symbols, ignore these break } if elfsym.name == ".TOC." { // We need to be able to look this up, // so put it in the hash table. if needSym != 0 { s = l.LookupOrCreateCgoExport(elfsym.name, localSymVersion) l.SetAttrVisibilityHidden(s, true) } break } if needSym != 0 { // local names and hidden global names are unique // and should only be referenced by their index, not name, so we // don't bother to add them into the hash table // FIXME: pass empty string here for name? This would // reduce mem use, but also (possibly) make it harder // to debug problems. s = l.CreateStaticSym(elfsym.name) l.SetAttrVisibilityHidden(s, true) } case elf.STB_WEAK: if needSym != 0 { s = l.LookupOrCreateCgoExport(elfsym.name, 0) if elfsym.other == 2 { l.SetAttrVisibilityHidden(s, true) } // Allow weak symbols to be duplicated when already defined. if l.OuterSym(s) != 0 { l.SetAttrDuplicateOK(s, true) } } default: err = fmt.Errorf("%s: invalid symbol binding %d", elfsym.name, elfsym.bind) return err } } if s != 0 && l.SymType(s) == 0 && elfsym.type_ != elf.STT_SECTION { sb := l.MakeSymbolUpdater(s) sb.SetType(sym.SXREF) } elfsym.sym = s return nil } // Return the size of the relocated field, and the size of the addend as the first // and second values. Note, the addend may be larger than the relocation field in // some cases when a relocated value is split across multiple relocations. func relSize(arch *sys.Arch, pn string, elftype uint32) (uint8, uint8, error) { // TODO(mdempsky): Replace this with a struct-valued switch statement // once golang.org/issue/15164 is fixed or found to not impair cmd/link // performance. const ( AMD64 = uint32(sys.AMD64) ARM = uint32(sys.ARM) ARM64 = uint32(sys.ARM64) I386 = uint32(sys.I386) LOONG64 = uint32(sys.Loong64) MIPS = uint32(sys.MIPS) MIPS64 = uint32(sys.MIPS64) PPC64 = uint32(sys.PPC64) RISCV64 = uint32(sys.RISCV64) S390X = uint32(sys.S390X) ) switch uint32(arch.Family) | elftype<<16 { default: return 0, 0, fmt.Errorf("%s: unknown relocation type %d; compiled without -fpic?", pn, elftype) case MIPS | uint32(elf.R_MIPS_HI16)<<16, MIPS | uint32(elf.R_MIPS_LO16)<<16, MIPS | uint32(elf.R_MIPS_GOT16)<<16, MIPS | uint32(elf.R_MIPS_GOT_HI16)<<16, MIPS | uint32(elf.R_MIPS_GOT_LO16)<<16, MIPS | uint32(elf.R_MIPS_GPREL16)<<16, MIPS | uint32(elf.R_MIPS_GOT_PAGE)<<16, MIPS | uint32(elf.R_MIPS_JALR)<<16, MIPS | uint32(elf.R_MIPS_GOT_OFST)<<16, MIPS64 | uint32(elf.R_MIPS_HI16)<<16, MIPS64 | uint32(elf.R_MIPS_LO16)<<16, MIPS64 | uint32(elf.R_MIPS_GOT16)<<16, MIPS64 | uint32(elf.R_MIPS_GOT_HI16)<<16, MIPS64 | uint32(elf.R_MIPS_GOT_LO16)<<16, MIPS64 | uint32(elf.R_MIPS_GPREL16)<<16, MIPS64 | uint32(elf.R_MIPS_GOT_PAGE)<<16, MIPS64 | uint32(elf.R_MIPS_JALR)<<16, MIPS64 | uint32(elf.R_MIPS_GOT_OFST)<<16, MIPS64 | uint32(elf.R_MIPS_CALL16)<<16, MIPS64 | uint32(elf.R_MIPS_GPREL32)<<16, MIPS64 | uint32(elf.R_MIPS_64)<<16, MIPS64 | uint32(elf.R_MIPS_GOT_DISP)<<16, MIPS64 | uint32(elf.R_MIPS_PC32)<<16: return 4, 4, nil case LOONG64 | uint32(elf.R_LARCH_ADD8)<<16, LOONG64 | uint32(elf.R_LARCH_SUB8)<<16: return 1, 1, nil case LOONG64 | uint32(elf.R_LARCH_ADD16)<<16, LOONG64 | uint32(elf.R_LARCH_SUB16)<<16: return 2, 2, nil case LOONG64 | uint32(elf.R_LARCH_MARK_LA)<<16, LOONG64 | uint32(elf.R_LARCH_MARK_PCREL)<<16, LOONG64 | uint32(elf.R_LARCH_ADD24)<<16, LOONG64 | uint32(elf.R_LARCH_ADD32)<<16, LOONG64 | uint32(elf.R_LARCH_SUB24)<<16, LOONG64 | uint32(elf.R_LARCH_SUB32)<<16, LOONG64 | uint32(elf.R_LARCH_B26)<<16, LOONG64 | uint32(elf.R_LARCH_32_PCREL)<<16: return 4, 4, nil case LOONG64 | uint32(elf.R_LARCH_64)<<16, LOONG64 | uint32(elf.R_LARCH_ADD64)<<16, LOONG64 | uint32(elf.R_LARCH_SUB64)<<16, LOONG64 | uint32(elf.R_LARCH_64_PCREL)<<16: return 8, 8, nil case S390X | uint32(elf.R_390_8)<<16: return 1, 1, nil case PPC64 | uint32(elf.R_PPC64_TOC16)<<16, S390X | uint32(elf.R_390_16)<<16, S390X | uint32(elf.R_390_GOT16)<<16, S390X | uint32(elf.R_390_PC16)<<16, S390X | uint32(elf.R_390_PC16DBL)<<16, S390X | uint32(elf.R_390_PLT16DBL)<<16: return 2, 2, nil case ARM | uint32(elf.R_ARM_ABS32)<<16, ARM | uint32(elf.R_ARM_GOT32)<<16, ARM | uint32(elf.R_ARM_PLT32)<<16, ARM | uint32(elf.R_ARM_GOTOFF)<<16, ARM | uint32(elf.R_ARM_GOTPC)<<16, ARM | uint32(elf.R_ARM_THM_PC22)<<16, ARM | uint32(elf.R_ARM_REL32)<<16, ARM | uint32(elf.R_ARM_CALL)<<16, ARM | uint32(elf.R_ARM_V4BX)<<16, ARM | uint32(elf.R_ARM_GOT_PREL)<<16, ARM | uint32(elf.R_ARM_PC24)<<16, ARM | uint32(elf.R_ARM_JUMP24)<<16, ARM64 | uint32(elf.R_AARCH64_CALL26)<<16, ARM64 | uint32(elf.R_AARCH64_ADR_GOT_PAGE)<<16, ARM64 | uint32(elf.R_AARCH64_LD64_GOT_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_ADR_PREL_PG_HI21)<<16, ARM64 | uint32(elf.R_AARCH64_ADD_ABS_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_LDST8_ABS_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_LDST16_ABS_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_LDST32_ABS_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_LDST64_ABS_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_LDST128_ABS_LO12_NC)<<16, ARM64 | uint32(elf.R_AARCH64_PREL32)<<16, ARM64 | uint32(elf.R_AARCH64_JUMP26)<<16, AMD64 | uint32(elf.R_X86_64_PC32)<<16, AMD64 | uint32(elf.R_X86_64_PLT32)<<16, AMD64 | uint32(elf.R_X86_64_GOTPCREL)<<16, AMD64 | uint32(elf.R_X86_64_GOTPCRELX)<<16, AMD64 | uint32(elf.R_X86_64_REX_GOTPCRELX)<<16, I386 | uint32(elf.R_386_32)<<16, I386 | uint32(elf.R_386_PC32)<<16, I386 | uint32(elf.R_386_GOT32)<<16, I386 | uint32(elf.R_386_PLT32)<<16, I386 | uint32(elf.R_386_GOTOFF)<<16, I386 | uint32(elf.R_386_GOTPC)<<16, I386 | uint32(elf.R_386_GOT32X)<<16, PPC64 | uint32(elf.R_PPC64_REL24)<<16, PPC64 | uint32(elf.R_PPC64_REL24_NOTOC)<<16, PPC64 | uint32(elf.R_PPC64_REL24_P9NOTOC)<<16, PPC64 | uint32(elf.R_PPC_REL32)<<16, S390X | uint32(elf.R_390_32)<<16, S390X | uint32(elf.R_390_PC32)<<16, S390X | uint32(elf.R_390_GOT32)<<16, S390X | uint32(elf.R_390_PLT32)<<16, S390X | uint32(elf.R_390_PC32DBL)<<16, S390X | uint32(elf.R_390_PLT32DBL)<<16, S390X | uint32(elf.R_390_GOTPCDBL)<<16, S390X | uint32(elf.R_390_GOTENT)<<16: return 4, 4, nil case AMD64 | uint32(elf.R_X86_64_64)<<16, AMD64 | uint32(elf.R_X86_64_PC64)<<16, ARM64 | uint32(elf.R_AARCH64_ABS64)<<16, ARM64 | uint32(elf.R_AARCH64_PREL64)<<16, PPC64 | uint32(elf.R_PPC64_ADDR64)<<16, PPC64 | uint32(elf.R_PPC64_PCREL34)<<16, PPC64 | uint32(elf.R_PPC64_GOT_PCREL34)<<16, PPC64 | uint32(elf.R_PPC64_PLT_PCREL34_NOTOC)<<16, S390X | uint32(elf.R_390_GLOB_DAT)<<16, S390X | uint32(elf.R_390_RELATIVE)<<16, S390X | uint32(elf.R_390_GOTOFF)<<16, S390X | uint32(elf.R_390_GOTPC)<<16, S390X | uint32(elf.R_390_64)<<16, S390X | uint32(elf.R_390_PC64)<<16, S390X | uint32(elf.R_390_GOT64)<<16, S390X | uint32(elf.R_390_PLT64)<<16: return 8, 8, nil case RISCV64 | uint32(elf.R_RISCV_SET6)<<16, RISCV64 | uint32(elf.R_RISCV_SUB6)<<16, RISCV64 | uint32(elf.R_RISCV_SET8)<<16, RISCV64 | uint32(elf.R_RISCV_SUB8)<<16: return 1, 1, nil case RISCV64 | uint32(elf.R_RISCV_RVC_BRANCH)<<16, RISCV64 | uint32(elf.R_RISCV_RVC_JUMP)<<16, RISCV64 | uint32(elf.R_RISCV_SET16)<<16, RISCV64 | uint32(elf.R_RISCV_SUB16)<<16: return 2, 2, nil case RISCV64 | uint32(elf.R_RISCV_32)<<16, RISCV64 | uint32(elf.R_RISCV_BRANCH)<<16, RISCV64 | uint32(elf.R_RISCV_HI20)<<16, RISCV64 | uint32(elf.R_RISCV_LO12_I)<<16, RISCV64 | uint32(elf.R_RISCV_LO12_S)<<16, RISCV64 | uint32(elf.R_RISCV_GOT_HI20)<<16, RISCV64 | uint32(elf.R_RISCV_PCREL_HI20)<<16, RISCV64 | uint32(elf.R_RISCV_PCREL_LO12_I)<<16, RISCV64 | uint32(elf.R_RISCV_PCREL_LO12_S)<<16, RISCV64 | uint32(elf.R_RISCV_ADD32)<<16, RISCV64 | uint32(elf.R_RISCV_SET32)<<16, RISCV64 | uint32(elf.R_RISCV_SUB32)<<16, RISCV64 | uint32(elf.R_RISCV_32_PCREL)<<16, RISCV64 | uint32(elf.R_RISCV_RELAX)<<16: return 4, 4, nil case RISCV64 | uint32(elf.R_RISCV_64)<<16, RISCV64 | uint32(elf.R_RISCV_CALL)<<16, RISCV64 | uint32(elf.R_RISCV_CALL_PLT)<<16: return 8, 8, nil case PPC64 | uint32(elf.R_PPC64_TOC16_LO)<<16, PPC64 | uint32(elf.R_PPC64_TOC16_HI)<<16, PPC64 | uint32(elf.R_PPC64_TOC16_HA)<<16, PPC64 | uint32(elf.R_PPC64_TOC16_DS)<<16, PPC64 | uint32(elf.R_PPC64_TOC16_LO_DS)<<16, PPC64 | uint32(elf.R_PPC64_REL16_LO)<<16, PPC64 | uint32(elf.R_PPC64_REL16_HI)<<16, PPC64 | uint32(elf.R_PPC64_REL16_HA)<<16, PPC64 | uint32(elf.R_PPC64_PLT16_HA)<<16, PPC64 | uint32(elf.R_PPC64_PLT16_LO_DS)<<16: return 2, 4, nil // PPC64 inline PLT sequence hint relocations (-fno-plt) // These are informational annotations to assist linker optimizations. case PPC64 | uint32(elf.R_PPC64_PLTSEQ)<<16, PPC64 | uint32(elf.R_PPC64_PLTCALL)<<16, PPC64 | uint32(elf.R_PPC64_PLTCALL_NOTOC)<<16, PPC64 | uint32(elf.R_PPC64_PLTSEQ_NOTOC)<<16: return 0, 0, nil } } func cstring(x []byte) string { i := bytes.IndexByte(x, '\x00') if i >= 0 { x = x[:i] } return string(x) }