// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // CTR AES test vectors. // See U.S. National Institute of Standards and Technology (NIST) // Special Publication 800-38A, ``Recommendation for Block Cipher // Modes of Operation,'' 2001 Edition, pp. 55-58. package cipher_test import ( "bytes" "crypto/aes" "crypto/cipher" "crypto/internal/boring" "crypto/internal/cryptotest" fipsaes "crypto/internal/fips140/aes" "encoding/hex" "fmt" "math/rand" "sort" "strings" "testing" ) var commonCounter = []byte{0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff} var ctrAESTests = []struct { name string key []byte iv []byte in []byte out []byte }{ // NIST SP 800-38A pp 55-58 { "CTR-AES128", commonKey128, commonCounter, commonInput, []byte{ 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee, }, }, { "CTR-AES192", commonKey192, commonCounter, commonInput, []byte{ 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2, 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b, 0x09, 0x03, 0x39, 0xec, 0x0a, 0xa6, 0xfa, 0xef, 0xd5, 0xcc, 0xc2, 0xc6, 0xf4, 0xce, 0x8e, 0x94, 0x1e, 0x36, 0xb2, 0x6b, 0xd1, 0xeb, 0xc6, 0x70, 0xd1, 0xbd, 0x1d, 0x66, 0x56, 0x20, 0xab, 0xf7, 0x4f, 0x78, 0xa7, 0xf6, 0xd2, 0x98, 0x09, 0x58, 0x5a, 0x97, 0xda, 0xec, 0x58, 0xc6, 0xb0, 0x50, }, }, { "CTR-AES256", commonKey256, commonCounter, commonInput, []byte{ 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6, }, }, } func TestCTR_AES(t *testing.T) { cryptotest.TestAllImplementations(t, "aes", testCTR_AES) } func testCTR_AES(t *testing.T) { for _, tt := range ctrAESTests { test := tt.name c, err := aes.NewCipher(tt.key) if err != nil { t.Errorf("%s: NewCipher(%d bytes) = %s", test, len(tt.key), err) continue } for j := 0; j <= 5; j += 5 { in := tt.in[0 : len(tt.in)-j] ctr := cipher.NewCTR(c, tt.iv) encrypted := make([]byte, len(in)) ctr.XORKeyStream(encrypted, in) if out := tt.out[:len(in)]; !bytes.Equal(out, encrypted) { t.Errorf("%s/%d: CTR\ninpt %x\nhave %x\nwant %x", test, len(in), in, encrypted, out) } } for j := 0; j <= 7; j += 7 { in := tt.out[0 : len(tt.out)-j] ctr := cipher.NewCTR(c, tt.iv) plain := make([]byte, len(in)) ctr.XORKeyStream(plain, in) if out := tt.in[:len(in)]; !bytes.Equal(out, plain) { t.Errorf("%s/%d: CTRReader\nhave %x\nwant %x", test, len(out), plain, out) } } if t.Failed() { break } } } func makeTestingCiphers(aesBlock cipher.Block, iv []byte) (genericCtr, multiblockCtr cipher.Stream) { return cipher.NewCTR(wrap(aesBlock), iv), cipher.NewCTR(aesBlock, iv) } func randBytes(t *testing.T, r *rand.Rand, count int) []byte { t.Helper() buf := make([]byte, count) n, err := r.Read(buf) if err != nil { t.Fatal(err) } if n != count { t.Fatal("short read from Rand") } return buf } const aesBlockSize = 16 type ctrAble interface { NewCTR(iv []byte) cipher.Stream } // Verify that multiblock AES CTR (src/crypto/aes/ctr_*.s) // produces the same results as generic single-block implementation. // This test runs checks on random IV. func TestCTR_AES_multiblock_random_IV(t *testing.T) { r := rand.New(rand.NewSource(54321)) iv := randBytes(t, r, aesBlockSize) const Size = 100 for _, keySize := range []int{16, 24, 32} { keySize := keySize t.Run(fmt.Sprintf("keySize=%d", keySize), func(t *testing.T) { key := randBytes(t, r, keySize) aesBlock, err := aes.NewCipher(key) if err != nil { t.Fatal(err) } genericCtr, _ := makeTestingCiphers(aesBlock, iv) plaintext := randBytes(t, r, Size) // Generate reference ciphertext. genericCiphertext := make([]byte, len(plaintext)) genericCtr.XORKeyStream(genericCiphertext, plaintext) // Split the text in 3 parts in all possible ways and encrypt them // individually using multiblock implementation to catch edge cases. for part1 := 0; part1 <= Size; part1++ { part1 := part1 t.Run(fmt.Sprintf("part1=%d", part1), func(t *testing.T) { for part2 := 0; part2 <= Size-part1; part2++ { part2 := part2 t.Run(fmt.Sprintf("part2=%d", part2), func(t *testing.T) { _, multiblockCtr := makeTestingCiphers(aesBlock, iv) multiblockCiphertext := make([]byte, len(plaintext)) multiblockCtr.XORKeyStream(multiblockCiphertext[:part1], plaintext[:part1]) multiblockCtr.XORKeyStream(multiblockCiphertext[part1:part1+part2], plaintext[part1:part1+part2]) multiblockCtr.XORKeyStream(multiblockCiphertext[part1+part2:], plaintext[part1+part2:]) if !bytes.Equal(genericCiphertext, multiblockCiphertext) { t.Fatal("multiblock CTR's output does not match generic CTR's output") } }) } }) } }) } } func parseHex(str string) []byte { b, err := hex.DecodeString(strings.ReplaceAll(str, " ", "")) if err != nil { panic(err) } return b } // Verify that multiblock AES CTR (src/crypto/aes/ctr_*.s) // produces the same results as generic single-block implementation. // This test runs checks on edge cases (IV overflows). func TestCTR_AES_multiblock_overflow_IV(t *testing.T) { r := rand.New(rand.NewSource(987654)) const Size = 4096 plaintext := randBytes(t, r, Size) ivs := [][]byte{ parseHex("00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF"), parseHex("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF"), parseHex("FF FF FF FF FF FF FF FF 00 00 00 00 00 00 00 00"), parseHex("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF fe"), parseHex("00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF fe"), parseHex("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00"), parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF 00"), parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF FF"), parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF fe"), parseHex("00 00 00 00 00 00 00 01 FF FF FF FF FF FF FF 00"), } for _, keySize := range []int{16, 24, 32} { keySize := keySize t.Run(fmt.Sprintf("keySize=%d", keySize), func(t *testing.T) { for _, iv := range ivs { key := randBytes(t, r, keySize) aesBlock, err := aes.NewCipher(key) if err != nil { t.Fatal(err) } t.Run(fmt.Sprintf("iv=%s", hex.EncodeToString(iv)), func(t *testing.T) { for _, offset := range []int{0, 1, 16, 1024} { offset := offset t.Run(fmt.Sprintf("offset=%d", offset), func(t *testing.T) { genericCtr, multiblockCtr := makeTestingCiphers(aesBlock, iv) // Generate reference ciphertext. genericCiphertext := make([]byte, Size) genericCtr.XORKeyStream(genericCiphertext, plaintext) multiblockCiphertext := make([]byte, Size) multiblockCtr.XORKeyStream(multiblockCiphertext, plaintext[:offset]) multiblockCtr.XORKeyStream(multiblockCiphertext[offset:], plaintext[offset:]) if !bytes.Equal(genericCiphertext, multiblockCiphertext) { t.Fatal("multiblock CTR's output does not match generic CTR's output") } }) } }) } }) } } // Check that method XORKeyStreamAt works correctly. func TestCTR_AES_multiblock_XORKeyStreamAt(t *testing.T) { if boring.Enabled { t.Skip("XORKeyStreamAt is not available in boring mode") } r := rand.New(rand.NewSource(12345)) const Size = 32 * 1024 * 1024 plaintext := randBytes(t, r, Size) for _, keySize := range []int{16, 24, 32} { keySize := keySize t.Run(fmt.Sprintf("keySize=%d", keySize), func(t *testing.T) { key := randBytes(t, r, keySize) iv := randBytes(t, r, aesBlockSize) aesBlock, err := aes.NewCipher(key) if err != nil { t.Fatal(err) } genericCtr, _ := makeTestingCiphers(aesBlock, iv) ctrAt := fipsaes.NewCTR(aesBlock.(*fipsaes.Block), iv) // Generate reference ciphertext. genericCiphertext := make([]byte, Size) genericCtr.XORKeyStream(genericCiphertext, plaintext) multiblockCiphertext := make([]byte, Size) // Split the range to random slices. const N = 1000 boundaries := make([]int, 0, N+2) for i := 0; i < N; i++ { boundaries = append(boundaries, r.Intn(Size)) } boundaries = append(boundaries, 0) boundaries = append(boundaries, Size) sort.Ints(boundaries) for _, i := range r.Perm(N + 1) { begin := boundaries[i] end := boundaries[i+1] ctrAt.XORKeyStreamAt( multiblockCiphertext[begin:end], plaintext[begin:end], uint64(begin), ) } if !bytes.Equal(genericCiphertext, multiblockCiphertext) { t.Fatal("multiblock CTR's output does not match generic CTR's output") } }) } }