// Copyright (c) 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package edwards25519 import ( _ "crypto/internal/fips140/check" "crypto/internal/fips140/edwards25519/field" "errors" ) // Point types. type projP1xP1 struct { X, Y, Z, T field.Element } type projP2 struct { X, Y, Z field.Element } // Point represents a point on the edwards25519 curve. // // This type works similarly to math/big.Int, and all arguments and receivers // are allowed to alias. // // The zero value is NOT valid, and it may be used only as a receiver. type Point struct { // Make the type not comparable (i.e. used with == or as a map key), as // equivalent points can be represented by different Go values. _ incomparable // The point is internally represented in extended coordinates (X, Y, Z, T) // where x = X/Z, y = Y/Z, and xy = T/Z per https://eprint.iacr.org/2008/522. x, y, z, t field.Element } type incomparable [0]func() func checkInitialized(points ...*Point) { for _, p := range points { if p.x == (field.Element{}) && p.y == (field.Element{}) { panic("edwards25519: use of uninitialized Point") } } } type projCached struct { YplusX, YminusX, Z, T2d field.Element } type affineCached struct { YplusX, YminusX, T2d field.Element } // Constructors. func (v *projP2) Zero() *projP2 { v.X.Zero() v.Y.One() v.Z.One() return v } // identity is the point at infinity. var identity, _ = new(Point).SetBytes([]byte{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}) // NewIdentityPoint returns a new Point set to the identity. func NewIdentityPoint() *Point { return new(Point).Set(identity) } // generator is the canonical curve basepoint. See TestGenerator for the // correspondence of this encoding with the values in RFC 8032. var generator, _ = new(Point).SetBytes([]byte{ 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}) // NewGeneratorPoint returns a new Point set to the canonical generator. func NewGeneratorPoint() *Point { return new(Point).Set(generator) } func (v *projCached) Zero() *projCached { v.YplusX.One() v.YminusX.One() v.Z.One() v.T2d.Zero() return v } func (v *affineCached) Zero() *affineCached { v.YplusX.One() v.YminusX.One() v.T2d.Zero() return v } // Assignments. // Set sets v = u, and returns v. func (v *Point) Set(u *Point) *Point { *v = *u return v } // Encoding. // Bytes returns the canonical 32-byte encoding of v, according to RFC 8032, // Section 5.1.2. func (v *Point) Bytes() []byte { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var buf [32]byte return v.bytes(&buf) } func (v *Point) bytes(buf *[32]byte) []byte { checkInitialized(v) var zInv, x, y field.Element zInv.Invert(&v.z) // zInv = 1 / Z x.Multiply(&v.x, &zInv) // x = X / Z y.Multiply(&v.y, &zInv) // y = Y / Z out := copyFieldElement(buf, &y) out[31] |= byte(x.IsNegative() << 7) return out } var feOne = new(field.Element).One() // SetBytes sets v = x, where x is a 32-byte encoding of v. If x does not // represent a valid point on the curve, SetBytes returns nil and an error and // the receiver is unchanged. Otherwise, SetBytes returns v. // // Note that SetBytes accepts all non-canonical encodings of valid points. // That is, it follows decoding rules that match most implementations in // the ecosystem rather than RFC 8032. func (v *Point) SetBytes(x []byte) (*Point, error) { // Specifically, the non-canonical encodings that are accepted are // 1) the ones where the field element is not reduced (see the // (*field.Element).SetBytes docs) and // 2) the ones where the x-coordinate is zero and the sign bit is set. // // Read more at https://hdevalence.ca/blog/2020-10-04-its-25519am, // specifically the "Canonical A, R" section. y, err := new(field.Element).SetBytes(x) if err != nil { return nil, errors.New("edwards25519: invalid point encoding length") } // -x² + y² = 1 + dx²y² // x² + dx²y² = x²(dy² + 1) = y² - 1 // x² = (y² - 1) / (dy² + 1) // u = y² - 1 y2 := new(field.Element).Square(y) u := new(field.Element).Subtract(y2, feOne) // v = dy² + 1 vv := new(field.Element).Multiply(y2, d) vv = vv.Add(vv, feOne) // x = +√(u/v) xx, wasSquare := new(field.Element).SqrtRatio(u, vv) if wasSquare == 0 { return nil, errors.New("edwards25519: invalid point encoding") } // Select the negative square root if the sign bit is set. xxNeg := new(field.Element).Negate(xx) xx = xx.Select(xxNeg, xx, int(x[31]>>7)) v.x.Set(xx) v.y.Set(y) v.z.One() v.t.Multiply(xx, y) // xy = T / Z return v, nil } func copyFieldElement(buf *[32]byte, v *field.Element) []byte { copy(buf[:], v.Bytes()) return buf[:] } // Conversions. func (v *projP2) FromP1xP1(p *projP1xP1) *projP2 { v.X.Multiply(&p.X, &p.T) v.Y.Multiply(&p.Y, &p.Z) v.Z.Multiply(&p.Z, &p.T) return v } func (v *projP2) FromP3(p *Point) *projP2 { v.X.Set(&p.x) v.Y.Set(&p.y) v.Z.Set(&p.z) return v } func (v *Point) fromP1xP1(p *projP1xP1) *Point { v.x.Multiply(&p.X, &p.T) v.y.Multiply(&p.Y, &p.Z) v.z.Multiply(&p.Z, &p.T) v.t.Multiply(&p.X, &p.Y) return v } func (v *Point) fromP2(p *projP2) *Point { v.x.Multiply(&p.X, &p.Z) v.y.Multiply(&p.Y, &p.Z) v.z.Square(&p.Z) v.t.Multiply(&p.X, &p.Y) return v } // d is a constant in the curve equation. var d, _ = new(field.Element).SetBytes([]byte{ 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52}) var d2 = new(field.Element).Add(d, d) func (v *projCached) FromP3(p *Point) *projCached { v.YplusX.Add(&p.y, &p.x) v.YminusX.Subtract(&p.y, &p.x) v.Z.Set(&p.z) v.T2d.Multiply(&p.t, d2) return v } func (v *affineCached) FromP3(p *Point) *affineCached { v.YplusX.Add(&p.y, &p.x) v.YminusX.Subtract(&p.y, &p.x) v.T2d.Multiply(&p.t, d2) var invZ field.Element invZ.Invert(&p.z) v.YplusX.Multiply(&v.YplusX, &invZ) v.YminusX.Multiply(&v.YminusX, &invZ) v.T2d.Multiply(&v.T2d, &invZ) return v } // (Re)addition and subtraction. // Add sets v = p + q, and returns v. func (v *Point) Add(p, q *Point) *Point { checkInitialized(p, q) qCached := new(projCached).FromP3(q) result := new(projP1xP1).Add(p, qCached) return v.fromP1xP1(result) } // Subtract sets v = p - q, and returns v. func (v *Point) Subtract(p, q *Point) *Point { checkInitialized(p, q) qCached := new(projCached).FromP3(q) result := new(projP1xP1).Sub(p, qCached) return v.fromP1xP1(result) } func (v *projP1xP1) Add(p *Point, q *projCached) *projP1xP1 { var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element YplusX.Add(&p.y, &p.x) YminusX.Subtract(&p.y, &p.x) PP.Multiply(&YplusX, &q.YplusX) MM.Multiply(&YminusX, &q.YminusX) TT2d.Multiply(&p.t, &q.T2d) ZZ2.Multiply(&p.z, &q.Z) ZZ2.Add(&ZZ2, &ZZ2) v.X.Subtract(&PP, &MM) v.Y.Add(&PP, &MM) v.Z.Add(&ZZ2, &TT2d) v.T.Subtract(&ZZ2, &TT2d) return v } func (v *projP1xP1) Sub(p *Point, q *projCached) *projP1xP1 { var YplusX, YminusX, PP, MM, TT2d, ZZ2 field.Element YplusX.Add(&p.y, &p.x) YminusX.Subtract(&p.y, &p.x) PP.Multiply(&YplusX, &q.YminusX) // flipped sign MM.Multiply(&YminusX, &q.YplusX) // flipped sign TT2d.Multiply(&p.t, &q.T2d) ZZ2.Multiply(&p.z, &q.Z) ZZ2.Add(&ZZ2, &ZZ2) v.X.Subtract(&PP, &MM) v.Y.Add(&PP, &MM) v.Z.Subtract(&ZZ2, &TT2d) // flipped sign v.T.Add(&ZZ2, &TT2d) // flipped sign return v } func (v *projP1xP1) AddAffine(p *Point, q *affineCached) *projP1xP1 { var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element YplusX.Add(&p.y, &p.x) YminusX.Subtract(&p.y, &p.x) PP.Multiply(&YplusX, &q.YplusX) MM.Multiply(&YminusX, &q.YminusX) TT2d.Multiply(&p.t, &q.T2d) Z2.Add(&p.z, &p.z) v.X.Subtract(&PP, &MM) v.Y.Add(&PP, &MM) v.Z.Add(&Z2, &TT2d) v.T.Subtract(&Z2, &TT2d) return v } func (v *projP1xP1) SubAffine(p *Point, q *affineCached) *projP1xP1 { var YplusX, YminusX, PP, MM, TT2d, Z2 field.Element YplusX.Add(&p.y, &p.x) YminusX.Subtract(&p.y, &p.x) PP.Multiply(&YplusX, &q.YminusX) // flipped sign MM.Multiply(&YminusX, &q.YplusX) // flipped sign TT2d.Multiply(&p.t, &q.T2d) Z2.Add(&p.z, &p.z) v.X.Subtract(&PP, &MM) v.Y.Add(&PP, &MM) v.Z.Subtract(&Z2, &TT2d) // flipped sign v.T.Add(&Z2, &TT2d) // flipped sign return v } // Doubling. func (v *projP1xP1) Double(p *projP2) *projP1xP1 { var XX, YY, ZZ2, XplusYsq field.Element XX.Square(&p.X) YY.Square(&p.Y) ZZ2.Square(&p.Z) ZZ2.Add(&ZZ2, &ZZ2) XplusYsq.Add(&p.X, &p.Y) XplusYsq.Square(&XplusYsq) v.Y.Add(&YY, &XX) v.Z.Subtract(&YY, &XX) v.X.Subtract(&XplusYsq, &v.Y) v.T.Subtract(&ZZ2, &v.Z) return v } // Negation. // Negate sets v = -p, and returns v. func (v *Point) Negate(p *Point) *Point { checkInitialized(p) v.x.Negate(&p.x) v.y.Set(&p.y) v.z.Set(&p.z) v.t.Negate(&p.t) return v } // Equal returns 1 if v is equivalent to u, and 0 otherwise. func (v *Point) Equal(u *Point) int { checkInitialized(v, u) var t1, t2, t3, t4 field.Element t1.Multiply(&v.x, &u.z) t2.Multiply(&u.x, &v.z) t3.Multiply(&v.y, &u.z) t4.Multiply(&u.y, &v.z) return t1.Equal(&t2) & t3.Equal(&t4) } // Constant-time operations // Select sets v to a if cond == 1 and to b if cond == 0. func (v *projCached) Select(a, b *projCached, cond int) *projCached { v.YplusX.Select(&a.YplusX, &b.YplusX, cond) v.YminusX.Select(&a.YminusX, &b.YminusX, cond) v.Z.Select(&a.Z, &b.Z, cond) v.T2d.Select(&a.T2d, &b.T2d, cond) return v } // Select sets v to a if cond == 1 and to b if cond == 0. func (v *affineCached) Select(a, b *affineCached, cond int) *affineCached { v.YplusX.Select(&a.YplusX, &b.YplusX, cond) v.YminusX.Select(&a.YminusX, &b.YminusX, cond) v.T2d.Select(&a.T2d, &b.T2d, cond) return v } // CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0. func (v *projCached) CondNeg(cond int) *projCached { v.YplusX.Swap(&v.YminusX, cond) v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond) return v } // CondNeg negates v if cond == 1 and leaves it unchanged if cond == 0. func (v *affineCached) CondNeg(cond int) *affineCached { v.YplusX.Swap(&v.YminusX, cond) v.T2d.Select(new(field.Element).Negate(&v.T2d), &v.T2d, cond) return v }