// Copyright (c) 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package field implements fast arithmetic modulo 2^255-19. package field import ( _ "crypto/internal/fips140/check" "crypto/internal/fips140/subtle" "crypto/internal/fips140deps/byteorder" "errors" "math/bits" ) // Element represents an element of the field GF(2^255-19). Note that this // is not a cryptographically secure group, and should only be used to interact // with edwards25519.Point coordinates. // // This type works similarly to math/big.Int, and all arguments and receivers // are allowed to alias. // // The zero value is a valid zero element. type Element struct { // An element t represents the integer // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204 // // Between operations, all limbs are expected to be lower than 2^52. l0 uint64 l1 uint64 l2 uint64 l3 uint64 l4 uint64 } const maskLow51Bits uint64 = (1 << 51) - 1 var feZero = &Element{0, 0, 0, 0, 0} // Zero sets v = 0, and returns v. func (v *Element) Zero() *Element { *v = *feZero return v } var feOne = &Element{1, 0, 0, 0, 0} // One sets v = 1, and returns v. func (v *Element) One() *Element { *v = *feOne return v } // reduce reduces v modulo 2^255 - 19 and returns it. func (v *Element) reduce() *Element { v.carryPropagate() // After the light reduction we now have a field element representation // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19. // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1, // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise. c := (v.l0 + 19) >> 51 c = (v.l1 + c) >> 51 c = (v.l2 + c) >> 51 c = (v.l3 + c) >> 51 c = (v.l4 + c) >> 51 // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's // effectively applying the reduction identity to the carry. v.l0 += 19 * c v.l1 += v.l0 >> 51 v.l0 = v.l0 & maskLow51Bits v.l2 += v.l1 >> 51 v.l1 = v.l1 & maskLow51Bits v.l3 += v.l2 >> 51 v.l2 = v.l2 & maskLow51Bits v.l4 += v.l3 >> 51 v.l3 = v.l3 & maskLow51Bits // no additional carry v.l4 = v.l4 & maskLow51Bits return v } // Add sets v = a + b, and returns v. func (v *Element) Add(a, b *Element) *Element { v.l0 = a.l0 + b.l0 v.l1 = a.l1 + b.l1 v.l2 = a.l2 + b.l2 v.l3 = a.l3 + b.l3 v.l4 = a.l4 + b.l4 // Using the generic implementation here is actually faster than the // assembly. Probably because the body of this function is so simple that // the compiler can figure out better optimizations by inlining the carry // propagation. return v.carryPropagateGeneric() } // Subtract sets v = a - b, and returns v. func (v *Element) Subtract(a, b *Element) *Element { // We first add 2 * p, to guarantee the subtraction won't underflow, and // then subtract b (which can be up to 2^255 + 2^13 * 19). v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0 v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1 v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2 v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3 v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4 return v.carryPropagate() } // Negate sets v = -a, and returns v. func (v *Element) Negate(a *Element) *Element { return v.Subtract(feZero, a) } // Invert sets v = 1/z mod p, and returns v. // // If z == 0, Invert returns v = 0. func (v *Element) Invert(z *Element) *Element { // Inversion is implemented as exponentiation with exponent p − 2. It uses the // same sequence of 255 squarings and 11 multiplications as [Curve25519]. var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element z2.Square(z) // 2 t.Square(&z2) // 4 t.Square(&t) // 8 z9.Multiply(&t, z) // 9 z11.Multiply(&z9, &z2) // 11 t.Square(&z11) // 22 z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0 t.Square(&z2_5_0) // 2^6 - 2^1 for i := 0; i < 4; i++ { t.Square(&t) // 2^10 - 2^5 } z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0 t.Square(&z2_10_0) // 2^11 - 2^1 for i := 0; i < 9; i++ { t.Square(&t) // 2^20 - 2^10 } z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0 t.Square(&z2_20_0) // 2^21 - 2^1 for i := 0; i < 19; i++ { t.Square(&t) // 2^40 - 2^20 } t.Multiply(&t, &z2_20_0) // 2^40 - 2^0 t.Square(&t) // 2^41 - 2^1 for i := 0; i < 9; i++ { t.Square(&t) // 2^50 - 2^10 } z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0 t.Square(&z2_50_0) // 2^51 - 2^1 for i := 0; i < 49; i++ { t.Square(&t) // 2^100 - 2^50 } z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0 t.Square(&z2_100_0) // 2^101 - 2^1 for i := 0; i < 99; i++ { t.Square(&t) // 2^200 - 2^100 } t.Multiply(&t, &z2_100_0) // 2^200 - 2^0 t.Square(&t) // 2^201 - 2^1 for i := 0; i < 49; i++ { t.Square(&t) // 2^250 - 2^50 } t.Multiply(&t, &z2_50_0) // 2^250 - 2^0 t.Square(&t) // 2^251 - 2^1 t.Square(&t) // 2^252 - 2^2 t.Square(&t) // 2^253 - 2^3 t.Square(&t) // 2^254 - 2^4 t.Square(&t) // 2^255 - 2^5 return v.Multiply(&t, &z11) // 2^255 - 21 } // Set sets v = a, and returns v. func (v *Element) Set(a *Element) *Element { *v = *a return v } // SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is // not of the right length, SetBytes returns nil and an error, and the // receiver is unchanged. // // Consistent with RFC 7748, the most significant bit (the high bit of the // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1) // are accepted. Note that this is laxer than specified by RFC 8032, but // consistent with most Ed25519 implementations. func (v *Element) SetBytes(x []byte) (*Element, error) { if len(x) != 32 { return nil, errors.New("edwards25519: invalid field element input size") } // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51). v.l0 = byteorder.LEUint64(x[0:8]) v.l0 &= maskLow51Bits // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51). v.l1 = byteorder.LEUint64(x[6:14]) >> 3 v.l1 &= maskLow51Bits // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51). v.l2 = byteorder.LEUint64(x[12:20]) >> 6 v.l2 &= maskLow51Bits // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51). v.l3 = byteorder.LEUint64(x[19:27]) >> 1 v.l3 &= maskLow51Bits // Bits 204:255 (bytes 24:32, bits 192:256, shift 12, mask 51). // Note: not bytes 25:33, shift 4, to avoid overread. v.l4 = byteorder.LEUint64(x[24:32]) >> 12 v.l4 &= maskLow51Bits return v, nil } // Bytes returns the canonical 32-byte little-endian encoding of v. func (v *Element) Bytes() []byte { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var out [32]byte return v.bytes(&out) } func (v *Element) bytes(out *[32]byte) []byte { t := *v t.reduce() var buf [8]byte for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} { bitsOffset := i * 51 byteorder.LEPutUint64(buf[:], l<= len(out) { break } out[off] |= bb } } return out[:] } // Equal returns 1 if v and u are equal, and 0 otherwise. func (v *Element) Equal(u *Element) int { sa, sv := u.Bytes(), v.Bytes() return subtle.ConstantTimeCompare(sa, sv) } // mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise. func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) } // Select sets v to a if cond == 1, and to b if cond == 0. func (v *Element) Select(a, b *Element, cond int) *Element { m := mask64Bits(cond) v.l0 = (m & a.l0) | (^m & b.l0) v.l1 = (m & a.l1) | (^m & b.l1) v.l2 = (m & a.l2) | (^m & b.l2) v.l3 = (m & a.l3) | (^m & b.l3) v.l4 = (m & a.l4) | (^m & b.l4) return v } // Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v. func (v *Element) Swap(u *Element, cond int) { m := mask64Bits(cond) t := m & (v.l0 ^ u.l0) v.l0 ^= t u.l0 ^= t t = m & (v.l1 ^ u.l1) v.l1 ^= t u.l1 ^= t t = m & (v.l2 ^ u.l2) v.l2 ^= t u.l2 ^= t t = m & (v.l3 ^ u.l3) v.l3 ^= t u.l3 ^= t t = m & (v.l4 ^ u.l4) v.l4 ^= t u.l4 ^= t } // IsNegative returns 1 if v is negative, and 0 otherwise. func (v *Element) IsNegative() int { return int(v.Bytes()[0] & 1) } // Absolute sets v to |u|, and returns v. func (v *Element) Absolute(u *Element) *Element { return v.Select(new(Element).Negate(u), u, u.IsNegative()) } // Multiply sets v = x * y, and returns v. func (v *Element) Multiply(x, y *Element) *Element { feMul(v, x, y) return v } // Square sets v = x * x, and returns v. func (v *Element) Square(x *Element) *Element { feSquare(v, x) return v } // Mult32 sets v = x * y, and returns v. func (v *Element) Mult32(x *Element, y uint32) *Element { x0lo, x0hi := mul51(x.l0, y) x1lo, x1hi := mul51(x.l1, y) x2lo, x2hi := mul51(x.l2, y) x3lo, x3hi := mul51(x.l3, y) x4lo, x4hi := mul51(x.l4, y) v.l0 = x0lo + 19*x4hi // carried over per the reduction identity v.l1 = x1lo + x0hi v.l2 = x2lo + x1hi v.l3 = x3lo + x2hi v.l4 = x4lo + x3hi // The hi portions are going to be only 32 bits, plus any previous excess, // so we can skip the carry propagation. return v } // mul51 returns lo + hi * 2⁵¹ = a * b. func mul51(a uint64, b uint32) (lo uint64, hi uint64) { mh, ml := bits.Mul64(a, uint64(b)) lo = ml & maskLow51Bits hi = (mh << 13) | (ml >> 51) return } // Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3. func (v *Element) Pow22523(x *Element) *Element { var t0, t1, t2 Element t0.Square(x) // x^2 t1.Square(&t0) // x^4 t1.Square(&t1) // x^8 t1.Multiply(x, &t1) // x^9 t0.Multiply(&t0, &t1) // x^11 t0.Square(&t0) // x^22 t0.Multiply(&t1, &t0) // x^31 t1.Square(&t0) // x^62 for i := 1; i < 5; i++ { // x^992 t1.Square(&t1) } t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1 t1.Square(&t0) // 2^11 - 2 for i := 1; i < 10; i++ { // 2^20 - 2^10 t1.Square(&t1) } t1.Multiply(&t1, &t0) // 2^20 - 1 t2.Square(&t1) // 2^21 - 2 for i := 1; i < 20; i++ { // 2^40 - 2^20 t2.Square(&t2) } t1.Multiply(&t2, &t1) // 2^40 - 1 t1.Square(&t1) // 2^41 - 2 for i := 1; i < 10; i++ { // 2^50 - 2^10 t1.Square(&t1) } t0.Multiply(&t1, &t0) // 2^50 - 1 t1.Square(&t0) // 2^51 - 2 for i := 1; i < 50; i++ { // 2^100 - 2^50 t1.Square(&t1) } t1.Multiply(&t1, &t0) // 2^100 - 1 t2.Square(&t1) // 2^101 - 2 for i := 1; i < 100; i++ { // 2^200 - 2^100 t2.Square(&t2) } t1.Multiply(&t2, &t1) // 2^200 - 1 t1.Square(&t1) // 2^201 - 2 for i := 1; i < 50; i++ { // 2^250 - 2^50 t1.Square(&t1) } t0.Multiply(&t1, &t0) // 2^250 - 1 t0.Square(&t0) // 2^251 - 2 t0.Square(&t0) // 2^252 - 4 return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3) } // sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion. var sqrtM1 = &Element{1718705420411056, 234908883556509, 2233514472574048, 2117202627021982, 765476049583133} // SqrtRatio sets r to the non-negative square root of the ratio of u and v. // // If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00, // and returns r and 0. func (r *Element) SqrtRatio(u, v *Element) (R *Element, wasSquare int) { t0 := new(Element) // r = (u * v3) * (u * v7)^((p-5)/8) v2 := new(Element).Square(v) uv3 := new(Element).Multiply(u, t0.Multiply(v2, v)) uv7 := new(Element).Multiply(uv3, t0.Square(v2)) rr := new(Element).Multiply(uv3, t0.Pow22523(uv7)) check := new(Element).Multiply(v, t0.Square(rr)) // check = v * r^2 uNeg := new(Element).Negate(u) correctSignSqrt := check.Equal(u) flippedSignSqrt := check.Equal(uNeg) flippedSignSqrtI := check.Equal(t0.Multiply(uNeg, sqrtM1)) rPrime := new(Element).Multiply(rr, sqrtM1) // r_prime = SQRT_M1 * r // r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r) rr.Select(rPrime, rr, flippedSignSqrt|flippedSignSqrtI) r.Absolute(rr) // Choose the nonnegative square root. return r, correctSignSqrt | flippedSignSqrt }