// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package hmac implements HMAC according to [FIPS 198-1]. // // [FIPS 198-1]: https://doi.org/10.6028/NIST.FIPS.198-1 package hmac import ( "crypto/internal/fips140" "crypto/internal/fips140/sha256" "crypto/internal/fips140/sha3" "crypto/internal/fips140/sha512" ) // key is zero padded to the block size of the hash function // ipad = 0x36 byte repeated for key length // opad = 0x5c byte repeated for key length // hmac = H([key ^ opad] H([key ^ ipad] text)) // marshalable is the combination of encoding.BinaryMarshaler and // encoding.BinaryUnmarshaler. Their method definitions are repeated here to // avoid a dependency on the encoding package. type marshalable interface { MarshalBinary() ([]byte, error) UnmarshalBinary([]byte) error } type HMAC struct { opad, ipad []byte outer, inner fips140.Hash // If marshaled is true, then opad and ipad do not contain a padded // copy of the key, but rather the marshaled state of outer/inner after // opad/ipad has been fed into it. marshaled bool // forHKDF and keyLen are stored to inform the service indicator decision. forHKDF bool keyLen int } func (h *HMAC) Sum(in []byte) []byte { // Per FIPS 140-3 IG C.M, key lengths below 112 bits are only allowed for // legacy use (i.e. verification only) and we don't support that. However, // HKDF uses the HMAC key for the salt, which is allowed to be shorter. if h.keyLen < 112/8 && !h.forHKDF { fips140.RecordNonApproved() } switch h.inner.(type) { case *sha256.Digest, *sha512.Digest, *sha3.Digest: default: fips140.RecordNonApproved() } origLen := len(in) in = h.inner.Sum(in) if h.marshaled { if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil { panic(err) } } else { h.outer.Reset() h.outer.Write(h.opad) } h.outer.Write(in[origLen:]) return h.outer.Sum(in[:origLen]) } func (h *HMAC) Write(p []byte) (n int, err error) { return h.inner.Write(p) } func (h *HMAC) Size() int { return h.outer.Size() } func (h *HMAC) BlockSize() int { return h.inner.BlockSize() } func (h *HMAC) Reset() { if h.marshaled { if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil { panic(err) } return } h.inner.Reset() h.inner.Write(h.ipad) // If the underlying hash is marshalable, we can save some time by saving a // copy of the hash state now, and restoring it on future calls to Reset and // Sum instead of writing ipad/opad every time. // // We do this on Reset to avoid slowing down the common single-use case. // // This is allowed by FIPS 198-1, Section 6: "Conceptually, the intermediate // results of the compression function on the B-byte blocks (K0 ⊕ ipad) and // (K0 ⊕ opad) can be precomputed once, at the time of generation of the key // K, or before its first use. These intermediate results can be stored and // then used to initialize H each time that a message needs to be // authenticated using the same key. [...] These stored intermediate values // shall be treated and protected in the same manner as secret keys." marshalableInner, innerOK := h.inner.(marshalable) if !innerOK { return } marshalableOuter, outerOK := h.outer.(marshalable) if !outerOK { return } imarshal, err := marshalableInner.MarshalBinary() if err != nil { return } h.outer.Reset() h.outer.Write(h.opad) omarshal, err := marshalableOuter.MarshalBinary() if err != nil { return } // Marshaling succeeded; save the marshaled state for later h.ipad = imarshal h.opad = omarshal h.marshaled = true } // New returns a new HMAC hash using the given [fips140.Hash] type and key. func New[H fips140.Hash](h func() H, key []byte) *HMAC { hm := &HMAC{keyLen: len(key)} hm.outer = h() hm.inner = h() unique := true func() { defer func() { // The comparison might panic if the underlying types are not comparable. _ = recover() }() if hm.outer == hm.inner { unique = false } }() if !unique { panic("crypto/hmac: hash generation function does not produce unique values") } blocksize := hm.inner.BlockSize() hm.ipad = make([]byte, blocksize) hm.opad = make([]byte, blocksize) if len(key) > blocksize { // If key is too big, hash it. hm.outer.Write(key) key = hm.outer.Sum(nil) } copy(hm.ipad, key) copy(hm.opad, key) for i := range hm.ipad { hm.ipad[i] ^= 0x36 } for i := range hm.opad { hm.opad[i] ^= 0x5c } hm.inner.Write(hm.ipad) return hm } // MarkAsUsedInKDF records that this HMAC instance is used as part of a KDF. func MarkAsUsedInKDF(h *HMAC) { h.forHKDF = true }