// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build (!amd64 && !arm64 && !ppc64le && !s390x) || purego package nistec import ( "crypto/internal/fips140/nistec/fiat" "crypto/internal/fips140/subtle" "crypto/internal/fips140deps/byteorder" "crypto/internal/fips140deps/cpu" "errors" "math/bits" "sync" "unsafe" ) // P256Point is a P-256 point. The zero value is NOT valid. type P256Point struct { // The point is represented in projective coordinates (X:Y:Z), where x = X/Z // and y = Y/Z. Infinity is (0:1:0). // // fiat.P256Element is a base field element in [0, P-1] in the Montgomery // domain (with R 2²⁵⁶ and P 2²⁵⁶ - 2²²⁴ + 2¹⁹² + 2⁹⁶ - 1) as four limbs in // little-endian order value. x, y, z fiat.P256Element } // NewP256Point returns a new P256Point representing the point at infinity point. func NewP256Point() *P256Point { p := &P256Point{} p.y.One() return p } // SetGenerator sets p to the canonical generator and returns p. func (p *P256Point) SetGenerator() *P256Point { p.x.SetBytes([]byte{0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x3, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}) p.y.SetBytes([]byte{0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0xf, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}) p.z.One() return p } // Set sets p = q and returns p. func (p *P256Point) Set(q *P256Point) *P256Point { p.x.Set(&q.x) p.y.Set(&q.y) p.z.Set(&q.z) return p } const p256ElementLength = 32 const p256UncompressedLength = 1 + 2*p256ElementLength const p256CompressedLength = 1 + p256ElementLength // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on // the curve, it returns nil and an error, and the receiver is unchanged. // Otherwise, it returns p. func (p *P256Point) SetBytes(b []byte) (*P256Point, error) { switch { // Point at infinity. case len(b) == 1 && b[0] == 0: return p.Set(NewP256Point()), nil // Uncompressed form. case len(b) == p256UncompressedLength && b[0] == 4: x, err := new(fiat.P256Element).SetBytes(b[1 : 1+p256ElementLength]) if err != nil { return nil, err } y, err := new(fiat.P256Element).SetBytes(b[1+p256ElementLength:]) if err != nil { return nil, err } if err := p256CheckOnCurve(x, y); err != nil { return nil, err } p.x.Set(x) p.y.Set(y) p.z.One() return p, nil // Compressed form. case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3): x, err := new(fiat.P256Element).SetBytes(b[1:]) if err != nil { return nil, err } // y² = x³ - 3x + b y := p256Polynomial(new(fiat.P256Element), x) if !p256Sqrt(y, y) { return nil, errors.New("invalid P256 compressed point encoding") } // Select the positive or negative root, as indicated by the least // significant bit, based on the encoding type byte. otherRoot := new(fiat.P256Element) otherRoot.Sub(otherRoot, y) cond := y.Bytes()[p256ElementLength-1]&1 ^ b[0]&1 y.Select(otherRoot, y, int(cond)) p.x.Set(x) p.y.Set(y) p.z.One() return p, nil default: return nil, errors.New("invalid P256 point encoding") } } var _p256B *fiat.P256Element var _p256BOnce sync.Once func p256B() *fiat.P256Element { _p256BOnce.Do(func() { _p256B, _ = new(fiat.P256Element).SetBytes([]byte{0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x6, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}) }) return _p256B } // p256Polynomial sets y2 to x³ - 3x + b, and returns y2. func p256Polynomial(y2, x *fiat.P256Element) *fiat.P256Element { y2.Square(x) y2.Mul(y2, x) threeX := new(fiat.P256Element).Add(x, x) threeX.Add(threeX, x) y2.Sub(y2, threeX) return y2.Add(y2, p256B()) } func p256CheckOnCurve(x, y *fiat.P256Element) error { // y² = x³ - 3x + b rhs := p256Polynomial(new(fiat.P256Element), x) lhs := new(fiat.P256Element).Square(y) if rhs.Equal(lhs) != 1 { return errors.New("P256 point not on curve") } return nil } // Bytes returns the uncompressed or infinity encoding of p, as specified in // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at // infinity is shorter than all other encodings. func (p *P256Point) Bytes() []byte { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var out [p256UncompressedLength]byte return p.bytes(&out) } func (p *P256Point) bytes(out *[p256UncompressedLength]byte) []byte { // The SEC 1 representation of the point at infinity is a single zero byte, // and only infinity has z = 0. if p.z.IsZero() == 1 { return append(out[:0], 0) } zinv := new(fiat.P256Element).Invert(&p.z) x := new(fiat.P256Element).Mul(&p.x, zinv) y := new(fiat.P256Element).Mul(&p.y, zinv) buf := append(out[:0], 4) buf = append(buf, x.Bytes()...) buf = append(buf, y.Bytes()...) return buf } // BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1, // Version 2.0, Section 2.3.5, or an error if p is the point at infinity. func (p *P256Point) BytesX() ([]byte, error) { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var out [p256ElementLength]byte return p.bytesX(&out) } func (p *P256Point) bytesX(out *[p256ElementLength]byte) ([]byte, error) { if p.z.IsZero() == 1 { return nil, errors.New("P256 point is the point at infinity") } zinv := new(fiat.P256Element).Invert(&p.z) x := new(fiat.P256Element).Mul(&p.x, zinv) return append(out[:0], x.Bytes()...), nil } // BytesCompressed returns the compressed or infinity encoding of p, as // specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the // point at infinity is shorter than all other encodings. func (p *P256Point) BytesCompressed() []byte { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. var out [p256CompressedLength]byte return p.bytesCompressed(&out) } func (p *P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte { if p.z.IsZero() == 1 { return append(out[:0], 0) } zinv := new(fiat.P256Element).Invert(&p.z) x := new(fiat.P256Element).Mul(&p.x, zinv) y := new(fiat.P256Element).Mul(&p.y, zinv) // Encode the sign of the y coordinate (indicated by the least significant // bit) as the encoding type (2 or 3). buf := append(out[:0], 2) buf[0] |= y.Bytes()[p256ElementLength-1] & 1 buf = append(buf, x.Bytes()...) return buf } // Add sets q = p1 + p2, and returns q. The points may overlap. func (q *P256Point) Add(p1, p2 *P256Point) *P256Point { // Complete addition formula for a = -3 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. t0 := new(fiat.P256Element).Mul(&p1.x, &p2.x) // t0 := X1 * X2 t1 := new(fiat.P256Element).Mul(&p1.y, &p2.y) // t1 := Y1 * Y2 t2 := new(fiat.P256Element).Mul(&p1.z, &p2.z) // t2 := Z1 * Z2 t3 := new(fiat.P256Element).Add(&p1.x, &p1.y) // t3 := X1 + Y1 t4 := new(fiat.P256Element).Add(&p2.x, &p2.y) // t4 := X2 + Y2 t3.Mul(t3, t4) // t3 := t3 * t4 t4.Add(t0, t1) // t4 := t0 + t1 t3.Sub(t3, t4) // t3 := t3 - t4 t4.Add(&p1.y, &p1.z) // t4 := Y1 + Z1 x3 := new(fiat.P256Element).Add(&p2.y, &p2.z) // X3 := Y2 + Z2 t4.Mul(t4, x3) // t4 := t4 * X3 x3.Add(t1, t2) // X3 := t1 + t2 t4.Sub(t4, x3) // t4 := t4 - X3 x3.Add(&p1.x, &p1.z) // X3 := X1 + Z1 y3 := new(fiat.P256Element).Add(&p2.x, &p2.z) // Y3 := X2 + Z2 x3.Mul(x3, y3) // X3 := X3 * Y3 y3.Add(t0, t2) // Y3 := t0 + t2 y3.Sub(x3, y3) // Y3 := X3 - Y3 z3 := new(fiat.P256Element).Mul(p256B(), t2) // Z3 := b * t2 x3.Sub(y3, z3) // X3 := Y3 - Z3 z3.Add(x3, x3) // Z3 := X3 + X3 x3.Add(x3, z3) // X3 := X3 + Z3 z3.Sub(t1, x3) // Z3 := t1 - X3 x3.Add(t1, x3) // X3 := t1 + X3 y3.Mul(p256B(), y3) // Y3 := b * Y3 t1.Add(t2, t2) // t1 := t2 + t2 t2.Add(t1, t2) // t2 := t1 + t2 y3.Sub(y3, t2) // Y3 := Y3 - t2 y3.Sub(y3, t0) // Y3 := Y3 - t0 t1.Add(y3, y3) // t1 := Y3 + Y3 y3.Add(t1, y3) // Y3 := t1 + Y3 t1.Add(t0, t0) // t1 := t0 + t0 t0.Add(t1, t0) // t0 := t1 + t0 t0.Sub(t0, t2) // t0 := t0 - t2 t1.Mul(t4, y3) // t1 := t4 * Y3 t2.Mul(t0, y3) // t2 := t0 * Y3 y3.Mul(x3, z3) // Y3 := X3 * Z3 y3.Add(y3, t2) // Y3 := Y3 + t2 x3.Mul(t3, x3) // X3 := t3 * X3 x3.Sub(x3, t1) // X3 := X3 - t1 z3.Mul(t4, z3) // Z3 := t4 * Z3 t1.Mul(t3, t0) // t1 := t3 * t0 z3.Add(z3, t1) // Z3 := Z3 + t1 q.x.Set(x3) q.y.Set(y3) q.z.Set(z3) return q } // Double sets q = p + p, and returns q. The points may overlap. func (q *P256Point) Double(p *P256Point) *P256Point { // Complete addition formula for a = -3 from "Complete addition formulas for // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. t0 := new(fiat.P256Element).Square(&p.x) // t0 := X ^ 2 t1 := new(fiat.P256Element).Square(&p.y) // t1 := Y ^ 2 t2 := new(fiat.P256Element).Square(&p.z) // t2 := Z ^ 2 t3 := new(fiat.P256Element).Mul(&p.x, &p.y) // t3 := X * Y t3.Add(t3, t3) // t3 := t3 + t3 z3 := new(fiat.P256Element).Mul(&p.x, &p.z) // Z3 := X * Z z3.Add(z3, z3) // Z3 := Z3 + Z3 y3 := new(fiat.P256Element).Mul(p256B(), t2) // Y3 := b * t2 y3.Sub(y3, z3) // Y3 := Y3 - Z3 x3 := new(fiat.P256Element).Add(y3, y3) // X3 := Y3 + Y3 y3.Add(x3, y3) // Y3 := X3 + Y3 x3.Sub(t1, y3) // X3 := t1 - Y3 y3.Add(t1, y3) // Y3 := t1 + Y3 y3.Mul(x3, y3) // Y3 := X3 * Y3 x3.Mul(x3, t3) // X3 := X3 * t3 t3.Add(t2, t2) // t3 := t2 + t2 t2.Add(t2, t3) // t2 := t2 + t3 z3.Mul(p256B(), z3) // Z3 := b * Z3 z3.Sub(z3, t2) // Z3 := Z3 - t2 z3.Sub(z3, t0) // Z3 := Z3 - t0 t3.Add(z3, z3) // t3 := Z3 + Z3 z3.Add(z3, t3) // Z3 := Z3 + t3 t3.Add(t0, t0) // t3 := t0 + t0 t0.Add(t3, t0) // t0 := t3 + t0 t0.Sub(t0, t2) // t0 := t0 - t2 t0.Mul(t0, z3) // t0 := t0 * Z3 y3.Add(y3, t0) // Y3 := Y3 + t0 t0.Mul(&p.y, &p.z) // t0 := Y * Z t0.Add(t0, t0) // t0 := t0 + t0 z3.Mul(t0, z3) // Z3 := t0 * Z3 x3.Sub(x3, z3) // X3 := X3 - Z3 z3.Mul(t0, t1) // Z3 := t0 * t1 z3.Add(z3, z3) // Z3 := Z3 + Z3 z3.Add(z3, z3) // Z3 := Z3 + Z3 q.x.Set(x3) q.y.Set(y3) q.z.Set(z3) return q } // p256AffinePoint is a point in affine coordinates (x, y). x and y are still // Montgomery domain elements. The point can't be the point at infinity. type p256AffinePoint struct { x, y fiat.P256Element } func (p *p256AffinePoint) Projective() *P256Point { pp := &P256Point{x: p.x, y: p.y} pp.z.One() return pp } // AddAffine sets q = p1 + p2, if infinity == 0, and to p1 if infinity == 1. // p2 can't be the point at infinity as it can't be represented in affine // coordinates, instead callers can set p2 to an arbitrary point and set // infinity to 1. func (q *P256Point) AddAffine(p1 *P256Point, p2 *p256AffinePoint, infinity int) *P256Point { // Complete mixed addition formula for a = -3 from "Complete addition // formulas for prime order elliptic curves" // (https://eprint.iacr.org/2015/1060), Algorithm 5. t0 := new(fiat.P256Element).Mul(&p1.x, &p2.x) // t0 ← X1 · X2 t1 := new(fiat.P256Element).Mul(&p1.y, &p2.y) // t1 ← Y1 · Y2 t3 := new(fiat.P256Element).Add(&p2.x, &p2.y) // t3 ← X2 + Y2 t4 := new(fiat.P256Element).Add(&p1.x, &p1.y) // t4 ← X1 + Y1 t3.Mul(t3, t4) // t3 ← t3 · t4 t4.Add(t0, t1) // t4 ← t0 + t1 t3.Sub(t3, t4) // t3 ← t3 − t4 t4.Mul(&p2.y, &p1.z) // t4 ← Y2 · Z1 t4.Add(t4, &p1.y) // t4 ← t4 + Y1 y3 := new(fiat.P256Element).Mul(&p2.x, &p1.z) // Y3 ← X2 · Z1 y3.Add(y3, &p1.x) // Y3 ← Y3 + X1 z3 := new(fiat.P256Element).Mul(p256B(), &p1.z) // Z3 ← b · Z1 x3 := new(fiat.P256Element).Sub(y3, z3) // X3 ← Y3 − Z3 z3.Add(x3, x3) // Z3 ← X3 + X3 x3.Add(x3, z3) // X3 ← X3 + Z3 z3.Sub(t1, x3) // Z3 ← t1 − X3 x3.Add(t1, x3) // X3 ← t1 + X3 y3.Mul(p256B(), y3) // Y3 ← b · Y3 t1.Add(&p1.z, &p1.z) // t1 ← Z1 + Z1 t2 := new(fiat.P256Element).Add(t1, &p1.z) // t2 ← t1 + Z1 y3.Sub(y3, t2) // Y3 ← Y3 − t2 y3.Sub(y3, t0) // Y3 ← Y3 − t0 t1.Add(y3, y3) // t1 ← Y3 + Y3 y3.Add(t1, y3) // Y3 ← t1 + Y3 t1.Add(t0, t0) // t1 ← t0 + t0 t0.Add(t1, t0) // t0 ← t1 + t0 t0.Sub(t0, t2) // t0 ← t0 − t2 t1.Mul(t4, y3) // t1 ← t4 · Y3 t2.Mul(t0, y3) // t2 ← t0 · Y3 y3.Mul(x3, z3) // Y3 ← X3 · Z3 y3.Add(y3, t2) // Y3 ← Y3 + t2 x3.Mul(t3, x3) // X3 ← t3 · X3 x3.Sub(x3, t1) // X3 ← X3 − t1 z3.Mul(t4, z3) // Z3 ← t4 · Z3 t1.Mul(t3, t0) // t1 ← t3 · t0 z3.Add(z3, t1) // Z3 ← Z3 + t1 q.x.Select(&p1.x, x3, infinity) q.y.Select(&p1.y, y3, infinity) q.z.Select(&p1.z, z3, infinity) return q } // Select sets q to p1 if cond == 1, and to p2 if cond == 0. func (q *P256Point) Select(p1, p2 *P256Point, cond int) *P256Point { q.x.Select(&p1.x, &p2.x, cond) q.y.Select(&p1.y, &p2.y, cond) q.z.Select(&p1.z, &p2.z, cond) return q } // p256OrdElement is a P-256 scalar field element in [0, ord(G)-1] in the // Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order. type p256OrdElement [4]uint64 // SetBytes sets s to the big-endian value of x, reducing it as necessary. func (s *p256OrdElement) SetBytes(x []byte) (*p256OrdElement, error) { if len(x) != 32 { return nil, errors.New("invalid scalar length") } s[0] = byteorder.BEUint64(x[24:]) s[1] = byteorder.BEUint64(x[16:]) s[2] = byteorder.BEUint64(x[8:]) s[3] = byteorder.BEUint64(x[:]) // Ensure s is in the range [0, ord(G)-1]. Since 2 * ord(G) > 2²⁵⁶, we can // just conditionally subtract ord(G), keeping the result if it doesn't // underflow. t0, b := bits.Sub64(s[0], 0xf3b9cac2fc632551, 0) t1, b := bits.Sub64(s[1], 0xbce6faada7179e84, b) t2, b := bits.Sub64(s[2], 0xffffffffffffffff, b) t3, b := bits.Sub64(s[3], 0xffffffff00000000, b) tMask := b - 1 // zero if subtraction underflowed s[0] ^= (t0 ^ s[0]) & tMask s[1] ^= (t1 ^ s[1]) & tMask s[2] ^= (t2 ^ s[2]) & tMask s[3] ^= (t3 ^ s[3]) & tMask return s, nil } func (s *p256OrdElement) Bytes() []byte { var out [32]byte byteorder.BEPutUint64(out[24:], s[0]) byteorder.BEPutUint64(out[16:], s[1]) byteorder.BEPutUint64(out[8:], s[2]) byteorder.BEPutUint64(out[:], s[3]) return out[:] } // Rsh returns the 64 least significant bits of x >> n. n must be lower // than 256. The value of n leaks through timing side-channels. func (s *p256OrdElement) Rsh(n int) uint64 { i := n / 64 n = n % 64 res := s[i] >> n // Shift in the more significant limb, if present. if i := i + 1; i < len(s) { res |= s[i] << (64 - n) } return res } // p256Table is a table of the first 16 multiples of a point. Points are stored // at an index offset of -1 so [8]P is at index 7, P is at 0, and [16]P is at 15. // [0]P is the point at infinity and it's not stored. type p256Table [16]P256Point // Select selects the n-th multiple of the table base point into p. It works in // constant time. n must be in [0, 16]. If n is 0, p is set to the identity point. func (table *p256Table) Select(p *P256Point, n uint8) { if n > 16 { panic("nistec: internal error: p256Table called with out-of-bounds value") } p.Set(NewP256Point()) for i := uint8(1); i <= 16; i++ { cond := subtle.ConstantTimeByteEq(i, n) p.Select(&table[i-1], p, cond) } } // Compute populates the table to the first 16 multiples of q. func (table *p256Table) Compute(q *P256Point) *p256Table { table[0].Set(q) for i := 1; i < 16; i += 2 { table[i].Double(&table[i/2]) if i+1 < 16 { table[i+1].Add(&table[i], q) } } return table } func boothW5(in uint64) (uint8, int) { s := ^((in >> 5) - 1) d := (1 << 6) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return uint8(d), int(s & 1) } // ScalarMult sets r = scalar * q, where scalar is a 32-byte big endian value, // and returns r. If scalar is not 32 bytes long, ScalarMult returns an error // and the receiver is unchanged. func (p *P256Point) ScalarMult(q *P256Point, scalar []byte) (*P256Point, error) { s, err := new(p256OrdElement).SetBytes(scalar) if err != nil { return nil, err } // Start scanning the window from the most significant bits. We move by // 5 bits at a time and need to finish at -1, so -1 + 5 * 51 = 254. index := 254 sel, sign := boothW5(s.Rsh(index)) // sign is always zero because the boothW5 input here is at // most two bits long, so the top bit is never set. _ = sign // Neither Select nor Add have exceptions for the point at infinity / // selector zero, so we don't need to check for it here or in the loop. table := new(p256Table).Compute(q) table.Select(p, sel) t := NewP256Point() for index >= 4 { index -= 5 p.Double(p) p.Double(p) p.Double(p) p.Double(p) p.Double(p) if index >= 0 { sel, sign = boothW5(s.Rsh(index) & 0b111111) } else { // Booth encoding considers a virtual zero bit at index -1, // so we shift left the least significant limb. wvalue := (s[0] << 1) & 0b111111 sel, sign = boothW5(wvalue) } table.Select(t, sel) t.Negate(sign) p.Add(p, t) } return p, nil } // Negate sets p to -p, if cond == 1, and to p if cond == 0. func (p *P256Point) Negate(cond int) *P256Point { negY := new(fiat.P256Element) negY.Sub(negY, &p.y) p.y.Select(negY, &p.y, cond) return p } // p256AffineTable is a table of the first 32 multiples of a point. Points are // stored at an index offset of -1 like in p256Table, and [0]P is not stored. type p256AffineTable [32]p256AffinePoint // Select selects the n-th multiple of the table base point into p. It works in // constant time. n can be in [0, 32], but (unlike p256Table.Select) if n is 0, // p is set to an undefined value. func (table *p256AffineTable) Select(p *p256AffinePoint, n uint8) { if n > 32 { panic("nistec: internal error: p256AffineTable.Select called with out-of-bounds value") } for i := uint8(1); i <= 32; i++ { cond := subtle.ConstantTimeByteEq(i, n) p.x.Select(&table[i-1].x, &p.x, cond) p.y.Select(&table[i-1].y, &p.y, cond) } } // p256GeneratorTables is a series of precomputed multiples of G, the canonical // generator. The first p256AffineTable contains multiples of G. The second one // multiples of [2⁶]G, the third one of [2¹²]G, and so on, where each successive // table is the previous table doubled six times. Six is the width of the // sliding window used in ScalarBaseMult, and having each table already // pre-doubled lets us avoid the doublings between windows entirely. This table // aliases into p256PrecomputedEmbed. var p256GeneratorTables *[43]p256AffineTable func init() { p256GeneratorTablesPtr := unsafe.Pointer(&p256PrecomputedEmbed) if cpu.BigEndian { var newTable [43 * 32 * 2 * 4]uint64 for i, x := range (*[43 * 32 * 2 * 4][8]byte)(p256GeneratorTablesPtr) { newTable[i] = byteorder.LEUint64(x[:]) } p256GeneratorTablesPtr = unsafe.Pointer(&newTable) } p256GeneratorTables = (*[43]p256AffineTable)(p256GeneratorTablesPtr) } func boothW6(in uint64) (uint8, int) { s := ^((in >> 6) - 1) d := (1 << 7) - in - 1 d = (d & s) | (in & (^s)) d = (d >> 1) + (d & 1) return uint8(d), int(s & 1) } // ScalarBaseMult sets p = scalar * generator, where scalar is a 32-byte big // endian value, and returns r. If scalar is not 32 bytes long, ScalarBaseMult // returns an error and the receiver is unchanged. func (p *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) { // This function works like ScalarMult above, but the table is fixed and // "pre-doubled" for each iteration, so instead of doubling we move to the // next table at each iteration. s, err := new(p256OrdElement).SetBytes(scalar) if err != nil { return nil, err } // Start scanning the window from the most significant bits. We move by // 6 bits at a time and need to finish at -1, so -1 + 6 * 42 = 251. index := 251 sel, sign := boothW6(s.Rsh(index)) // sign is always zero because the boothW6 input here is at // most five bits long, so the top bit is never set. _ = sign t := &p256AffinePoint{} table := &p256GeneratorTables[(index+1)/6] table.Select(t, sel) // Select's output is undefined if the selector is zero, when it should be // the point at infinity (because infinity can't be represented in affine // coordinates). Here we conditionally set p to the infinity if sel is zero. // In the loop, that's handled by AddAffine. selIsZero := subtle.ConstantTimeByteEq(sel, 0) p.Select(NewP256Point(), t.Projective(), selIsZero) for index >= 5 { index -= 6 if index >= 0 { sel, sign = boothW6(s.Rsh(index) & 0b1111111) } else { // Booth encoding considers a virtual zero bit at index -1, // so we shift left the least significant limb. wvalue := (s[0] << 1) & 0b1111111 sel, sign = boothW6(wvalue) } table := &p256GeneratorTables[(index+1)/6] table.Select(t, sel) t.Negate(sign) selIsZero := subtle.ConstantTimeByteEq(sel, 0) p.AddAffine(p, t, selIsZero) } return p, nil } // Negate sets p to -p, if cond == 1, and to p if cond == 0. func (p *p256AffinePoint) Negate(cond int) *p256AffinePoint { negY := new(fiat.P256Element) negY.Sub(negY, &p.y) p.y.Select(negY, &p.y, cond) return p } // p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns // false and e is unchanged. e and x can overlap. func p256Sqrt(e, x *fiat.P256Element) (isSquare bool) { t0, t1 := new(fiat.P256Element), new(fiat.P256Element) // Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate. // // The sequence of 7 multiplications and 253 squarings is derived from the // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. // // _10 = 2*1 // _11 = 1 + _10 // _1100 = _11 << 2 // _1111 = _11 + _1100 // _11110000 = _1111 << 4 // _11111111 = _1111 + _11110000 // x16 = _11111111 << 8 + _11111111 // x32 = x16 << 16 + x16 // return ((x32 << 32 + 1) << 96 + 1) << 94 // p256Square(t0, x, 1) t0.Mul(x, t0) p256Square(t1, t0, 2) t0.Mul(t0, t1) p256Square(t1, t0, 4) t0.Mul(t0, t1) p256Square(t1, t0, 8) t0.Mul(t0, t1) p256Square(t1, t0, 16) t0.Mul(t0, t1) p256Square(t0, t0, 32) t0.Mul(x, t0) p256Square(t0, t0, 96) t0.Mul(x, t0) p256Square(t0, t0, 94) // Check if the candidate t0 is indeed a square root of x. t1.Square(t0) if t1.Equal(x) != 1 { return false } e.Set(t0) return true } // p256Square sets e to the square of x, repeated n times > 1. func p256Square(e, x *fiat.P256Element, n int) { e.Square(x) for i := 1; i < n; i++ { e.Square(e) } }