Source file src/go/types/named.go

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  // Source: ../../cmd/compile/internal/types2/named.go
     3  
     4  // Copyright 2011 The Go Authors. All rights reserved.
     5  // Use of this source code is governed by a BSD-style
     6  // license that can be found in the LICENSE file.
     7  
     8  package types
     9  
    10  import (
    11  	"go/token"
    12  	"strings"
    13  	"sync"
    14  	"sync/atomic"
    15  )
    16  
    17  // Type-checking Named types is subtle, because they may be recursively
    18  // defined, and because their full details may be spread across multiple
    19  // declarations (via methods). For this reason they are type-checked lazily,
    20  // to avoid information being accessed before it is complete.
    21  //
    22  // Conceptually, it is helpful to think of named types as having two distinct
    23  // sets of information:
    24  //  - "LHS" information, defining their identity: Obj() and TypeArgs()
    25  //  - "RHS" information, defining their details: TypeParams(), Underlying(),
    26  //    and methods.
    27  //
    28  // In this taxonomy, LHS information is available immediately, but RHS
    29  // information is lazy. Specifically, a named type N may be constructed in any
    30  // of the following ways:
    31  //  1. type-checked from the source
    32  //  2. loaded eagerly from export data
    33  //  3. loaded lazily from export data (when using unified IR)
    34  //  4. instantiated from a generic type
    35  //
    36  // In cases 1, 3, and 4, it is possible that the underlying type or methods of
    37  // N may not be immediately available.
    38  //  - During type-checking, we allocate N before type-checking its underlying
    39  //    type or methods, so that we may resolve recursive references.
    40  //  - When loading from export data, we may load its methods and underlying
    41  //    type lazily using a provided load function.
    42  //  - After instantiating, we lazily expand the underlying type and methods
    43  //    (note that instances may be created while still in the process of
    44  //    type-checking the original type declaration).
    45  //
    46  // In cases 3 and 4 this lazy construction may also occur concurrently, due to
    47  // concurrent use of the type checker API (after type checking or importing has
    48  // finished). It is critical that we keep track of state, so that Named types
    49  // are constructed exactly once and so that we do not access their details too
    50  // soon.
    51  //
    52  // We achieve this by tracking state with an atomic state variable, and
    53  // guarding potentially concurrent calculations with a mutex. At any point in
    54  // time this state variable determines which data on N may be accessed. As
    55  // state monotonically progresses, any data available at state M may be
    56  // accessed without acquiring the mutex at state N, provided N >= M.
    57  //
    58  // GLOSSARY: Here are a few terms used in this file to describe Named types:
    59  //  - We say that a Named type is "instantiated" if it has been constructed by
    60  //    instantiating a generic named type with type arguments.
    61  //  - We say that a Named type is "declared" if it corresponds to a type
    62  //    declaration in the source. Instantiated named types correspond to a type
    63  //    instantiation in the source, not a declaration. But their Origin type is
    64  //    a declared type.
    65  //  - We say that a Named type is "resolved" if its RHS information has been
    66  //    loaded or fully type-checked. For Named types constructed from export
    67  //    data, this may involve invoking a loader function to extract information
    68  //    from export data. For instantiated named types this involves reading
    69  //    information from their origin.
    70  //  - We say that a Named type is "expanded" if it is an instantiated type and
    71  //    type parameters in its underlying type and methods have been substituted
    72  //    with the type arguments from the instantiation. A type may be partially
    73  //    expanded if some but not all of these details have been substituted.
    74  //    Similarly, we refer to these individual details (underlying type or
    75  //    method) as being "expanded".
    76  //  - When all information is known for a named type, we say it is "complete".
    77  //
    78  // Some invariants to keep in mind: each declared Named type has a single
    79  // corresponding object, and that object's type is the (possibly generic) Named
    80  // type. Declared Named types are identical if and only if their pointers are
    81  // identical. On the other hand, multiple instantiated Named types may be
    82  // identical even though their pointers are not identical. One has to use
    83  // Identical to compare them. For instantiated named types, their obj is a
    84  // synthetic placeholder that records their position of the corresponding
    85  // instantiation in the source (if they were constructed during type checking).
    86  //
    87  // To prevent infinite expansion of named instances that are created outside of
    88  // type-checking, instances share a Context with other instances created during
    89  // their expansion. Via the pidgeonhole principle, this guarantees that in the
    90  // presence of a cycle of named types, expansion will eventually find an
    91  // existing instance in the Context and short-circuit the expansion.
    92  //
    93  // Once an instance is complete, we can nil out this shared Context to unpin
    94  // memory, though this Context may still be held by other incomplete instances
    95  // in its "lineage".
    96  
    97  // A Named represents a named (defined) type.
    98  type Named struct {
    99  	check *Checker  // non-nil during type-checking; nil otherwise
   100  	obj   *TypeName // corresponding declared object for declared types; see above for instantiated types
   101  
   102  	// fromRHS holds the type (on RHS of declaration) this *Named type is derived
   103  	// from (for cycle reporting). Only used by validType, and therefore does not
   104  	// require synchronization.
   105  	fromRHS Type
   106  
   107  	// information for instantiated types; nil otherwise
   108  	inst *instance
   109  
   110  	mu         sync.Mutex     // guards all fields below
   111  	state_     uint32         // the current state of this type; must only be accessed atomically
   112  	underlying Type           // possibly a *Named during setup; never a *Named once set up completely
   113  	tparams    *TypeParamList // type parameters, or nil
   114  
   115  	// methods declared for this type (not the method set of this type)
   116  	// Signatures are type-checked lazily.
   117  	// For non-instantiated types, this is a fully populated list of methods. For
   118  	// instantiated types, methods are individually expanded when they are first
   119  	// accessed.
   120  	methods []*Func
   121  
   122  	// loader may be provided to lazily load type parameters, underlying type, and methods.
   123  	loader func(*Named) (tparams []*TypeParam, underlying Type, methods []*Func)
   124  }
   125  
   126  // instance holds information that is only necessary for instantiated named
   127  // types.
   128  type instance struct {
   129  	orig            *Named    // original, uninstantiated type
   130  	targs           *TypeList // type arguments
   131  	expandedMethods int       // number of expanded methods; expandedMethods <= len(orig.methods)
   132  	ctxt            *Context  // local Context; set to nil after full expansion
   133  }
   134  
   135  // namedState represents the possible states that a named type may assume.
   136  type namedState uint32
   137  
   138  const (
   139  	unresolved namedState = iota // tparams, underlying type and methods might be unavailable
   140  	resolved                     // resolve has run; methods might be incomplete (for instances)
   141  	complete                     // all data is known
   142  )
   143  
   144  // NewNamed returns a new named type for the given type name, underlying type, and associated methods.
   145  // If the given type name obj doesn't have a type yet, its type is set to the returned named type.
   146  // The underlying type must not be a *Named.
   147  func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
   148  	if asNamed(underlying) != nil {
   149  		panic("underlying type must not be *Named")
   150  	}
   151  	return (*Checker)(nil).newNamed(obj, underlying, methods)
   152  }
   153  
   154  // resolve resolves the type parameters, methods, and underlying type of n.
   155  // This information may be loaded from a provided loader function, or computed
   156  // from an origin type (in the case of instances).
   157  //
   158  // After resolution, the type parameters, methods, and underlying type of n are
   159  // accessible; but if n is an instantiated type, its methods may still be
   160  // unexpanded.
   161  func (n *Named) resolve() *Named {
   162  	if n.state() >= resolved { // avoid locking below
   163  		return n
   164  	}
   165  
   166  	// TODO(rfindley): if n.check is non-nil we can avoid locking here, since
   167  	// type-checking is not concurrent. Evaluate if this is worth doing.
   168  	n.mu.Lock()
   169  	defer n.mu.Unlock()
   170  
   171  	if n.state() >= resolved {
   172  		return n
   173  	}
   174  
   175  	if n.inst != nil {
   176  		assert(n.underlying == nil) // n is an unresolved instance
   177  		assert(n.loader == nil)     // instances are created by instantiation, in which case n.loader is nil
   178  
   179  		orig := n.inst.orig
   180  		orig.resolve()
   181  		underlying := n.expandUnderlying()
   182  
   183  		n.tparams = orig.tparams
   184  		n.underlying = underlying
   185  		n.fromRHS = orig.fromRHS // for cycle detection
   186  
   187  		if len(orig.methods) == 0 {
   188  			n.setState(complete) // nothing further to do
   189  			n.inst.ctxt = nil
   190  		} else {
   191  			n.setState(resolved)
   192  		}
   193  		return n
   194  	}
   195  
   196  	// TODO(mdempsky): Since we're passing n to the loader anyway
   197  	// (necessary because types2 expects the receiver type for methods
   198  	// on defined interface types to be the Named rather than the
   199  	// underlying Interface), maybe it should just handle calling
   200  	// SetTypeParams, SetUnderlying, and AddMethod instead?  Those
   201  	// methods would need to support reentrant calls though. It would
   202  	// also make the API more future-proof towards further extensions.
   203  	if n.loader != nil {
   204  		assert(n.underlying == nil)
   205  		assert(n.TypeArgs().Len() == 0) // instances are created by instantiation, in which case n.loader is nil
   206  
   207  		tparams, underlying, methods := n.loader(n)
   208  
   209  		n.tparams = bindTParams(tparams)
   210  		n.underlying = underlying
   211  		n.fromRHS = underlying // for cycle detection
   212  		n.methods = methods
   213  		n.loader = nil
   214  	}
   215  
   216  	n.setState(complete)
   217  	return n
   218  }
   219  
   220  // state atomically accesses the current state of the receiver.
   221  func (n *Named) state() namedState {
   222  	return namedState(atomic.LoadUint32(&n.state_))
   223  }
   224  
   225  // setState atomically stores the given state for n.
   226  // Must only be called while holding n.mu.
   227  func (n *Named) setState(state namedState) {
   228  	atomic.StoreUint32(&n.state_, uint32(state))
   229  }
   230  
   231  // newNamed is like NewNamed but with a *Checker receiver.
   232  func (check *Checker) newNamed(obj *TypeName, underlying Type, methods []*Func) *Named {
   233  	typ := &Named{check: check, obj: obj, fromRHS: underlying, underlying: underlying, methods: methods}
   234  	if obj.typ == nil {
   235  		obj.typ = typ
   236  	}
   237  	// Ensure that typ is always sanity-checked.
   238  	if check != nil {
   239  		check.needsCleanup(typ)
   240  	}
   241  	return typ
   242  }
   243  
   244  // newNamedInstance creates a new named instance for the given origin and type
   245  // arguments, recording pos as the position of its synthetic object (for error
   246  // reporting).
   247  //
   248  // If set, expanding is the named type instance currently being expanded, that
   249  // led to the creation of this instance.
   250  func (check *Checker) newNamedInstance(pos token.Pos, orig *Named, targs []Type, expanding *Named) *Named {
   251  	assert(len(targs) > 0)
   252  
   253  	obj := NewTypeName(pos, orig.obj.pkg, orig.obj.name, nil)
   254  	inst := &instance{orig: orig, targs: newTypeList(targs)}
   255  
   256  	// Only pass the expanding context to the new instance if their packages
   257  	// match. Since type reference cycles are only possible within a single
   258  	// package, this is sufficient for the purposes of short-circuiting cycles.
   259  	// Avoiding passing the context in other cases prevents unnecessary coupling
   260  	// of types across packages.
   261  	if expanding != nil && expanding.Obj().pkg == obj.pkg {
   262  		inst.ctxt = expanding.inst.ctxt
   263  	}
   264  	typ := &Named{check: check, obj: obj, inst: inst}
   265  	obj.typ = typ
   266  	// Ensure that typ is always sanity-checked.
   267  	if check != nil {
   268  		check.needsCleanup(typ)
   269  	}
   270  	return typ
   271  }
   272  
   273  func (t *Named) cleanup() {
   274  	assert(t.inst == nil || t.inst.orig.inst == nil)
   275  	// Ensure that every defined type created in the course of type-checking has
   276  	// either non-*Named underlying type, or is unexpanded.
   277  	//
   278  	// This guarantees that we don't leak any types whose underlying type is
   279  	// *Named, because any unexpanded instances will lazily compute their
   280  	// underlying type by substituting in the underlying type of their origin.
   281  	// The origin must have either been imported or type-checked and expanded
   282  	// here, and in either case its underlying type will be fully expanded.
   283  	switch t.underlying.(type) {
   284  	case nil:
   285  		if t.TypeArgs().Len() == 0 {
   286  			panic("nil underlying")
   287  		}
   288  	case *Named:
   289  		t.under() // t.under may add entries to check.cleaners
   290  	}
   291  	t.check = nil
   292  }
   293  
   294  // Obj returns the type name for the declaration defining the named type t. For
   295  // instantiated types, this is same as the type name of the origin type.
   296  func (t *Named) Obj() *TypeName {
   297  	if t.inst == nil {
   298  		return t.obj
   299  	}
   300  	return t.inst.orig.obj
   301  }
   302  
   303  // Origin returns the generic type from which the named type t is
   304  // instantiated. If t is not an instantiated type, the result is t.
   305  func (t *Named) Origin() *Named {
   306  	if t.inst == nil {
   307  		return t
   308  	}
   309  	return t.inst.orig
   310  }
   311  
   312  // TypeParams returns the type parameters of the named type t, or nil.
   313  // The result is non-nil for an (originally) generic type even if it is instantiated.
   314  func (t *Named) TypeParams() *TypeParamList { return t.resolve().tparams }
   315  
   316  // SetTypeParams sets the type parameters of the named type t.
   317  // t must not have type arguments.
   318  func (t *Named) SetTypeParams(tparams []*TypeParam) {
   319  	assert(t.inst == nil)
   320  	t.resolve().tparams = bindTParams(tparams)
   321  }
   322  
   323  // TypeArgs returns the type arguments used to instantiate the named type t.
   324  func (t *Named) TypeArgs() *TypeList {
   325  	if t.inst == nil {
   326  		return nil
   327  	}
   328  	return t.inst.targs
   329  }
   330  
   331  // NumMethods returns the number of explicit methods defined for t.
   332  func (t *Named) NumMethods() int {
   333  	return len(t.Origin().resolve().methods)
   334  }
   335  
   336  // Method returns the i'th method of named type t for 0 <= i < t.NumMethods().
   337  //
   338  // For an ordinary or instantiated type t, the receiver base type of this
   339  // method is the named type t. For an uninstantiated generic type t, each
   340  // method receiver is instantiated with its receiver type parameters.
   341  //
   342  // Methods are numbered deterministically: given the same list of source files
   343  // presented to the type checker, or the same sequence of NewMethod and AddMethod
   344  // calls, the mapping from method index to corresponding method remains the same.
   345  // But the specific ordering is not specified and must not be relied on as it may
   346  // change in the future.
   347  func (t *Named) Method(i int) *Func {
   348  	t.resolve()
   349  
   350  	if t.state() >= complete {
   351  		return t.methods[i]
   352  	}
   353  
   354  	assert(t.inst != nil) // only instances should have incomplete methods
   355  	orig := t.inst.orig
   356  
   357  	t.mu.Lock()
   358  	defer t.mu.Unlock()
   359  
   360  	if len(t.methods) != len(orig.methods) {
   361  		assert(len(t.methods) == 0)
   362  		t.methods = make([]*Func, len(orig.methods))
   363  	}
   364  
   365  	if t.methods[i] == nil {
   366  		assert(t.inst.ctxt != nil) // we should still have a context remaining from the resolution phase
   367  		t.methods[i] = t.expandMethod(i)
   368  		t.inst.expandedMethods++
   369  
   370  		// Check if we've created all methods at this point. If we have, mark the
   371  		// type as fully expanded.
   372  		if t.inst.expandedMethods == len(orig.methods) {
   373  			t.setState(complete)
   374  			t.inst.ctxt = nil // no need for a context anymore
   375  		}
   376  	}
   377  
   378  	return t.methods[i]
   379  }
   380  
   381  // expandMethod substitutes type arguments in the i'th method for an
   382  // instantiated receiver.
   383  func (t *Named) expandMethod(i int) *Func {
   384  	// t.orig.methods is not lazy. origm is the method instantiated with its
   385  	// receiver type parameters (the "origin" method).
   386  	origm := t.inst.orig.Method(i)
   387  	assert(origm != nil)
   388  
   389  	check := t.check
   390  	// Ensure that the original method is type-checked.
   391  	if check != nil {
   392  		check.objDecl(origm, nil)
   393  	}
   394  
   395  	origSig := origm.typ.(*Signature)
   396  	rbase, _ := deref(origSig.Recv().Type())
   397  
   398  	// If rbase is t, then origm is already the instantiated method we're looking
   399  	// for. In this case, we return origm to preserve the invariant that
   400  	// traversing Method->Receiver Type->Method should get back to the same
   401  	// method.
   402  	//
   403  	// This occurs if t is instantiated with the receiver type parameters, as in
   404  	// the use of m in func (r T[_]) m() { r.m() }.
   405  	if rbase == t {
   406  		return origm
   407  	}
   408  
   409  	sig := origSig
   410  	// We can only substitute if we have a correspondence between type arguments
   411  	// and type parameters. This check is necessary in the presence of invalid
   412  	// code.
   413  	if origSig.RecvTypeParams().Len() == t.inst.targs.Len() {
   414  		smap := makeSubstMap(origSig.RecvTypeParams().list(), t.inst.targs.list())
   415  		var ctxt *Context
   416  		if check != nil {
   417  			ctxt = check.context()
   418  		}
   419  		sig = check.subst(origm.pos, origSig, smap, t, ctxt).(*Signature)
   420  	}
   421  
   422  	if sig == origSig {
   423  		// No substitution occurred, but we still need to create a new signature to
   424  		// hold the instantiated receiver.
   425  		copy := *origSig
   426  		sig = &copy
   427  	}
   428  
   429  	var rtyp Type
   430  	if origm.hasPtrRecv() {
   431  		rtyp = NewPointer(t)
   432  	} else {
   433  		rtyp = t
   434  	}
   435  
   436  	sig.recv = substVar(origSig.recv, rtyp)
   437  	return substFunc(origm, sig)
   438  }
   439  
   440  // SetUnderlying sets the underlying type and marks t as complete.
   441  // t must not have type arguments.
   442  func (t *Named) SetUnderlying(underlying Type) {
   443  	assert(t.inst == nil)
   444  	if underlying == nil {
   445  		panic("underlying type must not be nil")
   446  	}
   447  	if asNamed(underlying) != nil {
   448  		panic("underlying type must not be *Named")
   449  	}
   450  	t.resolve().underlying = underlying
   451  	if t.fromRHS == nil {
   452  		t.fromRHS = underlying // for cycle detection
   453  	}
   454  }
   455  
   456  // AddMethod adds method m unless it is already in the method list.
   457  // The method must be in the same package as t, and t must not have
   458  // type arguments.
   459  func (t *Named) AddMethod(m *Func) {
   460  	assert(samePkg(t.obj.pkg, m.pkg))
   461  	assert(t.inst == nil)
   462  	t.resolve()
   463  	if t.methodIndex(m.name, false) < 0 {
   464  		t.methods = append(t.methods, m)
   465  	}
   466  }
   467  
   468  // methodIndex returns the index of the method with the given name.
   469  // If foldCase is set, capitalization in the name is ignored.
   470  // The result is negative if no such method exists.
   471  func (t *Named) methodIndex(name string, foldCase bool) int {
   472  	if name == "_" {
   473  		return -1
   474  	}
   475  	if foldCase {
   476  		for i, m := range t.methods {
   477  			if strings.EqualFold(m.name, name) {
   478  				return i
   479  			}
   480  		}
   481  	} else {
   482  		for i, m := range t.methods {
   483  			if m.name == name {
   484  				return i
   485  			}
   486  		}
   487  	}
   488  	return -1
   489  }
   490  
   491  // TODO(gri) Investigate if Unalias can be moved to where underlying is set.
   492  func (t *Named) Underlying() Type { return Unalias(t.resolve().underlying) }
   493  func (t *Named) String() string   { return TypeString(t, nil) }
   494  
   495  // ----------------------------------------------------------------------------
   496  // Implementation
   497  //
   498  // TODO(rfindley): reorganize the loading and expansion methods under this
   499  // heading.
   500  
   501  // under returns the expanded underlying type of n0; possibly by following
   502  // forward chains of named types. If an underlying type is found, resolve
   503  // the chain by setting the underlying type for each defined type in the
   504  // chain before returning it. If no underlying type is found or a cycle
   505  // is detected, the result is Typ[Invalid]. If a cycle is detected and
   506  // n0.check != nil, the cycle is reported.
   507  //
   508  // This is necessary because the underlying type of named may be itself a
   509  // named type that is incomplete:
   510  //
   511  //	type (
   512  //		A B
   513  //		B *C
   514  //		C A
   515  //	)
   516  //
   517  // The type of C is the (named) type of A which is incomplete,
   518  // and which has as its underlying type the named type B.
   519  func (n0 *Named) under() Type {
   520  	u := n0.Underlying()
   521  
   522  	// If the underlying type of a defined type is not a defined
   523  	// (incl. instance) type, then that is the desired underlying
   524  	// type.
   525  	var n1 *Named
   526  	switch u1 := u.(type) {
   527  	case nil:
   528  		// After expansion via Underlying(), we should never encounter a nil
   529  		// underlying.
   530  		panic("nil underlying")
   531  	default:
   532  		// common case
   533  		return u
   534  	case *Named:
   535  		// handled below
   536  		n1 = u1
   537  	}
   538  
   539  	if n0.check == nil {
   540  		panic("Named.check == nil but type is incomplete")
   541  	}
   542  
   543  	// Invariant: after this point n0 as well as any named types in its
   544  	// underlying chain should be set up when this function exits.
   545  	check := n0.check
   546  	n := n0
   547  
   548  	seen := make(map[*Named]int) // types that need their underlying type resolved
   549  	var path []Object            // objects encountered, for cycle reporting
   550  
   551  loop:
   552  	for {
   553  		seen[n] = len(seen)
   554  		path = append(path, n.obj)
   555  		n = n1
   556  		if i, ok := seen[n]; ok {
   557  			// cycle
   558  			check.cycleError(path[i:], firstInSrc(path[i:]))
   559  			u = Typ[Invalid]
   560  			break
   561  		}
   562  		u = n.Underlying()
   563  		switch u1 := u.(type) {
   564  		case nil:
   565  			u = Typ[Invalid]
   566  			break loop
   567  		default:
   568  			break loop
   569  		case *Named:
   570  			// Continue collecting *Named types in the chain.
   571  			n1 = u1
   572  		}
   573  	}
   574  
   575  	for n := range seen {
   576  		// We should never have to update the underlying type of an imported type;
   577  		// those underlying types should have been resolved during the import.
   578  		// Also, doing so would lead to a race condition (was go.dev/issue/31749).
   579  		// Do this check always, not just in debug mode (it's cheap).
   580  		if n.obj.pkg != check.pkg {
   581  			panic("imported type with unresolved underlying type")
   582  		}
   583  		n.underlying = u
   584  	}
   585  
   586  	return u
   587  }
   588  
   589  func (n *Named) lookupMethod(pkg *Package, name string, foldCase bool) (int, *Func) {
   590  	n.resolve()
   591  	if samePkg(n.obj.pkg, pkg) || isExported(name) || foldCase {
   592  		// If n is an instance, we may not have yet instantiated all of its methods.
   593  		// Look up the method index in orig, and only instantiate method at the
   594  		// matching index (if any).
   595  		if i := n.Origin().methodIndex(name, foldCase); i >= 0 {
   596  			// For instances, m.Method(i) will be different from the orig method.
   597  			return i, n.Method(i)
   598  		}
   599  	}
   600  	return -1, nil
   601  }
   602  
   603  // context returns the type-checker context.
   604  func (check *Checker) context() *Context {
   605  	if check.ctxt == nil {
   606  		check.ctxt = NewContext()
   607  	}
   608  	return check.ctxt
   609  }
   610  
   611  // expandUnderlying substitutes type arguments in the underlying type n.orig,
   612  // returning the result. Returns Typ[Invalid] if there was an error.
   613  func (n *Named) expandUnderlying() Type {
   614  	check := n.check
   615  	if check != nil && check.conf._Trace {
   616  		check.trace(n.obj.pos, "-- Named.expandUnderlying %s", n)
   617  		check.indent++
   618  		defer func() {
   619  			check.indent--
   620  			check.trace(n.obj.pos, "=> %s (tparams = %s, under = %s)", n, n.tparams.list(), n.underlying)
   621  		}()
   622  	}
   623  
   624  	assert(n.inst.orig.underlying != nil)
   625  	if n.inst.ctxt == nil {
   626  		n.inst.ctxt = NewContext()
   627  	}
   628  
   629  	orig := n.inst.orig
   630  	targs := n.inst.targs
   631  
   632  	if asNamed(orig.underlying) != nil {
   633  		// We should only get a Named underlying type here during type checking
   634  		// (for example, in recursive type declarations).
   635  		assert(check != nil)
   636  	}
   637  
   638  	if orig.tparams.Len() != targs.Len() {
   639  		// Mismatching arg and tparam length may be checked elsewhere.
   640  		return Typ[Invalid]
   641  	}
   642  
   643  	// Ensure that an instance is recorded before substituting, so that we
   644  	// resolve n for any recursive references.
   645  	h := n.inst.ctxt.instanceHash(orig, targs.list())
   646  	n2 := n.inst.ctxt.update(h, orig, n.TypeArgs().list(), n)
   647  	assert(n == n2)
   648  
   649  	smap := makeSubstMap(orig.tparams.list(), targs.list())
   650  	var ctxt *Context
   651  	if check != nil {
   652  		ctxt = check.context()
   653  	}
   654  	underlying := n.check.subst(n.obj.pos, orig.underlying, smap, n, ctxt)
   655  	// If the underlying type of n is an interface, we need to set the receiver of
   656  	// its methods accurately -- we set the receiver of interface methods on
   657  	// the RHS of a type declaration to the defined type.
   658  	if iface, _ := underlying.(*Interface); iface != nil {
   659  		if methods, copied := replaceRecvType(iface.methods, orig, n); copied {
   660  			// If the underlying type doesn't actually use type parameters, it's
   661  			// possible that it wasn't substituted. In this case we need to create
   662  			// a new *Interface before modifying receivers.
   663  			if iface == orig.underlying {
   664  				old := iface
   665  				iface = check.newInterface()
   666  				iface.embeddeds = old.embeddeds
   667  				assert(old.complete) // otherwise we are copying incomplete data
   668  				iface.complete = old.complete
   669  				iface.implicit = old.implicit // should be false but be conservative
   670  				underlying = iface
   671  			}
   672  			iface.methods = methods
   673  			iface.tset = nil // recompute type set with new methods
   674  
   675  			// If check != nil, check.newInterface will have saved the interface for later completion.
   676  			if check == nil { // golang/go#61561: all newly created interfaces must be fully evaluated
   677  				iface.typeSet()
   678  			}
   679  		}
   680  	}
   681  
   682  	return underlying
   683  }
   684  
   685  // safeUnderlying returns the underlying type of typ without expanding
   686  // instances, to avoid infinite recursion.
   687  //
   688  // TODO(rfindley): eliminate this function or give it a better name.
   689  func safeUnderlying(typ Type) Type {
   690  	if t := asNamed(typ); t != nil {
   691  		return t.underlying
   692  	}
   693  	return typ.Underlying()
   694  }
   695  

View as plain text