Source file src/go/types/unify.go

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  // Source: ../../cmd/compile/internal/types2/unify.go
     3  
     4  // Copyright 2020 The Go Authors. All rights reserved.
     5  // Use of this source code is governed by a BSD-style
     6  // license that can be found in the LICENSE file.
     7  
     8  // This file implements type unification.
     9  //
    10  // Type unification attempts to make two types x and y structurally
    11  // equivalent by determining the types for a given list of (bound)
    12  // type parameters which may occur within x and y. If x and y are
    13  // structurally different (say []T vs chan T), or conflicting
    14  // types are determined for type parameters, unification fails.
    15  // If unification succeeds, as a side-effect, the types of the
    16  // bound type parameters may be determined.
    17  //
    18  // Unification typically requires multiple calls u.unify(x, y) to
    19  // a given unifier u, with various combinations of types x and y.
    20  // In each call, additional type parameter types may be determined
    21  // as a side effect and recorded in u.
    22  // If a call fails (returns false), unification fails.
    23  //
    24  // In the unification context, structural equivalence of two types
    25  // ignores the difference between a defined type and its underlying
    26  // type if one type is a defined type and the other one is not.
    27  // It also ignores the difference between an (external, unbound)
    28  // type parameter and its core type.
    29  // If two types are not structurally equivalent, they cannot be Go
    30  // identical types. On the other hand, if they are structurally
    31  // equivalent, they may be Go identical or at least assignable, or
    32  // they may be in the type set of a constraint.
    33  // Whether they indeed are identical or assignable is determined
    34  // upon instantiation and function argument passing.
    35  
    36  package types
    37  
    38  import (
    39  	"bytes"
    40  	"fmt"
    41  	"sort"
    42  	"strings"
    43  )
    44  
    45  const (
    46  	// Upper limit for recursion depth. Used to catch infinite recursions
    47  	// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
    48  	unificationDepthLimit = 50
    49  
    50  	// Whether to panic when unificationDepthLimit is reached.
    51  	// If disabled, a recursion depth overflow results in a (quiet)
    52  	// unification failure.
    53  	panicAtUnificationDepthLimit = true
    54  
    55  	// If enableCoreTypeUnification is set, unification will consider
    56  	// the core types, if any, of non-local (unbound) type parameters.
    57  	enableCoreTypeUnification = true
    58  
    59  	// If traceInference is set, unification will print a trace of its operation.
    60  	// Interpretation of trace:
    61  	//   x ≡ y    attempt to unify types x and y
    62  	//   p ➞ y    type parameter p is set to type y (p is inferred to be y)
    63  	//   p ⇄ q    type parameters p and q match (p is inferred to be q and vice versa)
    64  	//   x ≢ y    types x and y cannot be unified
    65  	//   [p, q, ...] ➞ [x, y, ...]    mapping from type parameters to types
    66  	traceInference = false
    67  )
    68  
    69  // A unifier maintains a list of type parameters and
    70  // corresponding types inferred for each type parameter.
    71  // A unifier is created by calling newUnifier.
    72  type unifier struct {
    73  	// handles maps each type parameter to its inferred type through
    74  	// an indirection *Type called (inferred type) "handle".
    75  	// Initially, each type parameter has its own, separate handle,
    76  	// with a nil (i.e., not yet inferred) type.
    77  	// After a type parameter P is unified with a type parameter Q,
    78  	// P and Q share the same handle (and thus type). This ensures
    79  	// that inferring the type for a given type parameter P will
    80  	// automatically infer the same type for all other parameters
    81  	// unified (joined) with P.
    82  	handles                  map[*TypeParam]*Type
    83  	depth                    int  // recursion depth during unification
    84  	enableInterfaceInference bool // use shared methods for better inference
    85  }
    86  
    87  // newUnifier returns a new unifier initialized with the given type parameter
    88  // and corresponding type argument lists. The type argument list may be shorter
    89  // than the type parameter list, and it may contain nil types. Matching type
    90  // parameters and arguments must have the same index.
    91  func newUnifier(tparams []*TypeParam, targs []Type, enableInterfaceInference bool) *unifier {
    92  	assert(len(tparams) >= len(targs))
    93  	handles := make(map[*TypeParam]*Type, len(tparams))
    94  	// Allocate all handles up-front: in a correct program, all type parameters
    95  	// must be resolved and thus eventually will get a handle.
    96  	// Also, sharing of handles caused by unified type parameters is rare and
    97  	// so it's ok to not optimize for that case (and delay handle allocation).
    98  	for i, x := range tparams {
    99  		var t Type
   100  		if i < len(targs) {
   101  			t = targs[i]
   102  		}
   103  		handles[x] = &t
   104  	}
   105  	return &unifier{handles, 0, enableInterfaceInference}
   106  }
   107  
   108  // unifyMode controls the behavior of the unifier.
   109  type unifyMode uint
   110  
   111  const (
   112  	// If assign is set, we are unifying types involved in an assignment:
   113  	// they may match inexactly at the top, but element types must match
   114  	// exactly.
   115  	assign unifyMode = 1 << iota
   116  
   117  	// If exact is set, types unify if they are identical (or can be
   118  	// made identical with suitable arguments for type parameters).
   119  	// Otherwise, a named type and a type literal unify if their
   120  	// underlying types unify, channel directions are ignored, and
   121  	// if there is an interface, the other type must implement the
   122  	// interface.
   123  	exact
   124  )
   125  
   126  func (m unifyMode) String() string {
   127  	switch m {
   128  	case 0:
   129  		return "inexact"
   130  	case assign:
   131  		return "assign"
   132  	case exact:
   133  		return "exact"
   134  	case assign | exact:
   135  		return "assign, exact"
   136  	}
   137  	return fmt.Sprintf("mode %d", m)
   138  }
   139  
   140  // unify attempts to unify x and y and reports whether it succeeded.
   141  // As a side-effect, types may be inferred for type parameters.
   142  // The mode parameter controls how types are compared.
   143  func (u *unifier) unify(x, y Type, mode unifyMode) bool {
   144  	return u.nify(x, y, mode, nil)
   145  }
   146  
   147  func (u *unifier) tracef(format string, args ...interface{}) {
   148  	fmt.Println(strings.Repeat(".  ", u.depth) + sprintf(nil, nil, true, format, args...))
   149  }
   150  
   151  // String returns a string representation of the current mapping
   152  // from type parameters to types.
   153  func (u *unifier) String() string {
   154  	// sort type parameters for reproducible strings
   155  	tparams := make(typeParamsById, len(u.handles))
   156  	i := 0
   157  	for tpar := range u.handles {
   158  		tparams[i] = tpar
   159  		i++
   160  	}
   161  	sort.Sort(tparams)
   162  
   163  	var buf bytes.Buffer
   164  	w := newTypeWriter(&buf, nil)
   165  	w.byte('[')
   166  	for i, x := range tparams {
   167  		if i > 0 {
   168  			w.string(", ")
   169  		}
   170  		w.typ(x)
   171  		w.string(": ")
   172  		w.typ(u.at(x))
   173  	}
   174  	w.byte(']')
   175  	return buf.String()
   176  }
   177  
   178  type typeParamsById []*TypeParam
   179  
   180  func (s typeParamsById) Len() int           { return len(s) }
   181  func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id }
   182  func (s typeParamsById) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   183  
   184  // join unifies the given type parameters x and y.
   185  // If both type parameters already have a type associated with them
   186  // and they are not joined, join fails and returns false.
   187  func (u *unifier) join(x, y *TypeParam) bool {
   188  	if traceInference {
   189  		u.tracef("%s ⇄ %s", x, y)
   190  	}
   191  	switch hx, hy := u.handles[x], u.handles[y]; {
   192  	case hx == hy:
   193  		// Both type parameters already share the same handle. Nothing to do.
   194  	case *hx != nil && *hy != nil:
   195  		// Both type parameters have (possibly different) inferred types. Cannot join.
   196  		return false
   197  	case *hx != nil:
   198  		// Only type parameter x has an inferred type. Use handle of x.
   199  		u.setHandle(y, hx)
   200  	// This case is treated like the default case.
   201  	// case *hy != nil:
   202  	// 	// Only type parameter y has an inferred type. Use handle of y.
   203  	//	u.setHandle(x, hy)
   204  	default:
   205  		// Neither type parameter has an inferred type. Use handle of y.
   206  		u.setHandle(x, hy)
   207  	}
   208  	return true
   209  }
   210  
   211  // asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
   212  // Otherwise, the result is nil.
   213  func (u *unifier) asTypeParam(x Type) *TypeParam {
   214  	if x, _ := x.(*TypeParam); x != nil {
   215  		if _, found := u.handles[x]; found {
   216  			return x
   217  		}
   218  	}
   219  	return nil
   220  }
   221  
   222  // setHandle sets the handle for type parameter x
   223  // (and all its joined type parameters) to h.
   224  func (u *unifier) setHandle(x *TypeParam, h *Type) {
   225  	hx := u.handles[x]
   226  	assert(hx != nil)
   227  	for y, hy := range u.handles {
   228  		if hy == hx {
   229  			u.handles[y] = h
   230  		}
   231  	}
   232  }
   233  
   234  // at returns the (possibly nil) type for type parameter x.
   235  func (u *unifier) at(x *TypeParam) Type {
   236  	return *u.handles[x]
   237  }
   238  
   239  // set sets the type t for type parameter x;
   240  // t must not be nil.
   241  func (u *unifier) set(x *TypeParam, t Type) {
   242  	assert(t != nil)
   243  	if traceInference {
   244  		u.tracef("%s ➞ %s", x, t)
   245  	}
   246  	*u.handles[x] = t
   247  }
   248  
   249  // unknowns returns the number of type parameters for which no type has been set yet.
   250  func (u *unifier) unknowns() int {
   251  	n := 0
   252  	for _, h := range u.handles {
   253  		if *h == nil {
   254  			n++
   255  		}
   256  	}
   257  	return n
   258  }
   259  
   260  // inferred returns the list of inferred types for the given type parameter list.
   261  // The result is never nil and has the same length as tparams; result types that
   262  // could not be inferred are nil. Corresponding type parameters and result types
   263  // have identical indices.
   264  func (u *unifier) inferred(tparams []*TypeParam) []Type {
   265  	list := make([]Type, len(tparams))
   266  	for i, x := range tparams {
   267  		list[i] = u.at(x)
   268  	}
   269  	return list
   270  }
   271  
   272  // asInterface returns the underlying type of x as an interface if
   273  // it is a non-type parameter interface. Otherwise it returns nil.
   274  func asInterface(x Type) (i *Interface) {
   275  	if _, ok := x.(*TypeParam); !ok {
   276  		i, _ = under(x).(*Interface)
   277  	}
   278  	return i
   279  }
   280  
   281  // nify implements the core unification algorithm which is an
   282  // adapted version of Checker.identical. For changes to that
   283  // code the corresponding changes should be made here.
   284  // Must not be called directly from outside the unifier.
   285  func (u *unifier) nify(x, y Type, mode unifyMode, p *ifacePair) (result bool) {
   286  	u.depth++
   287  	if traceInference {
   288  		u.tracef("%s ≡ %s\t// %s", x, y, mode)
   289  	}
   290  	defer func() {
   291  		if traceInference && !result {
   292  			u.tracef("%s ≢ %s", x, y)
   293  		}
   294  		u.depth--
   295  	}()
   296  
   297  	x = Unalias(x)
   298  	y = Unalias(y)
   299  
   300  	// nothing to do if x == y
   301  	if x == y {
   302  		return true
   303  	}
   304  
   305  	// Stop gap for cases where unification fails.
   306  	if u.depth > unificationDepthLimit {
   307  		if traceInference {
   308  			u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
   309  		}
   310  		if panicAtUnificationDepthLimit {
   311  			panic("unification reached recursion depth limit")
   312  		}
   313  		return false
   314  	}
   315  
   316  	// Unification is symmetric, so we can swap the operands.
   317  	// Ensure that if we have at least one
   318  	// - defined type, make sure one is in y
   319  	// - type parameter recorded with u, make sure one is in x
   320  	if asNamed(x) != nil || u.asTypeParam(y) != nil {
   321  		if traceInference {
   322  			u.tracef("%s ≡ %s\t// swap", y, x)
   323  		}
   324  		x, y = y, x
   325  	}
   326  
   327  	// Unification will fail if we match a defined type against a type literal.
   328  	// If we are matching types in an assignment, at the top-level, types with
   329  	// the same type structure are permitted as long as at least one of them
   330  	// is not a defined type. To accommodate for that possibility, we continue
   331  	// unification with the underlying type of a defined type if the other type
   332  	// is a type literal. This is controlled by the exact unification mode.
   333  	// We also continue if the other type is a basic type because basic types
   334  	// are valid underlying types and may appear as core types of type constraints.
   335  	// If we exclude them, inferred defined types for type parameters may not
   336  	// match against the core types of their constraints (even though they might
   337  	// correctly match against some of the types in the constraint's type set).
   338  	// Finally, if unification (incorrectly) succeeds by matching the underlying
   339  	// type of a defined type against a basic type (because we include basic types
   340  	// as type literals here), and if that leads to an incorrectly inferred type,
   341  	// we will fail at function instantiation or argument assignment time.
   342  	//
   343  	// If we have at least one defined type, there is one in y.
   344  	if ny := asNamed(y); mode&exact == 0 && ny != nil && isTypeLit(x) && !(u.enableInterfaceInference && IsInterface(x)) {
   345  		if traceInference {
   346  			u.tracef("%s ≡ under %s", x, ny)
   347  		}
   348  		y = ny.under()
   349  		// Per the spec, a defined type cannot have an underlying type
   350  		// that is a type parameter.
   351  		assert(!isTypeParam(y))
   352  		// x and y may be identical now
   353  		if x == y {
   354  			return true
   355  		}
   356  	}
   357  
   358  	// Cases where at least one of x or y is a type parameter recorded with u.
   359  	// If we have at least one type parameter, there is one in x.
   360  	// If we have exactly one type parameter, because it is in x,
   361  	// isTypeLit(x) is false and y was not changed above. In other
   362  	// words, if y was a defined type, it is still a defined type
   363  	// (relevant for the logic below).
   364  	switch px, py := u.asTypeParam(x), u.asTypeParam(y); {
   365  	case px != nil && py != nil:
   366  		// both x and y are type parameters
   367  		if u.join(px, py) {
   368  			return true
   369  		}
   370  		// both x and y have an inferred type - they must match
   371  		return u.nify(u.at(px), u.at(py), mode, p)
   372  
   373  	case px != nil:
   374  		// x is a type parameter, y is not
   375  		if x := u.at(px); x != nil {
   376  			// x has an inferred type which must match y
   377  			if u.nify(x, y, mode, p) {
   378  				// We have a match, possibly through underlying types.
   379  				xi := asInterface(x)
   380  				yi := asInterface(y)
   381  				xn := asNamed(x) != nil
   382  				yn := asNamed(y) != nil
   383  				// If we have two interfaces, what to do depends on
   384  				// whether they are named and their method sets.
   385  				if xi != nil && yi != nil {
   386  					// Both types are interfaces.
   387  					// If both types are defined types, they must be identical
   388  					// because unification doesn't know which type has the "right" name.
   389  					if xn && yn {
   390  						return Identical(x, y)
   391  					}
   392  					// In all other cases, the method sets must match.
   393  					// The types unified so we know that corresponding methods
   394  					// match and we can simply compare the number of methods.
   395  					// TODO(gri) We may be able to relax this rule and select
   396  					// the more general interface. But if one of them is a defined
   397  					// type, it's not clear how to choose and whether we introduce
   398  					// an order dependency or not. Requiring the same method set
   399  					// is conservative.
   400  					if len(xi.typeSet().methods) != len(yi.typeSet().methods) {
   401  						return false
   402  					}
   403  				} else if xi != nil || yi != nil {
   404  					// One but not both of them are interfaces.
   405  					// In this case, either x or y could be viable matches for the corresponding
   406  					// type parameter, which means choosing either introduces an order dependence.
   407  					// Therefore, we must fail unification (go.dev/issue/60933).
   408  					return false
   409  				}
   410  				// If we have inexact unification and one of x or y is a defined type, select the
   411  				// defined type. This ensures that in a series of types, all matching against the
   412  				// same type parameter, we infer a defined type if there is one, independent of
   413  				// order. Type inference or assignment may fail, which is ok.
   414  				// Selecting a defined type, if any, ensures that we don't lose the type name;
   415  				// and since we have inexact unification, a value of equally named or matching
   416  				// undefined type remains assignable (go.dev/issue/43056).
   417  				//
   418  				// Similarly, if we have inexact unification and there are no defined types but
   419  				// channel types, select a directed channel, if any. This ensures that in a series
   420  				// of unnamed types, all matching against the same type parameter, we infer the
   421  				// directed channel if there is one, independent of order.
   422  				// Selecting a directional channel, if any, ensures that a value of another
   423  				// inexactly unifying channel type remains assignable (go.dev/issue/62157).
   424  				//
   425  				// If we have multiple defined channel types, they are either identical or we
   426  				// have assignment conflicts, so we can ignore directionality in this case.
   427  				//
   428  				// If we have defined and literal channel types, a defined type wins to avoid
   429  				// order dependencies.
   430  				if mode&exact == 0 {
   431  					switch {
   432  					case xn:
   433  						// x is a defined type: nothing to do.
   434  					case yn:
   435  						// x is not a defined type and y is a defined type: select y.
   436  						u.set(px, y)
   437  					default:
   438  						// Neither x nor y are defined types.
   439  						if yc, _ := under(y).(*Chan); yc != nil && yc.dir != SendRecv {
   440  							// y is a directed channel type: select y.
   441  							u.set(px, y)
   442  						}
   443  					}
   444  				}
   445  				return true
   446  			}
   447  			return false
   448  		}
   449  		// otherwise, infer type from y
   450  		u.set(px, y)
   451  		return true
   452  	}
   453  
   454  	// x != y if we get here
   455  	assert(x != y)
   456  
   457  	// If u.EnableInterfaceInference is set and we don't require exact unification,
   458  	// if both types are interfaces, one interface must have a subset of the
   459  	// methods of the other and corresponding method signatures must unify.
   460  	// If only one type is an interface, all its methods must be present in the
   461  	// other type and corresponding method signatures must unify.
   462  	if u.enableInterfaceInference && mode&exact == 0 {
   463  		// One or both interfaces may be defined types.
   464  		// Look under the name, but not under type parameters (go.dev/issue/60564).
   465  		xi := asInterface(x)
   466  		yi := asInterface(y)
   467  		// If we have two interfaces, check the type terms for equivalence,
   468  		// and unify common methods if possible.
   469  		if xi != nil && yi != nil {
   470  			xset := xi.typeSet()
   471  			yset := yi.typeSet()
   472  			if xset.comparable != yset.comparable {
   473  				return false
   474  			}
   475  			// For now we require terms to be equal.
   476  			// We should be able to relax this as well, eventually.
   477  			if !xset.terms.equal(yset.terms) {
   478  				return false
   479  			}
   480  			// Interface types are the only types where cycles can occur
   481  			// that are not "terminated" via named types; and such cycles
   482  			// can only be created via method parameter types that are
   483  			// anonymous interfaces (directly or indirectly) embedding
   484  			// the current interface. Example:
   485  			//
   486  			//    type T interface {
   487  			//        m() interface{T}
   488  			//    }
   489  			//
   490  			// If two such (differently named) interfaces are compared,
   491  			// endless recursion occurs if the cycle is not detected.
   492  			//
   493  			// If x and y were compared before, they must be equal
   494  			// (if they were not, the recursion would have stopped);
   495  			// search the ifacePair stack for the same pair.
   496  			//
   497  			// This is a quadratic algorithm, but in practice these stacks
   498  			// are extremely short (bounded by the nesting depth of interface
   499  			// type declarations that recur via parameter types, an extremely
   500  			// rare occurrence). An alternative implementation might use a
   501  			// "visited" map, but that is probably less efficient overall.
   502  			q := &ifacePair{xi, yi, p}
   503  			for p != nil {
   504  				if p.identical(q) {
   505  					return true // same pair was compared before
   506  				}
   507  				p = p.prev
   508  			}
   509  			// The method set of x must be a subset of the method set
   510  			// of y or vice versa, and the common methods must unify.
   511  			xmethods := xset.methods
   512  			ymethods := yset.methods
   513  			// The smaller method set must be the subset, if it exists.
   514  			if len(xmethods) > len(ymethods) {
   515  				xmethods, ymethods = ymethods, xmethods
   516  			}
   517  			// len(xmethods) <= len(ymethods)
   518  			// Collect the ymethods in a map for quick lookup.
   519  			ymap := make(map[string]*Func, len(ymethods))
   520  			for _, ym := range ymethods {
   521  				ymap[ym.Id()] = ym
   522  			}
   523  			// All xmethods must exist in ymethods and corresponding signatures must unify.
   524  			for _, xm := range xmethods {
   525  				if ym := ymap[xm.Id()]; ym == nil || !u.nify(xm.typ, ym.typ, exact, p) {
   526  					return false
   527  				}
   528  			}
   529  			return true
   530  		}
   531  
   532  		// We don't have two interfaces. If we have one, make sure it's in xi.
   533  		if yi != nil {
   534  			xi = yi
   535  			y = x
   536  		}
   537  
   538  		// If we have one interface, at a minimum each of the interface methods
   539  		// must be implemented and thus unify with a corresponding method from
   540  		// the non-interface type, otherwise unification fails.
   541  		if xi != nil {
   542  			// All xi methods must exist in y and corresponding signatures must unify.
   543  			xmethods := xi.typeSet().methods
   544  			for _, xm := range xmethods {
   545  				obj, _, _ := LookupFieldOrMethod(y, false, xm.pkg, xm.name)
   546  				if ym, _ := obj.(*Func); ym == nil || !u.nify(xm.typ, ym.typ, exact, p) {
   547  					return false
   548  				}
   549  			}
   550  			return true
   551  		}
   552  	}
   553  
   554  	// Unless we have exact unification, neither x nor y are interfaces now.
   555  	// Except for unbound type parameters (see below), x and y must be structurally
   556  	// equivalent to unify.
   557  
   558  	// If we get here and x or y is a type parameter, they are unbound
   559  	// (not recorded with the unifier).
   560  	// Ensure that if we have at least one type parameter, it is in x
   561  	// (the earlier swap checks for _recorded_ type parameters only).
   562  	// This ensures that the switch switches on the type parameter.
   563  	//
   564  	// TODO(gri) Factor out type parameter handling from the switch.
   565  	if isTypeParam(y) {
   566  		if traceInference {
   567  			u.tracef("%s ≡ %s\t// swap", y, x)
   568  		}
   569  		x, y = y, x
   570  	}
   571  
   572  	// Type elements (array, slice, etc. elements) use emode for unification.
   573  	// Element types must match exactly if the types are used in an assignment.
   574  	emode := mode
   575  	if mode&assign != 0 {
   576  		emode |= exact
   577  	}
   578  
   579  	switch x := x.(type) {
   580  	case *Basic:
   581  		// Basic types are singletons except for the rune and byte
   582  		// aliases, thus we cannot solely rely on the x == y check
   583  		// above. See also comment in TypeName.IsAlias.
   584  		if y, ok := y.(*Basic); ok {
   585  			return x.kind == y.kind
   586  		}
   587  
   588  	case *Array:
   589  		// Two array types unify if they have the same array length
   590  		// and their element types unify.
   591  		if y, ok := y.(*Array); ok {
   592  			// If one or both array lengths are unknown (< 0) due to some error,
   593  			// assume they are the same to avoid spurious follow-on errors.
   594  			return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, emode, p)
   595  		}
   596  
   597  	case *Slice:
   598  		// Two slice types unify if their element types unify.
   599  		if y, ok := y.(*Slice); ok {
   600  			return u.nify(x.elem, y.elem, emode, p)
   601  		}
   602  
   603  	case *Struct:
   604  		// Two struct types unify if they have the same sequence of fields,
   605  		// and if corresponding fields have the same names, their (field) types unify,
   606  		// and they have identical tags. Two embedded fields are considered to have the same
   607  		// name. Lower-case field names from different packages are always different.
   608  		if y, ok := y.(*Struct); ok {
   609  			if x.NumFields() == y.NumFields() {
   610  				for i, f := range x.fields {
   611  					g := y.fields[i]
   612  					if f.embedded != g.embedded ||
   613  						x.Tag(i) != y.Tag(i) ||
   614  						!f.sameId(g.pkg, g.name, false) ||
   615  						!u.nify(f.typ, g.typ, emode, p) {
   616  						return false
   617  					}
   618  				}
   619  				return true
   620  			}
   621  		}
   622  
   623  	case *Pointer:
   624  		// Two pointer types unify if their base types unify.
   625  		if y, ok := y.(*Pointer); ok {
   626  			return u.nify(x.base, y.base, emode, p)
   627  		}
   628  
   629  	case *Tuple:
   630  		// Two tuples types unify if they have the same number of elements
   631  		// and the types of corresponding elements unify.
   632  		if y, ok := y.(*Tuple); ok {
   633  			if x.Len() == y.Len() {
   634  				if x != nil {
   635  					for i, v := range x.vars {
   636  						w := y.vars[i]
   637  						if !u.nify(v.typ, w.typ, mode, p) {
   638  							return false
   639  						}
   640  					}
   641  				}
   642  				return true
   643  			}
   644  		}
   645  
   646  	case *Signature:
   647  		// Two function types unify if they have the same number of parameters
   648  		// and result values, corresponding parameter and result types unify,
   649  		// and either both functions are variadic or neither is.
   650  		// Parameter and result names are not required to match.
   651  		// TODO(gri) handle type parameters or document why we can ignore them.
   652  		if y, ok := y.(*Signature); ok {
   653  			return x.variadic == y.variadic &&
   654  				u.nify(x.params, y.params, emode, p) &&
   655  				u.nify(x.results, y.results, emode, p)
   656  		}
   657  
   658  	case *Interface:
   659  		assert(!u.enableInterfaceInference || mode&exact != 0) // handled before this switch
   660  
   661  		// Two interface types unify if they have the same set of methods with
   662  		// the same names, and corresponding function types unify.
   663  		// Lower-case method names from different packages are always different.
   664  		// The order of the methods is irrelevant.
   665  		if y, ok := y.(*Interface); ok {
   666  			xset := x.typeSet()
   667  			yset := y.typeSet()
   668  			if xset.comparable != yset.comparable {
   669  				return false
   670  			}
   671  			if !xset.terms.equal(yset.terms) {
   672  				return false
   673  			}
   674  			a := xset.methods
   675  			b := yset.methods
   676  			if len(a) == len(b) {
   677  				// Interface types are the only types where cycles can occur
   678  				// that are not "terminated" via named types; and such cycles
   679  				// can only be created via method parameter types that are
   680  				// anonymous interfaces (directly or indirectly) embedding
   681  				// the current interface. Example:
   682  				//
   683  				//    type T interface {
   684  				//        m() interface{T}
   685  				//    }
   686  				//
   687  				// If two such (differently named) interfaces are compared,
   688  				// endless recursion occurs if the cycle is not detected.
   689  				//
   690  				// If x and y were compared before, they must be equal
   691  				// (if they were not, the recursion would have stopped);
   692  				// search the ifacePair stack for the same pair.
   693  				//
   694  				// This is a quadratic algorithm, but in practice these stacks
   695  				// are extremely short (bounded by the nesting depth of interface
   696  				// type declarations that recur via parameter types, an extremely
   697  				// rare occurrence). An alternative implementation might use a
   698  				// "visited" map, but that is probably less efficient overall.
   699  				q := &ifacePair{x, y, p}
   700  				for p != nil {
   701  					if p.identical(q) {
   702  						return true // same pair was compared before
   703  					}
   704  					p = p.prev
   705  				}
   706  				if debug {
   707  					assertSortedMethods(a)
   708  					assertSortedMethods(b)
   709  				}
   710  				for i, f := range a {
   711  					g := b[i]
   712  					if f.Id() != g.Id() || !u.nify(f.typ, g.typ, exact, q) {
   713  						return false
   714  					}
   715  				}
   716  				return true
   717  			}
   718  		}
   719  
   720  	case *Map:
   721  		// Two map types unify if their key and value types unify.
   722  		if y, ok := y.(*Map); ok {
   723  			return u.nify(x.key, y.key, emode, p) && u.nify(x.elem, y.elem, emode, p)
   724  		}
   725  
   726  	case *Chan:
   727  		// Two channel types unify if their value types unify
   728  		// and if they have the same direction.
   729  		// The channel direction is ignored for inexact unification.
   730  		if y, ok := y.(*Chan); ok {
   731  			return (mode&exact == 0 || x.dir == y.dir) && u.nify(x.elem, y.elem, emode, p)
   732  		}
   733  
   734  	case *Named:
   735  		// Two named types unify if their type names originate in the same type declaration.
   736  		// If they are instantiated, their type argument lists must unify.
   737  		if y := asNamed(y); y != nil {
   738  			// Check type arguments before origins so they unify
   739  			// even if the origins don't match; for better error
   740  			// messages (see go.dev/issue/53692).
   741  			xargs := x.TypeArgs().list()
   742  			yargs := y.TypeArgs().list()
   743  			if len(xargs) != len(yargs) {
   744  				return false
   745  			}
   746  			for i, xarg := range xargs {
   747  				if !u.nify(xarg, yargs[i], mode, p) {
   748  					return false
   749  				}
   750  			}
   751  			return identicalOrigin(x, y)
   752  		}
   753  
   754  	case *TypeParam:
   755  		// x must be an unbound type parameter (see comment above).
   756  		if debug {
   757  			assert(u.asTypeParam(x) == nil)
   758  		}
   759  		// By definition, a valid type argument must be in the type set of
   760  		// the respective type constraint. Therefore, the type argument's
   761  		// underlying type must be in the set of underlying types of that
   762  		// constraint. If there is a single such underlying type, it's the
   763  		// constraint's core type. It must match the type argument's under-
   764  		// lying type, irrespective of whether the actual type argument,
   765  		// which may be a defined type, is actually in the type set (that
   766  		// will be determined at instantiation time).
   767  		// Thus, if we have the core type of an unbound type parameter,
   768  		// we know the structure of the possible types satisfying such
   769  		// parameters. Use that core type for further unification
   770  		// (see go.dev/issue/50755 for a test case).
   771  		if enableCoreTypeUnification {
   772  			// Because the core type is always an underlying type,
   773  			// unification will take care of matching against a
   774  			// defined or literal type automatically.
   775  			// If y is also an unbound type parameter, we will end
   776  			// up here again with x and y swapped, so we don't
   777  			// need to take care of that case separately.
   778  			if cx := coreType(x); cx != nil {
   779  				if traceInference {
   780  					u.tracef("core %s ≡ %s", x, y)
   781  				}
   782  				// If y is a defined type, it may not match against cx which
   783  				// is an underlying type (incl. int, string, etc.). Use assign
   784  				// mode here so that the unifier automatically takes under(y)
   785  				// if necessary.
   786  				return u.nify(cx, y, assign, p)
   787  			}
   788  		}
   789  		// x != y and there's nothing to do
   790  
   791  	case nil:
   792  		// avoid a crash in case of nil type
   793  
   794  	default:
   795  		panic(sprintf(nil, nil, true, "u.nify(%s, %s, %d)", x, y, mode))
   796  	}
   797  
   798  	return false
   799  }
   800  

View as plain text