// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package strconv import "math/bits" // binary to decimal conversion using the Ryū algorithm. // // See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369) // ryuFtoaShortest formats mant*2^exp with prec decimal digits. func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) { if mant == 0 { d.nd, d.dp = 0, 0 return } // If input is an exact integer with fewer bits than the mantissa, // the previous and next integer are not admissible representations. if exp <= 0 && bits.TrailingZeros64(mant) >= -exp { mant >>= uint(-exp) ryuDigits(d, mant, mant, mant, true, false) return } ml, mc, mu, e2 := computeBounds(mant, exp, flt) if e2 == 0 { ryuDigits(d, ml, mc, mu, true, false) return } // Find 10^q *larger* than 2^-e2 q := mulLog10_2(-e2) + 1 // We are going to multiply by 10^q using 128-bit arithmetic. // The exponent is the same for all 3 numbers. var dl, dc, du uint64 var dl0, dc0, du0 bool if flt == &float32info { var dl32, dc32, du32 uint32 dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q) dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q) du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q) dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32) } else { dl, _, dl0 = mult128bitPow10(ml, e2, q) dc, _, dc0 = mult128bitPow10(mc, e2, q) du, e2, du0 = mult128bitPow10(mu, e2, q) } if e2 >= 0 { panic("not enough significant bits after mult128bitPow10") } // Is it an exact computation? if q > 55 { // Large positive powers of ten are not exact dl0, dc0, du0 = false, false, false } if q < 0 && q >= -24 { // Division by a power of ten may be exact. // (note that 5^25 is a 59-bit number so division by 5^25 is never exact). if divisiblePow5(ml, -q) { dl0 = true } if divisiblePow5(mc, -q) { dc0 = true } if divisiblePow5(mu, -q) { du0 = true } } // Express the results (dl, dc, du)*2^e2 as integers. // Extra bits must be removed and rounding hints computed. extra := uint(-e2) extraMask := uint64(1<>extra, dl&extraMask dc, fracc := dc>>extra, dc&extraMask du, fracu := du>>extra, du&extraMask // Is it allowed to use 'du' as a result? // It is always allowed when it is truncated, but also // if it is exact and the original binary mantissa is even // When disallowed, we can subtract 1. uok := !du0 || fracu > 0 if du0 && fracu == 0 { uok = mant&1 == 0 } if !uok { du-- } // Is 'dc' the correctly rounded base 10 mantissa? // The correct rounding might be dc+1 cup := false // don't round up. if dc0 { // If we computed an exact product, the half integer // should round to next (even) integer if 'dc' is odd. cup = fracc > 1<<(extra-1) || (fracc == 1<<(extra-1) && dc&1 == 1) } else { // otherwise, the result is a lower truncation of the ideal // result. cup = fracc>>(extra-1) == 1 } // Is 'dl' an allowed representation? // Only if it is an exact value, and if the original binary mantissa // was even. lok := dl0 && fracl == 0 && (mant&1 == 0) if !lok { dl++ } // We need to remember whether the trimmed digits of 'dc' are zero. c0 := dc0 && fracc == 0 // render digits ryuDigits(d, dl, dc, du, c0, cup) d.dp -= q } // computeBounds returns a floating-point vector (l, c, u)×2^e2 // where the mantissas are 55-bit (or 26-bit) integers, describing the interval // represented by the input float64 or float32. func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) { if mant != 1< 5e8) || (clo == 5e8 && cup) ryuDigits32(d, lhi, chi, uhi, c0, cup, 8) d.dp += 9 } else { d.nd = 0 // emit high part n := uint(9) for v := chi; v > 0; { v1, v2 := v/10, v%10 v = v1 n-- d.d[n] = byte(v2 + '0') } d.d = d.d[n:] d.nd = int(9 - n) // emit low part ryuDigits32(d, llo, clo, ulo, c0, cup, d.nd+8) } // trim trailing zeros for d.nd > 0 && d.d[d.nd-1] == '0' { d.nd-- } // trim initial zeros for d.nd > 0 && d.d[0] == '0' { d.nd-- d.dp-- d.d = d.d[1:] } } // ryuDigits32 emits decimal digits for a number less than 1e9. func ryuDigits32(d *decimalSlice, lower, central, upper uint32, c0, cup bool, endindex int) { if upper == 0 { d.dp = endindex + 1 return } trimmed := 0 // Remember last trimmed digit to check for round-up. // c0 will be used to remember zeroness of following digits. cNextDigit := 0 for upper > 0 { // Repeatedly compute: // l = Ceil(lower / 10^k) // c = Round(central / 10^k) // u = Floor(upper / 10^k) // and stop when c goes out of the (l, u) interval. l := (lower + 9) / 10 c, cdigit := central/10, central%10 u := upper / 10 if l > u { // don't trim the last digit as it is forbidden to go below l // other, trim and exit now. break } // Check that we didn't cross the lower boundary. // The case where l < u but c == l-1 is essentially impossible, // but may happen if: // lower = ..11 // central = ..19 // upper = ..31 // and means that 'central' is very close but less than // an integer ending with many zeros, and usually // the "round-up" logic hides the problem. if l == c+1 && c < u { c++ cdigit = 0 cup = false } trimmed++ // Remember trimmed digits of c c0 = c0 && cNextDigit == 0 cNextDigit = int(cdigit) lower, central, upper = l, c, u } // should we round up? if trimmed > 0 { cup = cNextDigit > 5 || (cNextDigit == 5 && !c0) || (cNextDigit == 5 && c0 && central&1 == 1) } if central < upper && cup { central++ } // We know where the number ends, fill directly endindex -= trimmed v := central n := endindex for n > d.nd { v1, v2 := v/100, v%100 d.d[n] = smalls[2*v2+1] d.d[n-1] = smalls[2*v2+0] n -= 2 v = v1 } if n == d.nd { d.d[n] = byte(v + '0') } d.nd = endindex + 1 d.dp = d.nd + trimmed } // mult64bitPow10 takes a floating-point input with a 25-bit // mantissa and multiplies it with 10^q. The resulting mantissa // is m*P >> 57 where P is a 64-bit truncated power of 10. // It is typically 31 or 32-bit wide. // The returned boolean is true if all trimmed bits were zero. // // That is: // // m*2^e2 * round(10^q) = resM * 2^resE + ε // exact = ε == 0 func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) { if q == 0 { // P == 1<<63 return m << 6, e2 - 6, true } pow, exp2, ok := pow10(q) if !ok { // This never happens due to the range of float32/float64 exponent panic("mult64bitPow10: power of 10 is out of range") } if q < 0 { // Inverse powers of ten must be rounded up. pow.Hi++ } hi, lo := bits.Mul64(uint64(m), pow.Hi) e2 += exp2 - 64 + 57 return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0 } // mult128bitPow10 takes a floating-point input with a 55-bit // mantissa and multiplies it with 10^q. The resulting mantissa // is m*P >> 119 where P is a 128-bit truncated power of 10. // It is typically 63 or 64-bit wide. // The returned boolean is true is all trimmed bits were zero. // // That is: // // m*2^e2 * round(10^q) = resM * 2^resE + ε // exact = ε == 0 func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) { if q == 0 { // P == 1<<127 return m << 8, e2 - 8, true } pow, exp2, ok := pow10(q) if !ok { // This never happens due to the range of float32/float64 exponent panic("mult128bitPow10: power of 10 is out of range") } if q < 0 { // Inverse powers of ten must be rounded up. pow.Lo++ } e2 += exp2 - 128 + 119 hi, mid, lo := umul192(m, pow) return hi<<9 | mid>>55, e2, mid<<9 == 0 && lo == 0 }