Source file src/internal/sync/mutex.go

     1  // Copyright 2024 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package sync provides basic synchronization primitives such as mutual
     6  // exclusion locks to internal packages (including ones that depend on sync).
     7  //
     8  // Tests are defined in package [sync].
     9  package sync
    10  
    11  import (
    12  	"internal/race"
    13  	"sync/atomic"
    14  	"unsafe"
    15  )
    16  
    17  // A Mutex is a mutual exclusion lock.
    18  //
    19  // See package [sync.Mutex] documentation.
    20  type Mutex struct {
    21  	state int32
    22  	sema  uint32
    23  }
    24  
    25  const (
    26  	mutexLocked = 1 << iota // mutex is locked
    27  	mutexWoken
    28  	mutexStarving
    29  	mutexWaiterShift = iota
    30  
    31  	// Mutex fairness.
    32  	//
    33  	// Mutex can be in 2 modes of operations: normal and starvation.
    34  	// In normal mode waiters are queued in FIFO order, but a woken up waiter
    35  	// does not own the mutex and competes with new arriving goroutines over
    36  	// the ownership. New arriving goroutines have an advantage -- they are
    37  	// already running on CPU and there can be lots of them, so a woken up
    38  	// waiter has good chances of losing. In such case it is queued at front
    39  	// of the wait queue. If a waiter fails to acquire the mutex for more than 1ms,
    40  	// it switches mutex to the starvation mode.
    41  	//
    42  	// In starvation mode ownership of the mutex is directly handed off from
    43  	// the unlocking goroutine to the waiter at the front of the queue.
    44  	// New arriving goroutines don't try to acquire the mutex even if it appears
    45  	// to be unlocked, and don't try to spin. Instead they queue themselves at
    46  	// the tail of the wait queue.
    47  	//
    48  	// If a waiter receives ownership of the mutex and sees that either
    49  	// (1) it is the last waiter in the queue, or (2) it waited for less than 1 ms,
    50  	// it switches mutex back to normal operation mode.
    51  	//
    52  	// Normal mode has considerably better performance as a goroutine can acquire
    53  	// a mutex several times in a row even if there are blocked waiters.
    54  	// Starvation mode is important to prevent pathological cases of tail latency.
    55  	starvationThresholdNs = 1e6
    56  )
    57  
    58  // Lock locks m.
    59  //
    60  // See package [sync.Mutex] documentation.
    61  func (m *Mutex) Lock() {
    62  	// Fast path: grab unlocked mutex.
    63  	if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
    64  		if race.Enabled {
    65  			race.Acquire(unsafe.Pointer(m))
    66  		}
    67  		return
    68  	}
    69  	// Slow path (outlined so that the fast path can be inlined)
    70  	m.lockSlow()
    71  }
    72  
    73  // TryLock tries to lock m and reports whether it succeeded.
    74  //
    75  // See package [sync.Mutex] documentation.
    76  func (m *Mutex) TryLock() bool {
    77  	old := m.state
    78  	if old&(mutexLocked|mutexStarving) != 0 {
    79  		return false
    80  	}
    81  
    82  	// There may be a goroutine waiting for the mutex, but we are
    83  	// running now and can try to grab the mutex before that
    84  	// goroutine wakes up.
    85  	if !atomic.CompareAndSwapInt32(&m.state, old, old|mutexLocked) {
    86  		return false
    87  	}
    88  
    89  	if race.Enabled {
    90  		race.Acquire(unsafe.Pointer(m))
    91  	}
    92  	return true
    93  }
    94  
    95  func (m *Mutex) lockSlow() {
    96  	var waitStartTime int64
    97  	starving := false
    98  	awoke := false
    99  	iter := 0
   100  	old := m.state
   101  	for {
   102  		// Don't spin in starvation mode, ownership is handed off to waiters
   103  		// so we won't be able to acquire the mutex anyway.
   104  		if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
   105  			// Active spinning makes sense.
   106  			// Try to set mutexWoken flag to inform Unlock
   107  			// to not wake other blocked goroutines.
   108  			if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
   109  				atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
   110  				awoke = true
   111  			}
   112  			runtime_doSpin()
   113  			iter++
   114  			old = m.state
   115  			continue
   116  		}
   117  		new := old
   118  		// Don't try to acquire starving mutex, new arriving goroutines must queue.
   119  		if old&mutexStarving == 0 {
   120  			new |= mutexLocked
   121  		}
   122  		if old&(mutexLocked|mutexStarving) != 0 {
   123  			new += 1 << mutexWaiterShift
   124  		}
   125  		// The current goroutine switches mutex to starvation mode.
   126  		// But if the mutex is currently unlocked, don't do the switch.
   127  		// Unlock expects that starving mutex has waiters, which will not
   128  		// be true in this case.
   129  		if starving && old&mutexLocked != 0 {
   130  			new |= mutexStarving
   131  		}
   132  		if awoke {
   133  			// The goroutine has been woken from sleep,
   134  			// so we need to reset the flag in either case.
   135  			if new&mutexWoken == 0 {
   136  				throw("sync: inconsistent mutex state")
   137  			}
   138  			new &^= mutexWoken
   139  		}
   140  		if atomic.CompareAndSwapInt32(&m.state, old, new) {
   141  			if old&(mutexLocked|mutexStarving) == 0 {
   142  				break // locked the mutex with CAS
   143  			}
   144  			// If we were already waiting before, queue at the front of the queue.
   145  			queueLifo := waitStartTime != 0
   146  			if waitStartTime == 0 {
   147  				waitStartTime = runtime_nanotime()
   148  			}
   149  			runtime_SemacquireMutex(&m.sema, queueLifo, 2)
   150  			starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
   151  			old = m.state
   152  			if old&mutexStarving != 0 {
   153  				// If this goroutine was woken and mutex is in starvation mode,
   154  				// ownership was handed off to us but mutex is in somewhat
   155  				// inconsistent state: mutexLocked is not set and we are still
   156  				// accounted as waiter. Fix that.
   157  				if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
   158  					throw("sync: inconsistent mutex state")
   159  				}
   160  				delta := int32(mutexLocked - 1<<mutexWaiterShift)
   161  				if !starving || old>>mutexWaiterShift == 1 {
   162  					// Exit starvation mode.
   163  					// Critical to do it here and consider wait time.
   164  					// Starvation mode is so inefficient, that two goroutines
   165  					// can go lock-step infinitely once they switch mutex
   166  					// to starvation mode.
   167  					delta -= mutexStarving
   168  				}
   169  				atomic.AddInt32(&m.state, delta)
   170  				break
   171  			}
   172  			awoke = true
   173  			iter = 0
   174  		} else {
   175  			old = m.state
   176  		}
   177  	}
   178  
   179  	if race.Enabled {
   180  		race.Acquire(unsafe.Pointer(m))
   181  	}
   182  }
   183  
   184  // Unlock unlocks m.
   185  //
   186  // See package [sync.Mutex] documentation.
   187  func (m *Mutex) Unlock() {
   188  	if race.Enabled {
   189  		_ = m.state
   190  		race.Release(unsafe.Pointer(m))
   191  	}
   192  
   193  	// Fast path: drop lock bit.
   194  	new := atomic.AddInt32(&m.state, -mutexLocked)
   195  	if new != 0 {
   196  		// Outlined slow path to allow inlining the fast path.
   197  		// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
   198  		m.unlockSlow(new)
   199  	}
   200  }
   201  
   202  func (m *Mutex) unlockSlow(new int32) {
   203  	if (new+mutexLocked)&mutexLocked == 0 {
   204  		fatal("sync: unlock of unlocked mutex")
   205  	}
   206  	if new&mutexStarving == 0 {
   207  		old := new
   208  		for {
   209  			// If there are no waiters or a goroutine has already
   210  			// been woken or grabbed the lock, no need to wake anyone.
   211  			// In starvation mode ownership is directly handed off from unlocking
   212  			// goroutine to the next waiter. We are not part of this chain,
   213  			// since we did not observe mutexStarving when we unlocked the mutex above.
   214  			// So get off the way.
   215  			if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
   216  				return
   217  			}
   218  			// Grab the right to wake someone.
   219  			new = (old - 1<<mutexWaiterShift) | mutexWoken
   220  			if atomic.CompareAndSwapInt32(&m.state, old, new) {
   221  				runtime_Semrelease(&m.sema, false, 2)
   222  				return
   223  			}
   224  			old = m.state
   225  		}
   226  	} else {
   227  		// Starving mode: handoff mutex ownership to the next waiter, and yield
   228  		// our time slice so that the next waiter can start to run immediately.
   229  		// Note: mutexLocked is not set, the waiter will set it after wakeup.
   230  		// But mutex is still considered locked if mutexStarving is set,
   231  		// so new coming goroutines won't acquire it.
   232  		runtime_Semrelease(&m.sema, true, 2)
   233  	}
   234  }
   235  

View as plain text