Text file src/runtime/asm_amd64.s

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #include "go_asm.h"
     6  #include "go_tls.h"
     7  #include "funcdata.h"
     8  #include "textflag.h"
     9  #include "cgo/abi_amd64.h"
    10  
    11  // _rt0_amd64 is common startup code for most amd64 systems when using
    12  // internal linking. This is the entry point for the program from the
    13  // kernel for an ordinary -buildmode=exe program. The stack holds the
    14  // number of arguments and the C-style argv.
    15  TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16  	MOVQ	0(SP), DI	// argc
    17  	LEAQ	8(SP), SI	// argv
    18  	JMP	runtime·rt0_go(SB)
    19  
    20  // main is common startup code for most amd64 systems when using
    21  // external linking. The C startup code will call the symbol "main"
    22  // passing argc and argv in the usual C ABI registers DI and SI.
    23  TEXT main(SB),NOSPLIT,$-8
    24  	JMP	runtime·rt0_go(SB)
    25  
    26  // _rt0_amd64_lib is common startup code for most amd64 systems when
    27  // using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28  // arrange to invoke this function as a global constructor (for
    29  // c-archive) or when the shared library is loaded (for c-shared).
    30  // We expect argc and argv to be passed in the usual C ABI registers
    31  // DI and SI.
    32  TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33  	// Transition from C ABI to Go ABI.
    34  	PUSH_REGS_HOST_TO_ABI0()
    35  
    36  	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37  	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38  
    39  	// Synchronous initialization.
    40  #ifndef GOOS_windows
    41  	// Avoid calling it on Windows because it is not used
    42  	// and it would crash the application due to the autogenerated
    43  	// ABI wrapper trying to access a non-existent TLS slot.
    44  	CALL	runtime·libpreinit(SB)
    45  #endif
    46  
    47  	// Create a new thread to finish Go runtime initialization.
    48  	MOVQ	_cgo_sys_thread_create(SB), AX
    49  	TESTQ	AX, AX
    50  	JZ	nocgo
    51  
    52  	// We're calling back to C.
    53  	// Align stack per C ABI requirements.
    54  	MOVQ	SP, BX  // Callee-save in C ABI
    55  	ANDQ	$~15, SP
    56  	MOVQ	$_rt0_amd64_lib_go(SB), DI
    57  	MOVQ	$0, SI
    58  #ifdef GOOS_windows
    59  	// For Windows ABI
    60  	MOVQ	DI, CX
    61  	MOVQ	SI, DX
    62  	// Leave space for four words on the stack as required
    63  	// by the Windows amd64 calling convention.
    64  	ADJSP	$32
    65  #endif
    66  	CALL	AX
    67  #ifdef GOOS_windows
    68  	ADJSP	$-32 // just to make the assembler not complain about unbalanced stack
    69  #endif
    70  	MOVQ	BX, SP
    71  	JMP	restore
    72  
    73  nocgo:
    74  	ADJSP	$16
    75  	MOVQ	$0x800000, 0(SP)		// stacksize
    76  	MOVQ	$_rt0_amd64_lib_go(SB), AX
    77  	MOVQ	AX, 8(SP)			// fn
    78  	CALL	runtime·newosproc0(SB)
    79  	ADJSP	$-16
    80  
    81  restore:
    82  	POP_REGS_HOST_TO_ABI0()
    83  	RET
    84  
    85  // _rt0_amd64_lib_go initializes the Go runtime.
    86  // This is started in a separate thread by _rt0_amd64_lib.
    87  TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    88  	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    89  	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    90  	JMP	runtime·rt0_go(SB)
    91  
    92  DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    93  GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    94  DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    95  GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    96  
    97  #ifdef GOAMD64_v2
    98  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    99  #endif
   100  
   101  #ifdef GOAMD64_v3
   102  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
   103  #endif
   104  
   105  #ifdef GOAMD64_v4
   106  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
   107  #endif
   108  
   109  GLOBL bad_cpu_msg<>(SB), RODATA, $84
   110  
   111  // Define a list of AMD64 microarchitecture level features
   112  // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
   113  
   114                       // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
   115  #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   116                           // LAHF/SAHF
   117  #define V2_EXT_FEATURES_CX (1 << 0)
   118                                        // FMA       MOVBE     OSXSAVE   AVX       F16C
   119  #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   120                                                // ABM (FOR LZNCT)
   121  #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   122                           // BMI1     AVX2     BMI2
   123  #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   124                         // XMM      YMM
   125  #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   126  
   127  #define V4_FEATURES_CX V3_FEATURES_CX
   128  
   129  #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   130                                                // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   131  #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   132                                            // OPMASK   ZMM
   133  #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   134  
   135  #ifdef GOAMD64_v2
   136  #define NEED_MAX_CPUID 0x80000001
   137  #define NEED_FEATURES_CX V2_FEATURES_CX
   138  #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   139  #endif
   140  
   141  #ifdef GOAMD64_v3
   142  #define NEED_MAX_CPUID 0x80000001
   143  #define NEED_FEATURES_CX V3_FEATURES_CX
   144  #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   145  #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   146  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   147  #endif
   148  
   149  #ifdef GOAMD64_v4
   150  #define NEED_MAX_CPUID 0x80000001
   151  #define NEED_FEATURES_CX V4_FEATURES_CX
   152  #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   153  #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   154  
   155  // Darwin requires a different approach to check AVX512 support, see CL 285572.
   156  #ifdef GOOS_darwin
   157  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   158  // These values are from:
   159  // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   160  #define commpage64_base_address         0x00007fffffe00000
   161  #define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   162  #define commpage64_version              (commpage64_base_address+0x01E)
   163  #define AVX512F                         0x0000004000000000
   164  #define AVX512CD                        0x0000008000000000
   165  #define AVX512DQ                        0x0000010000000000
   166  #define AVX512BW                        0x0000020000000000
   167  #define AVX512VL                        0x0000100000000000
   168  #define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   169  #else
   170  #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   171  #endif
   172  
   173  #endif
   174  
   175  TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   176  	// copy arguments forward on an even stack
   177  	MOVQ	DI, AX		// argc
   178  	MOVQ	SI, BX		// argv
   179  	SUBQ	$(5*8), SP		// 3args 2auto
   180  	ANDQ	$~15, SP
   181  	MOVQ	AX, 24(SP)
   182  	MOVQ	BX, 32(SP)
   183  
   184  	// create istack out of the given (operating system) stack.
   185  	// _cgo_init may update stackguard.
   186  	MOVQ	$runtime·g0(SB), DI
   187  	LEAQ	(-64*1024)(SP), BX
   188  	MOVQ	BX, g_stackguard0(DI)
   189  	MOVQ	BX, g_stackguard1(DI)
   190  	MOVQ	BX, (g_stack+stack_lo)(DI)
   191  	MOVQ	SP, (g_stack+stack_hi)(DI)
   192  
   193  	// find out information about the processor we're on
   194  	MOVL	$0, AX
   195  	CPUID
   196  	CMPL	AX, $0
   197  	JE	nocpuinfo
   198  
   199  	CMPL	BX, $0x756E6547  // "Genu"
   200  	JNE	notintel
   201  	CMPL	DX, $0x49656E69  // "ineI"
   202  	JNE	notintel
   203  	CMPL	CX, $0x6C65746E  // "ntel"
   204  	JNE	notintel
   205  	MOVB	$1, runtime·isIntel(SB)
   206  
   207  notintel:
   208  	// Load EAX=1 cpuid flags
   209  	MOVL	$1, AX
   210  	CPUID
   211  	MOVL	AX, runtime·processorVersionInfo(SB)
   212  
   213  nocpuinfo:
   214  	// if there is an _cgo_init, call it.
   215  	MOVQ	_cgo_init(SB), AX
   216  	TESTQ	AX, AX
   217  	JZ	needtls
   218  	// arg 1: g0, already in DI
   219  	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   220  	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   221  	MOVQ	$0, CX
   222  #ifdef GOOS_android
   223  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   224  	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   225  	// Compensate for tls_g (+16).
   226  	MOVQ	-16(TLS), CX
   227  #endif
   228  #ifdef GOOS_windows
   229  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   230  	// Adjust for the Win64 calling convention.
   231  	MOVQ	CX, R9 // arg 4
   232  	MOVQ	DX, R8 // arg 3
   233  	MOVQ	SI, DX // arg 2
   234  	MOVQ	DI, CX // arg 1
   235  #endif
   236  	CALL	AX
   237  
   238  	// update stackguard after _cgo_init
   239  	MOVQ	$runtime·g0(SB), CX
   240  	MOVQ	(g_stack+stack_lo)(CX), AX
   241  	ADDQ	$const_stackGuard, AX
   242  	MOVQ	AX, g_stackguard0(CX)
   243  	MOVQ	AX, g_stackguard1(CX)
   244  
   245  #ifndef GOOS_windows
   246  	JMP ok
   247  #endif
   248  needtls:
   249  #ifdef GOOS_plan9
   250  	// skip TLS setup on Plan 9
   251  	JMP ok
   252  #endif
   253  #ifdef GOOS_solaris
   254  	// skip TLS setup on Solaris
   255  	JMP ok
   256  #endif
   257  #ifdef GOOS_illumos
   258  	// skip TLS setup on illumos
   259  	JMP ok
   260  #endif
   261  #ifdef GOOS_darwin
   262  	// skip TLS setup on Darwin
   263  	JMP ok
   264  #endif
   265  #ifdef GOOS_openbsd
   266  	// skip TLS setup on OpenBSD
   267  	JMP ok
   268  #endif
   269  
   270  #ifdef GOOS_windows
   271  	CALL	runtime·wintls(SB)
   272  #endif
   273  
   274  	LEAQ	runtime·m0+m_tls(SB), DI
   275  	CALL	runtime·settls(SB)
   276  
   277  	// store through it, to make sure it works
   278  	get_tls(BX)
   279  	MOVQ	$0x123, g(BX)
   280  	MOVQ	runtime·m0+m_tls(SB), AX
   281  	CMPQ	AX, $0x123
   282  	JEQ 2(PC)
   283  	CALL	runtime·abort(SB)
   284  ok:
   285  	// set the per-goroutine and per-mach "registers"
   286  	get_tls(BX)
   287  	LEAQ	runtime·g0(SB), CX
   288  	MOVQ	CX, g(BX)
   289  	LEAQ	runtime·m0(SB), AX
   290  
   291  	// save m->g0 = g0
   292  	MOVQ	CX, m_g0(AX)
   293  	// save m0 to g0->m
   294  	MOVQ	AX, g_m(CX)
   295  
   296  	CLD				// convention is D is always left cleared
   297  
   298  	// Check GOAMD64 requirements
   299  	// We need to do this after setting up TLS, so that
   300  	// we can report an error if there is a failure. See issue 49586.
   301  #ifdef NEED_FEATURES_CX
   302  	MOVL	$0, AX
   303  	CPUID
   304  	CMPL	AX, $0
   305  	JE	bad_cpu
   306  	MOVL	$1, AX
   307  	CPUID
   308  	ANDL	$NEED_FEATURES_CX, CX
   309  	CMPL	CX, $NEED_FEATURES_CX
   310  	JNE	bad_cpu
   311  #endif
   312  
   313  #ifdef NEED_MAX_CPUID
   314  	MOVL	$0x80000000, AX
   315  	CPUID
   316  	CMPL	AX, $NEED_MAX_CPUID
   317  	JL	bad_cpu
   318  #endif
   319  
   320  #ifdef NEED_EXT_FEATURES_BX
   321  	MOVL	$7, AX
   322  	MOVL	$0, CX
   323  	CPUID
   324  	ANDL	$NEED_EXT_FEATURES_BX, BX
   325  	CMPL	BX, $NEED_EXT_FEATURES_BX
   326  	JNE	bad_cpu
   327  #endif
   328  
   329  #ifdef NEED_EXT_FEATURES_CX
   330  	MOVL	$0x80000001, AX
   331  	CPUID
   332  	ANDL	$NEED_EXT_FEATURES_CX, CX
   333  	CMPL	CX, $NEED_EXT_FEATURES_CX
   334  	JNE	bad_cpu
   335  #endif
   336  
   337  #ifdef NEED_OS_SUPPORT_AX
   338  	XORL    CX, CX
   339  	XGETBV
   340  	ANDL	$NEED_OS_SUPPORT_AX, AX
   341  	CMPL	AX, $NEED_OS_SUPPORT_AX
   342  	JNE	bad_cpu
   343  #endif
   344  
   345  #ifdef NEED_DARWIN_SUPPORT
   346  	MOVQ	$commpage64_version, BX
   347  	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   348  	JL	bad_cpu
   349  	MOVQ	$commpage64_cpu_capabilities64, BX
   350  	MOVQ	(BX), BX
   351  	MOVQ	$NEED_DARWIN_SUPPORT, CX
   352  	ANDQ	CX, BX
   353  	CMPQ	BX, CX
   354  	JNE	bad_cpu
   355  #endif
   356  
   357  	CALL	runtime·check(SB)
   358  
   359  	MOVL	24(SP), AX		// copy argc
   360  	MOVL	AX, 0(SP)
   361  	MOVQ	32(SP), AX		// copy argv
   362  	MOVQ	AX, 8(SP)
   363  	CALL	runtime·args(SB)
   364  	CALL	runtime·osinit(SB)
   365  	CALL	runtime·schedinit(SB)
   366  
   367  	// create a new goroutine to start program
   368  	MOVQ	$runtime·mainPC(SB), AX		// entry
   369  	PUSHQ	AX
   370  	CALL	runtime·newproc(SB)
   371  	POPQ	AX
   372  
   373  	// start this M
   374  	CALL	runtime·mstart(SB)
   375  
   376  	CALL	runtime·abort(SB)	// mstart should never return
   377  	RET
   378  
   379  bad_cpu: // show that the program requires a certain microarchitecture level.
   380  	MOVQ	$2, 0(SP)
   381  	MOVQ	$bad_cpu_msg<>(SB), AX
   382  	MOVQ	AX, 8(SP)
   383  	MOVQ	$84, 16(SP)
   384  	CALL	runtime·write(SB)
   385  	MOVQ	$1, 0(SP)
   386  	CALL	runtime·exit(SB)
   387  	CALL	runtime·abort(SB)
   388  	RET
   389  
   390  	// Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
   391  	// intended to be called by debuggers.
   392  	MOVQ	$runtime·debugPinnerV1<ABIInternal>(SB), AX
   393  	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   394  	RET
   395  
   396  // mainPC is a function value for runtime.main, to be passed to newproc.
   397  // The reference to runtime.main is made via ABIInternal, since the
   398  // actual function (not the ABI0 wrapper) is needed by newproc.
   399  DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   400  GLOBL	runtime·mainPC(SB),RODATA,$8
   401  
   402  TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   403  	BYTE	$0xcc
   404  	RET
   405  
   406  TEXT runtime·asminit(SB),NOSPLIT,$0-0
   407  	// No per-thread init.
   408  	RET
   409  
   410  TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   411  	CALL	runtime·mstart0(SB)
   412  	RET // not reached
   413  
   414  /*
   415   *  go-routine
   416   */
   417  
   418  // func gogo(buf *gobuf)
   419  // restore state from Gobuf; longjmp
   420  TEXT runtime·gogo(SB), NOSPLIT, $0-8
   421  	MOVQ	buf+0(FP), BX		// gobuf
   422  	MOVQ	gobuf_g(BX), DX
   423  	MOVQ	0(DX), CX		// make sure g != nil
   424  	JMP	gogo<>(SB)
   425  
   426  TEXT gogo<>(SB), NOSPLIT, $0
   427  	get_tls(CX)
   428  	MOVQ	DX, g(CX)
   429  	MOVQ	DX, R14		// set the g register
   430  	MOVQ	gobuf_sp(BX), SP	// restore SP
   431  	MOVQ	gobuf_ctxt(BX), DX
   432  	MOVQ	gobuf_bp(BX), BP
   433  	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   434  	MOVQ	$0, gobuf_ctxt(BX)
   435  	MOVQ	$0, gobuf_bp(BX)
   436  	MOVQ	gobuf_pc(BX), BX
   437  	JMP	BX
   438  
   439  // func mcall(fn func(*g))
   440  // Switch to m->g0's stack, call fn(g).
   441  // Fn must never return. It should gogo(&g->sched)
   442  // to keep running g.
   443  TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   444  	MOVQ	AX, DX	// DX = fn
   445  
   446  	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   447  	// resume execution in the caller's frame (implicit return). The caller's BP
   448  	// is also restored to support frame pointer unwinding.
   449  	MOVQ	SP, BX	// hide (SP) reads from vet
   450  	MOVQ	8(BX), BX	// caller's PC
   451  	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   452  	LEAQ	fn+0(FP), BX	// caller's SP
   453  	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   454  	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   455  	// can cause a frame pointer cycle, see CL 476235.
   456  	MOVQ	(BP), BX // caller's BP
   457  	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   458  
   459  	// switch to m->g0 & its stack, call fn
   460  	MOVQ	g_m(R14), BX
   461  	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   462  	CMPQ	SI, R14	// if g == m->g0 call badmcall
   463  	JNE	goodm
   464  	JMP	runtime·badmcall(SB)
   465  goodm:
   466  	MOVQ	R14, AX		// AX (and arg 0) = g
   467  	MOVQ	SI, R14		// g = g.m.g0
   468  	get_tls(CX)		// Set G in TLS
   469  	MOVQ	R14, g(CX)
   470  	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   471  	MOVQ	$0, BP	// clear frame pointer, as caller may execute on another M
   472  	PUSHQ	AX	// open up space for fn's arg spill slot
   473  	MOVQ	0(DX), R12
   474  	CALL	R12		// fn(g)
   475  	// The Windows native stack unwinder incorrectly classifies the next instruction
   476  	// as part of the function epilogue, producing a wrong call stack.
   477  	// Add a NOP to work around this issue. See go.dev/issue/67007.
   478  	BYTE	$0x90
   479  	POPQ	AX
   480  	JMP	runtime·badmcall2(SB)
   481  	RET
   482  
   483  // systemstack_switch is a dummy routine that systemstack leaves at the bottom
   484  // of the G stack. We need to distinguish the routine that
   485  // lives at the bottom of the G stack from the one that lives
   486  // at the top of the system stack because the one at the top of
   487  // the system stack terminates the stack walk (see topofstack()).
   488  // The frame layout needs to match systemstack
   489  // so that it can pretend to be systemstack_switch.
   490  TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   491  	UNDEF
   492  	// Make sure this function is not leaf,
   493  	// so the frame is saved.
   494  	CALL	runtime·abort(SB)
   495  	RET
   496  
   497  // func systemstack(fn func())
   498  TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   499  	MOVQ	fn+0(FP), DI	// DI = fn
   500  	get_tls(CX)
   501  	MOVQ	g(CX), AX	// AX = g
   502  	MOVQ	g_m(AX), BX	// BX = m
   503  
   504  	CMPQ	AX, m_gsignal(BX)
   505  	JEQ	noswitch
   506  
   507  	MOVQ	m_g0(BX), DX	// DX = g0
   508  	CMPQ	AX, DX
   509  	JEQ	noswitch
   510  
   511  	CMPQ	AX, m_curg(BX)
   512  	JNE	bad
   513  
   514  	// Switch stacks.
   515  	// The original frame pointer is stored in BP,
   516  	// which is useful for stack unwinding.
   517  	// Save our state in g->sched. Pretend to
   518  	// be systemstack_switch if the G stack is scanned.
   519  	CALL	gosave_systemstack_switch<>(SB)
   520  
   521  	// switch to g0
   522  	MOVQ	DX, g(CX)
   523  	MOVQ	DX, R14 // set the g register
   524  	MOVQ	(g_sched+gobuf_sp)(DX), SP
   525  
   526  	// call target function
   527  	MOVQ	DI, DX
   528  	MOVQ	0(DI), DI
   529  	CALL	DI
   530  
   531  	// switch back to g
   532  	get_tls(CX)
   533  	MOVQ	g(CX), AX
   534  	MOVQ	g_m(AX), BX
   535  	MOVQ	m_curg(BX), AX
   536  	MOVQ	AX, g(CX)
   537  	MOVQ	(g_sched+gobuf_sp)(AX), SP
   538  	MOVQ	(g_sched+gobuf_bp)(AX), BP
   539  	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   540  	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   541  	RET
   542  
   543  noswitch:
   544  	// already on m stack; tail call the function
   545  	// Using a tail call here cleans up tracebacks since we won't stop
   546  	// at an intermediate systemstack.
   547  	MOVQ	DI, DX
   548  	MOVQ	0(DI), DI
   549  	// The function epilogue is not called on a tail call.
   550  	// Pop BP from the stack to simulate it.
   551  	POPQ	BP
   552  	JMP	DI
   553  
   554  bad:
   555  	// Bad: g is not gsignal, not g0, not curg. What is it?
   556  	MOVQ	$runtime·badsystemstack(SB), AX
   557  	CALL	AX
   558  	INT	$3
   559  
   560  // func switchToCrashStack0(fn func())
   561  TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   562  	MOVQ	g_m(R14), BX // curm
   563  
   564  	// set g to gcrash
   565  	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   566  	MOVQ	BX, g_m(R14)            // g.m = curm
   567  	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   568  	get_tls(CX)
   569  	MOVQ	R14, g(CX)
   570  
   571  	// switch to crashstack
   572  	MOVQ	(g_stack+stack_hi)(R14), BX
   573  	SUBQ	$(4*8), BX
   574  	MOVQ	BX, SP
   575  
   576  	// call target function
   577  	MOVQ	AX, DX
   578  	MOVQ	0(AX), AX
   579  	CALL	AX
   580  
   581  	// should never return
   582  	CALL	runtime·abort(SB)
   583  	UNDEF
   584  
   585  /*
   586   * support for morestack
   587   */
   588  
   589  // Called during function prolog when more stack is needed.
   590  //
   591  // The traceback routines see morestack on a g0 as being
   592  // the top of a stack (for example, morestack calling newstack
   593  // calling the scheduler calling newm calling gc), so we must
   594  // record an argument size. For that purpose, it has no arguments.
   595  TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   596  	// Cannot grow scheduler stack (m->g0).
   597  	get_tls(CX)
   598  	MOVQ	g(CX), DI     // DI = g
   599  	MOVQ	g_m(DI), BX   // BX = m
   600  
   601  	// Set g->sched to context in f.
   602  	MOVQ	0(SP), AX // f's PC
   603  	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   604  	LEAQ	8(SP), AX // f's SP
   605  	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   606  	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   607  	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   608  
   609  	MOVQ	m_g0(BX), SI  // SI = m.g0
   610  	CMPQ	DI, SI
   611  	JNE	3(PC)
   612  	CALL	runtime·badmorestackg0(SB)
   613  	CALL	runtime·abort(SB)
   614  
   615  	// Cannot grow signal stack (m->gsignal).
   616  	MOVQ	m_gsignal(BX), SI
   617  	CMPQ	DI, SI
   618  	JNE	3(PC)
   619  	CALL	runtime·badmorestackgsignal(SB)
   620  	CALL	runtime·abort(SB)
   621  
   622  	// Called from f.
   623  	// Set m->morebuf to f's caller.
   624  	NOP	SP	// tell vet SP changed - stop checking offsets
   625  	MOVQ	8(SP), AX	// f's caller's PC
   626  	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   627  	LEAQ	16(SP), AX	// f's caller's SP
   628  	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   629  	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   630  
   631  	// Call newstack on m->g0's stack.
   632  	MOVQ	m_g0(BX), BX
   633  	MOVQ	BX, g(CX)
   634  	MOVQ	(g_sched+gobuf_sp)(BX), SP
   635  	MOVQ	$0, BP			// clear frame pointer, as caller may execute on another M
   636  	CALL	runtime·newstack(SB)
   637  	CALL	runtime·abort(SB)	// crash if newstack returns
   638  	RET
   639  
   640  // morestack but not preserving ctxt.
   641  TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   642  	MOVL	$0, DX
   643  	JMP	runtime·morestack(SB)
   644  
   645  // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   646  TEXT ·spillArgs(SB),NOSPLIT,$0-0
   647  	MOVQ AX, 0(R12)
   648  	MOVQ BX, 8(R12)
   649  	MOVQ CX, 16(R12)
   650  	MOVQ DI, 24(R12)
   651  	MOVQ SI, 32(R12)
   652  	MOVQ R8, 40(R12)
   653  	MOVQ R9, 48(R12)
   654  	MOVQ R10, 56(R12)
   655  	MOVQ R11, 64(R12)
   656  	MOVQ X0, 72(R12)
   657  	MOVQ X1, 80(R12)
   658  	MOVQ X2, 88(R12)
   659  	MOVQ X3, 96(R12)
   660  	MOVQ X4, 104(R12)
   661  	MOVQ X5, 112(R12)
   662  	MOVQ X6, 120(R12)
   663  	MOVQ X7, 128(R12)
   664  	MOVQ X8, 136(R12)
   665  	MOVQ X9, 144(R12)
   666  	MOVQ X10, 152(R12)
   667  	MOVQ X11, 160(R12)
   668  	MOVQ X12, 168(R12)
   669  	MOVQ X13, 176(R12)
   670  	MOVQ X14, 184(R12)
   671  	RET
   672  
   673  // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   674  TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   675  	MOVQ 0(R12), AX
   676  	MOVQ 8(R12), BX
   677  	MOVQ 16(R12), CX
   678  	MOVQ 24(R12), DI
   679  	MOVQ 32(R12), SI
   680  	MOVQ 40(R12), R8
   681  	MOVQ 48(R12), R9
   682  	MOVQ 56(R12), R10
   683  	MOVQ 64(R12), R11
   684  	MOVQ 72(R12), X0
   685  	MOVQ 80(R12), X1
   686  	MOVQ 88(R12), X2
   687  	MOVQ 96(R12), X3
   688  	MOVQ 104(R12), X4
   689  	MOVQ 112(R12), X5
   690  	MOVQ 120(R12), X6
   691  	MOVQ 128(R12), X7
   692  	MOVQ 136(R12), X8
   693  	MOVQ 144(R12), X9
   694  	MOVQ 152(R12), X10
   695  	MOVQ 160(R12), X11
   696  	MOVQ 168(R12), X12
   697  	MOVQ 176(R12), X13
   698  	MOVQ 184(R12), X14
   699  	RET
   700  
   701  // reflectcall: call a function with the given argument list
   702  // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   703  // we don't have variable-sized frames, so we use a small number
   704  // of constant-sized-frame functions to encode a few bits of size in the pc.
   705  // Caution: ugly multiline assembly macros in your future!
   706  
   707  #define DISPATCH(NAME,MAXSIZE)		\
   708  	CMPQ	CX, $MAXSIZE;		\
   709  	JA	3(PC);			\
   710  	MOVQ	$NAME(SB), AX;		\
   711  	JMP	AX
   712  // Note: can't just "JMP NAME(SB)" - bad inlining results.
   713  
   714  TEXT ·reflectcall(SB), NOSPLIT, $0-48
   715  	MOVLQZX frameSize+32(FP), CX
   716  	DISPATCH(runtime·call16, 16)
   717  	DISPATCH(runtime·call32, 32)
   718  	DISPATCH(runtime·call64, 64)
   719  	DISPATCH(runtime·call128, 128)
   720  	DISPATCH(runtime·call256, 256)
   721  	DISPATCH(runtime·call512, 512)
   722  	DISPATCH(runtime·call1024, 1024)
   723  	DISPATCH(runtime·call2048, 2048)
   724  	DISPATCH(runtime·call4096, 4096)
   725  	DISPATCH(runtime·call8192, 8192)
   726  	DISPATCH(runtime·call16384, 16384)
   727  	DISPATCH(runtime·call32768, 32768)
   728  	DISPATCH(runtime·call65536, 65536)
   729  	DISPATCH(runtime·call131072, 131072)
   730  	DISPATCH(runtime·call262144, 262144)
   731  	DISPATCH(runtime·call524288, 524288)
   732  	DISPATCH(runtime·call1048576, 1048576)
   733  	DISPATCH(runtime·call2097152, 2097152)
   734  	DISPATCH(runtime·call4194304, 4194304)
   735  	DISPATCH(runtime·call8388608, 8388608)
   736  	DISPATCH(runtime·call16777216, 16777216)
   737  	DISPATCH(runtime·call33554432, 33554432)
   738  	DISPATCH(runtime·call67108864, 67108864)
   739  	DISPATCH(runtime·call134217728, 134217728)
   740  	DISPATCH(runtime·call268435456, 268435456)
   741  	DISPATCH(runtime·call536870912, 536870912)
   742  	DISPATCH(runtime·call1073741824, 1073741824)
   743  	MOVQ	$runtime·badreflectcall(SB), AX
   744  	JMP	AX
   745  
   746  #define CALLFN(NAME,MAXSIZE)			\
   747  TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   748  	NO_LOCAL_POINTERS;			\
   749  	/* copy arguments to stack */		\
   750  	MOVQ	stackArgs+16(FP), SI;		\
   751  	MOVLQZX stackArgsSize+24(FP), CX;		\
   752  	MOVQ	SP, DI;				\
   753  	REP;MOVSB;				\
   754  	/* set up argument registers */		\
   755  	MOVQ    regArgs+40(FP), R12;		\
   756  	CALL    ·unspillArgs(SB);		\
   757  	/* call function */			\
   758  	MOVQ	f+8(FP), DX;			\
   759  	PCDATA  $PCDATA_StackMapIndex, $0;	\
   760  	MOVQ	(DX), R12;			\
   761  	CALL	R12;				\
   762  	/* copy register return values back */		\
   763  	MOVQ    regArgs+40(FP), R12;		\
   764  	CALL    ·spillArgs(SB);		\
   765  	MOVLQZX	stackArgsSize+24(FP), CX;		\
   766  	MOVLQZX	stackRetOffset+28(FP), BX;		\
   767  	MOVQ	stackArgs+16(FP), DI;		\
   768  	MOVQ	stackArgsType+0(FP), DX;		\
   769  	MOVQ	SP, SI;				\
   770  	ADDQ	BX, DI;				\
   771  	ADDQ	BX, SI;				\
   772  	SUBQ	BX, CX;				\
   773  	CALL	callRet<>(SB);			\
   774  	RET
   775  
   776  // callRet copies return values back at the end of call*. This is a
   777  // separate function so it can allocate stack space for the arguments
   778  // to reflectcallmove. It does not follow the Go ABI; it expects its
   779  // arguments in registers.
   780  TEXT callRet<>(SB), NOSPLIT, $40-0
   781  	NO_LOCAL_POINTERS
   782  	MOVQ	DX, 0(SP)
   783  	MOVQ	DI, 8(SP)
   784  	MOVQ	SI, 16(SP)
   785  	MOVQ	CX, 24(SP)
   786  	MOVQ	R12, 32(SP)
   787  	CALL	runtime·reflectcallmove(SB)
   788  	RET
   789  
   790  CALLFN(·call16, 16)
   791  CALLFN(·call32, 32)
   792  CALLFN(·call64, 64)
   793  CALLFN(·call128, 128)
   794  CALLFN(·call256, 256)
   795  CALLFN(·call512, 512)
   796  CALLFN(·call1024, 1024)
   797  CALLFN(·call2048, 2048)
   798  CALLFN(·call4096, 4096)
   799  CALLFN(·call8192, 8192)
   800  CALLFN(·call16384, 16384)
   801  CALLFN(·call32768, 32768)
   802  CALLFN(·call65536, 65536)
   803  CALLFN(·call131072, 131072)
   804  CALLFN(·call262144, 262144)
   805  CALLFN(·call524288, 524288)
   806  CALLFN(·call1048576, 1048576)
   807  CALLFN(·call2097152, 2097152)
   808  CALLFN(·call4194304, 4194304)
   809  CALLFN(·call8388608, 8388608)
   810  CALLFN(·call16777216, 16777216)
   811  CALLFN(·call33554432, 33554432)
   812  CALLFN(·call67108864, 67108864)
   813  CALLFN(·call134217728, 134217728)
   814  CALLFN(·call268435456, 268435456)
   815  CALLFN(·call536870912, 536870912)
   816  CALLFN(·call1073741824, 1073741824)
   817  
   818  TEXT runtime·procyield(SB),NOSPLIT,$0-0
   819  	MOVL	cycles+0(FP), AX
   820  again:
   821  	PAUSE
   822  	SUBL	$1, AX
   823  	JNZ	again
   824  	RET
   825  
   826  
   827  TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   828  	// Stores are already ordered on x86, so this is just a
   829  	// compile barrier.
   830  	RET
   831  
   832  // Save state of caller into g->sched,
   833  // but using fake PC from systemstack_switch.
   834  // Must only be called from functions with frame pointer
   835  // and without locals ($0) or else unwinding from
   836  // systemstack_switch is incorrect.
   837  // Smashes R9.
   838  TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   839  	// Take systemstack_switch PC and add 8 bytes to skip
   840  	// the prologue. The final location does not matter
   841  	// as long as we are between the prologue and the epilogue.
   842  	MOVQ	$runtime·systemstack_switch+8(SB), R9
   843  	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   844  	LEAQ	8(SP), R9
   845  	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   846  	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   847  	// Assert ctxt is zero. See func save.
   848  	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   849  	TESTQ	R9, R9
   850  	JZ	2(PC)
   851  	CALL	runtime·abort(SB)
   852  	RET
   853  
   854  // func asmcgocall_no_g(fn, arg unsafe.Pointer)
   855  // Call fn(arg) aligned appropriately for the gcc ABI.
   856  // Called on a system stack, and there may be no g yet (during needm).
   857  TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   858  	MOVQ	fn+0(FP), AX
   859  	MOVQ	arg+8(FP), BX
   860  	MOVQ	SP, DX
   861  	ANDQ	$~15, SP	// alignment
   862  	MOVQ	DX, 8(SP)
   863  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   864  	MOVQ	BX, CX		// CX = first argument in Win64
   865  	CALL	AX
   866  	MOVQ	8(SP), DX
   867  	MOVQ	DX, SP
   868  	RET
   869  
   870  // asmcgocall_landingpad calls AX with BX as argument.
   871  // Must be called on the system stack.
   872  TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   873  #ifdef GOOS_windows
   874  	// Make sure we have enough room for 4 stack-backed fast-call
   875  	// registers as per Windows amd64 calling convention.
   876  	ADJSP	$32
   877  	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   878  	// thrown in the cgo call. Exceptions that reach this function will be
   879  	// handled by runtime.sehtramp thanks to the SEH metadata added
   880  	// by the compiler.
   881  	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   882  	// because its initial stack pointer can be outside the system stack bounds,
   883  	// and Windows stops the stack unwinding without calling the exception handler
   884  	// when it reaches that point.
   885  	MOVQ	BX, CX		// CX = first argument in Win64
   886  	CALL	AX
   887  	// The exception handler is not called if the next instruction is part of
   888  	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   889  	BYTE	$0x90
   890  	ADJSP	$-32
   891  	RET
   892  #endif
   893  	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   894  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   895  	JMP	AX
   896  
   897  // func asmcgocall(fn, arg unsafe.Pointer) int32
   898  // Call fn(arg) on the scheduler stack,
   899  // aligned appropriately for the gcc ABI.
   900  // See cgocall.go for more details.
   901  TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   902  	MOVQ	fn+0(FP), AX
   903  	MOVQ	arg+8(FP), BX
   904  
   905  	MOVQ	SP, DX
   906  
   907  	// Figure out if we need to switch to m->g0 stack.
   908  	// We get called to create new OS threads too, and those
   909  	// come in on the m->g0 stack already. Or we might already
   910  	// be on the m->gsignal stack.
   911  	get_tls(CX)
   912  	MOVQ	g(CX), DI
   913  	CMPQ	DI, $0
   914  	JEQ	nosave
   915  	MOVQ	g_m(DI), R8
   916  	MOVQ	m_gsignal(R8), SI
   917  	CMPQ	DI, SI
   918  	JEQ	nosave
   919  	MOVQ	m_g0(R8), SI
   920  	CMPQ	DI, SI
   921  	JEQ	nosave
   922  
   923  	// Switch to system stack.
   924  	// The original frame pointer is stored in BP,
   925  	// which is useful for stack unwinding.
   926  	CALL	gosave_systemstack_switch<>(SB)
   927  	MOVQ	SI, g(CX)
   928  	MOVQ	(g_sched+gobuf_sp)(SI), SP
   929  
   930  	// Now on a scheduling stack (a pthread-created stack).
   931  	SUBQ	$16, SP
   932  	ANDQ	$~15, SP	// alignment for gcc ABI
   933  	MOVQ	DI, 8(SP)	// save g
   934  	MOVQ	(g_stack+stack_hi)(DI), DI
   935  	SUBQ	DX, DI
   936  	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   937  	CALL	runtime·asmcgocall_landingpad(SB)
   938  
   939  	// Restore registers, g, stack pointer.
   940  	get_tls(CX)
   941  	MOVQ	8(SP), DI
   942  	MOVQ	(g_stack+stack_hi)(DI), SI
   943  	SUBQ	0(SP), SI
   944  	MOVQ	DI, g(CX)
   945  	MOVQ	SI, SP
   946  
   947  	MOVL	AX, ret+16(FP)
   948  	RET
   949  
   950  nosave:
   951  	// Running on a system stack, perhaps even without a g.
   952  	// Having no g can happen during thread creation or thread teardown
   953  	// (see needm/dropm on Solaris, for example).
   954  	// This code is like the above sequence but without saving/restoring g
   955  	// and without worrying about the stack moving out from under us
   956  	// (because we're on a system stack, not a goroutine stack).
   957  	// The above code could be used directly if already on a system stack,
   958  	// but then the only path through this code would be a rare case on Solaris.
   959  	// Using this code for all "already on system stack" calls exercises it more,
   960  	// which should help keep it correct.
   961  	SUBQ	$16, SP
   962  	ANDQ	$~15, SP
   963  	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   964  	MOVQ	DX, 0(SP)	// save original stack pointer
   965  	CALL	runtime·asmcgocall_landingpad(SB)
   966  	MOVQ	0(SP), SI	// restore original stack pointer
   967  	MOVQ	SI, SP
   968  	MOVL	AX, ret+16(FP)
   969  	RET
   970  
   971  #ifdef GOOS_windows
   972  // Dummy TLS that's used on Windows so that we don't crash trying
   973  // to restore the G register in needm. needm and its callees are
   974  // very careful never to actually use the G, the TLS just can't be
   975  // unset since we're in Go code.
   976  GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   977  #endif
   978  
   979  // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   980  // See cgocall.go for more details.
   981  TEXT ·cgocallback(SB),NOSPLIT,$24-24
   982  	NO_LOCAL_POINTERS
   983  
   984  	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   985  	// It is used to dropm while thread is exiting.
   986  	MOVQ	fn+0(FP), AX
   987  	CMPQ	AX, $0
   988  	JNE	loadg
   989  	// Restore the g from frame.
   990  	get_tls(CX)
   991  	MOVQ	frame+8(FP), BX
   992  	MOVQ	BX, g(CX)
   993  	JMP	dropm
   994  
   995  loadg:
   996  	// If g is nil, Go did not create the current thread,
   997  	// or if this thread never called into Go on pthread platforms.
   998  	// Call needm to obtain one m for temporary use.
   999  	// In this case, we're running on the thread stack, so there's
  1000  	// lots of space, but the linker doesn't know. Hide the call from
  1001  	// the linker analysis by using an indirect call through AX.
  1002  	get_tls(CX)
  1003  #ifdef GOOS_windows
  1004  	MOVL	$0, BX
  1005  	CMPQ	CX, $0
  1006  	JEQ	2(PC)
  1007  #endif
  1008  	MOVQ	g(CX), BX
  1009  	CMPQ	BX, $0
  1010  	JEQ	needm
  1011  	MOVQ	g_m(BX), BX
  1012  	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
  1013  	JMP	havem
  1014  needm:
  1015  #ifdef GOOS_windows
  1016  	// Set up a dummy TLS value. needm is careful not to use it,
  1017  	// but it needs to be there to prevent autogenerated code from
  1018  	// crashing when it loads from it.
  1019  	// We don't need to clear it or anything later because needm
  1020  	// will set up TLS properly.
  1021  	MOVQ	$zeroTLS<>(SB), DI
  1022  	CALL	runtime·settls(SB)
  1023  #endif
  1024  	// On some platforms (Windows) we cannot call needm through
  1025  	// an ABI wrapper because there's no TLS set up, and the ABI
  1026  	// wrapper will try to restore the G register (R14) from TLS.
  1027  	// Clear X15 because Go expects it and we're not calling
  1028  	// through a wrapper, but otherwise avoid setting the G
  1029  	// register in the wrapper and call needm directly. It
  1030  	// takes no arguments and doesn't return any values so
  1031  	// there's no need to handle that. Clear R14 so that there's
  1032  	// a bad value in there, in case needm tries to use it.
  1033  	XORPS	X15, X15
  1034  	XORQ    R14, R14
  1035  	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1036  	CALL	AX
  1037  	MOVQ	$0, savedm-8(SP)
  1038  	get_tls(CX)
  1039  	MOVQ	g(CX), BX
  1040  	MOVQ	g_m(BX), BX
  1041  
  1042  	// Set m->sched.sp = SP, so that if a panic happens
  1043  	// during the function we are about to execute, it will
  1044  	// have a valid SP to run on the g0 stack.
  1045  	// The next few lines (after the havem label)
  1046  	// will save this SP onto the stack and then write
  1047  	// the same SP back to m->sched.sp. That seems redundant,
  1048  	// but if an unrecovered panic happens, unwindm will
  1049  	// restore the g->sched.sp from the stack location
  1050  	// and then systemstack will try to use it. If we don't set it here,
  1051  	// that restored SP will be uninitialized (typically 0) and
  1052  	// will not be usable.
  1053  	MOVQ	m_g0(BX), SI
  1054  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1055  
  1056  havem:
  1057  	// Now there's a valid m, and we're running on its m->g0.
  1058  	// Save current m->g0->sched.sp on stack and then set it to SP.
  1059  	// Save current sp in m->g0->sched.sp in preparation for
  1060  	// switch back to m->curg stack.
  1061  	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1062  	MOVQ	m_g0(BX), SI
  1063  	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1064  	MOVQ	AX, 0(SP)
  1065  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1066  
  1067  	// Switch to m->curg stack and call runtime.cgocallbackg.
  1068  	// Because we are taking over the execution of m->curg
  1069  	// but *not* resuming what had been running, we need to
  1070  	// save that information (m->curg->sched) so we can restore it.
  1071  	// We can restore m->curg->sched.sp easily, because calling
  1072  	// runtime.cgocallbackg leaves SP unchanged upon return.
  1073  	// To save m->curg->sched.pc, we push it onto the curg stack and
  1074  	// open a frame the same size as cgocallback's g0 frame.
  1075  	// Once we switch to the curg stack, the pushed PC will appear
  1076  	// to be the return PC of cgocallback, so that the traceback
  1077  	// will seamlessly trace back into the earlier calls.
  1078  	MOVQ	m_curg(BX), SI
  1079  	MOVQ	SI, g(CX)
  1080  	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1081  	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1082  	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1083  	// Gather our arguments into registers.
  1084  	MOVQ	fn+0(FP), BX
  1085  	MOVQ	frame+8(FP), CX
  1086  	MOVQ	ctxt+16(FP), DX
  1087  	// Compute the size of the frame, including return PC and, if
  1088  	// GOEXPERIMENT=framepointer, the saved base pointer
  1089  	LEAQ	fn+0(FP), AX
  1090  	SUBQ	SP, AX   // AX is our actual frame size
  1091  	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1092  	MOVQ	DI, SP
  1093  
  1094  	MOVQ	BX, 0(SP)
  1095  	MOVQ	CX, 8(SP)
  1096  	MOVQ	DX, 16(SP)
  1097  	MOVQ	$runtime·cgocallbackg(SB), AX
  1098  	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1099  
  1100  	// Compute the size of the frame again. FP and SP have
  1101  	// completely different values here than they did above,
  1102  	// but only their difference matters.
  1103  	LEAQ	fn+0(FP), AX
  1104  	SUBQ	SP, AX
  1105  
  1106  	// Restore g->sched (== m->curg->sched) from saved values.
  1107  	get_tls(CX)
  1108  	MOVQ	g(CX), SI
  1109  	MOVQ	SP, DI
  1110  	ADDQ	AX, DI
  1111  	MOVQ	-8(DI), BX
  1112  	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1113  	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1114  
  1115  	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1116  	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1117  	// so we do not have to restore it.)
  1118  	MOVQ	g(CX), BX
  1119  	MOVQ	g_m(BX), BX
  1120  	MOVQ	m_g0(BX), SI
  1121  	MOVQ	SI, g(CX)
  1122  	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1123  	MOVQ	0(SP), AX
  1124  	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1125  
  1126  	// If the m on entry was nil, we called needm above to borrow an m,
  1127  	// 1. for the duration of the call on non-pthread platforms,
  1128  	// 2. or the duration of the C thread alive on pthread platforms.
  1129  	// If the m on entry wasn't nil,
  1130  	// 1. the thread might be a Go thread,
  1131  	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1132  	//    since then we skip dropm to reuse the m in the first call.
  1133  	MOVQ	savedm-8(SP), BX
  1134  	CMPQ	BX, $0
  1135  	JNE	done
  1136  
  1137  	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1138  	MOVQ	_cgo_pthread_key_created(SB), AX
  1139  	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1140  	CMPQ	AX, $0
  1141  	JEQ	dropm
  1142  	CMPQ	(AX), $0
  1143  	JNE	done
  1144  
  1145  dropm:
  1146  	MOVQ	$runtime·dropm(SB), AX
  1147  	CALL	AX
  1148  #ifdef GOOS_windows
  1149  	// We need to clear the TLS pointer in case the next
  1150  	// thread that comes into Go tries to reuse that space
  1151  	// but uses the same M.
  1152  	XORQ	DI, DI
  1153  	CALL	runtime·settls(SB)
  1154  #endif
  1155  done:
  1156  
  1157  	// Done!
  1158  	RET
  1159  
  1160  // func setg(gg *g)
  1161  // set g. for use by needm.
  1162  TEXT runtime·setg(SB), NOSPLIT, $0-8
  1163  	MOVQ	gg+0(FP), BX
  1164  	get_tls(CX)
  1165  	MOVQ	BX, g(CX)
  1166  	RET
  1167  
  1168  // void setg_gcc(G*); set g called from gcc.
  1169  TEXT setg_gcc<>(SB),NOSPLIT,$0
  1170  	get_tls(AX)
  1171  	MOVQ	DI, g(AX)
  1172  	MOVQ	DI, R14 // set the g register
  1173  	RET
  1174  
  1175  TEXT runtime·abort(SB),NOSPLIT,$0-0
  1176  	INT	$3
  1177  loop:
  1178  	JMP	loop
  1179  
  1180  // check that SP is in range [g->stack.lo, g->stack.hi)
  1181  TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1182  	get_tls(CX)
  1183  	MOVQ	g(CX), AX
  1184  	CMPQ	(g_stack+stack_hi)(AX), SP
  1185  	JHI	2(PC)
  1186  	CALL	runtime·abort(SB)
  1187  	CMPQ	SP, (g_stack+stack_lo)(AX)
  1188  	JHI	2(PC)
  1189  	CALL	runtime·abort(SB)
  1190  	RET
  1191  
  1192  // func cputicks() int64
  1193  TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1194  	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1195  	JNE	fences
  1196  	// Instruction stream serializing RDTSCP is supported.
  1197  	// RDTSCP is supported by Intel Nehalem (2008) and
  1198  	// AMD K8 Rev. F (2006) and newer.
  1199  	RDTSCP
  1200  done:
  1201  	SHLQ	$32, DX
  1202  	ADDQ	DX, AX
  1203  	MOVQ	AX, ret+0(FP)
  1204  	RET
  1205  fences:
  1206  	// MFENCE is instruction stream serializing and flushes the
  1207  	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1208  	// are dependent on MSR C001_1029 and CPU generation.
  1209  	// LFENCE on Intel does wait for all previous instructions to have executed.
  1210  	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1211  	// previous instructions executed and all previous loads and stores to globally visible.
  1212  	// Using MFENCE;LFENCE here aligns the serializing properties without
  1213  	// runtime detection of CPU manufacturer.
  1214  	MFENCE
  1215  	LFENCE
  1216  	RDTSC
  1217  	JMP done
  1218  
  1219  // func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1220  // hash function using AES hardware instructions
  1221  TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1222  	// AX = ptr to data
  1223  	// BX = seed
  1224  	// CX = size
  1225  	CMPB	runtime·useAeshash(SB), $0
  1226  	JEQ	noaes
  1227  	JMP	aeshashbody<>(SB)
  1228  noaes:
  1229  	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1230  
  1231  // func strhash(p unsafe.Pointer, h uintptr) uintptr
  1232  TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1233  	// AX = ptr to string struct
  1234  	// BX = seed
  1235  	CMPB	runtime·useAeshash(SB), $0
  1236  	JEQ	noaes
  1237  	MOVQ	8(AX), CX	// length of string
  1238  	MOVQ	(AX), AX	// string data
  1239  	JMP	aeshashbody<>(SB)
  1240  noaes:
  1241  	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1242  
  1243  // AX: data
  1244  // BX: hash seed
  1245  // CX: length
  1246  // At return: AX = return value
  1247  TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1248  	// Fill an SSE register with our seeds.
  1249  	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1250  	PINSRW	$4, CX, X0			// 16 bits of length
  1251  	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1252  	MOVO	X0, X1				// save unscrambled seed
  1253  	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1254  	AESENC	X0, X0				// scramble seed
  1255  
  1256  	CMPQ	CX, $16
  1257  	JB	aes0to15
  1258  	JE	aes16
  1259  	CMPQ	CX, $32
  1260  	JBE	aes17to32
  1261  	CMPQ	CX, $64
  1262  	JBE	aes33to64
  1263  	CMPQ	CX, $128
  1264  	JBE	aes65to128
  1265  	JMP	aes129plus
  1266  
  1267  aes0to15:
  1268  	TESTQ	CX, CX
  1269  	JE	aes0
  1270  
  1271  	ADDQ	$16, AX
  1272  	TESTW	$0xff0, AX
  1273  	JE	endofpage
  1274  
  1275  	// 16 bytes loaded at this address won't cross
  1276  	// a page boundary, so we can load it directly.
  1277  	MOVOU	-16(AX), X1
  1278  	ADDQ	CX, CX
  1279  	MOVQ	$masks<>(SB), AX
  1280  	PAND	(AX)(CX*8), X1
  1281  final1:
  1282  	PXOR	X0, X1	// xor data with seed
  1283  	AESENC	X1, X1	// scramble combo 3 times
  1284  	AESENC	X1, X1
  1285  	AESENC	X1, X1
  1286  	MOVQ	X1, AX	// return X1
  1287  	RET
  1288  
  1289  endofpage:
  1290  	// address ends in 1111xxxx. Might be up against
  1291  	// a page boundary, so load ending at last byte.
  1292  	// Then shift bytes down using pshufb.
  1293  	MOVOU	-32(AX)(CX*1), X1
  1294  	ADDQ	CX, CX
  1295  	MOVQ	$shifts<>(SB), AX
  1296  	PSHUFB	(AX)(CX*8), X1
  1297  	JMP	final1
  1298  
  1299  aes0:
  1300  	// Return scrambled input seed
  1301  	AESENC	X0, X0
  1302  	MOVQ	X0, AX	// return X0
  1303  	RET
  1304  
  1305  aes16:
  1306  	MOVOU	(AX), X1
  1307  	JMP	final1
  1308  
  1309  aes17to32:
  1310  	// make second starting seed
  1311  	PXOR	runtime·aeskeysched+16(SB), X1
  1312  	AESENC	X1, X1
  1313  
  1314  	// load data to be hashed
  1315  	MOVOU	(AX), X2
  1316  	MOVOU	-16(AX)(CX*1), X3
  1317  
  1318  	// xor with seed
  1319  	PXOR	X0, X2
  1320  	PXOR	X1, X3
  1321  
  1322  	// scramble 3 times
  1323  	AESENC	X2, X2
  1324  	AESENC	X3, X3
  1325  	AESENC	X2, X2
  1326  	AESENC	X3, X3
  1327  	AESENC	X2, X2
  1328  	AESENC	X3, X3
  1329  
  1330  	// combine results
  1331  	PXOR	X3, X2
  1332  	MOVQ	X2, AX	// return X2
  1333  	RET
  1334  
  1335  aes33to64:
  1336  	// make 3 more starting seeds
  1337  	MOVO	X1, X2
  1338  	MOVO	X1, X3
  1339  	PXOR	runtime·aeskeysched+16(SB), X1
  1340  	PXOR	runtime·aeskeysched+32(SB), X2
  1341  	PXOR	runtime·aeskeysched+48(SB), X3
  1342  	AESENC	X1, X1
  1343  	AESENC	X2, X2
  1344  	AESENC	X3, X3
  1345  
  1346  	MOVOU	(AX), X4
  1347  	MOVOU	16(AX), X5
  1348  	MOVOU	-32(AX)(CX*1), X6
  1349  	MOVOU	-16(AX)(CX*1), X7
  1350  
  1351  	PXOR	X0, X4
  1352  	PXOR	X1, X5
  1353  	PXOR	X2, X6
  1354  	PXOR	X3, X7
  1355  
  1356  	AESENC	X4, X4
  1357  	AESENC	X5, X5
  1358  	AESENC	X6, X6
  1359  	AESENC	X7, X7
  1360  
  1361  	AESENC	X4, X4
  1362  	AESENC	X5, X5
  1363  	AESENC	X6, X6
  1364  	AESENC	X7, X7
  1365  
  1366  	AESENC	X4, X4
  1367  	AESENC	X5, X5
  1368  	AESENC	X6, X6
  1369  	AESENC	X7, X7
  1370  
  1371  	PXOR	X6, X4
  1372  	PXOR	X7, X5
  1373  	PXOR	X5, X4
  1374  	MOVQ	X4, AX	// return X4
  1375  	RET
  1376  
  1377  aes65to128:
  1378  	// make 7 more starting seeds
  1379  	MOVO	X1, X2
  1380  	MOVO	X1, X3
  1381  	MOVO	X1, X4
  1382  	MOVO	X1, X5
  1383  	MOVO	X1, X6
  1384  	MOVO	X1, X7
  1385  	PXOR	runtime·aeskeysched+16(SB), X1
  1386  	PXOR	runtime·aeskeysched+32(SB), X2
  1387  	PXOR	runtime·aeskeysched+48(SB), X3
  1388  	PXOR	runtime·aeskeysched+64(SB), X4
  1389  	PXOR	runtime·aeskeysched+80(SB), X5
  1390  	PXOR	runtime·aeskeysched+96(SB), X6
  1391  	PXOR	runtime·aeskeysched+112(SB), X7
  1392  	AESENC	X1, X1
  1393  	AESENC	X2, X2
  1394  	AESENC	X3, X3
  1395  	AESENC	X4, X4
  1396  	AESENC	X5, X5
  1397  	AESENC	X6, X6
  1398  	AESENC	X7, X7
  1399  
  1400  	// load data
  1401  	MOVOU	(AX), X8
  1402  	MOVOU	16(AX), X9
  1403  	MOVOU	32(AX), X10
  1404  	MOVOU	48(AX), X11
  1405  	MOVOU	-64(AX)(CX*1), X12
  1406  	MOVOU	-48(AX)(CX*1), X13
  1407  	MOVOU	-32(AX)(CX*1), X14
  1408  	MOVOU	-16(AX)(CX*1), X15
  1409  
  1410  	// xor with seed
  1411  	PXOR	X0, X8
  1412  	PXOR	X1, X9
  1413  	PXOR	X2, X10
  1414  	PXOR	X3, X11
  1415  	PXOR	X4, X12
  1416  	PXOR	X5, X13
  1417  	PXOR	X6, X14
  1418  	PXOR	X7, X15
  1419  
  1420  	// scramble 3 times
  1421  	AESENC	X8, X8
  1422  	AESENC	X9, X9
  1423  	AESENC	X10, X10
  1424  	AESENC	X11, X11
  1425  	AESENC	X12, X12
  1426  	AESENC	X13, X13
  1427  	AESENC	X14, X14
  1428  	AESENC	X15, X15
  1429  
  1430  	AESENC	X8, X8
  1431  	AESENC	X9, X9
  1432  	AESENC	X10, X10
  1433  	AESENC	X11, X11
  1434  	AESENC	X12, X12
  1435  	AESENC	X13, X13
  1436  	AESENC	X14, X14
  1437  	AESENC	X15, X15
  1438  
  1439  	AESENC	X8, X8
  1440  	AESENC	X9, X9
  1441  	AESENC	X10, X10
  1442  	AESENC	X11, X11
  1443  	AESENC	X12, X12
  1444  	AESENC	X13, X13
  1445  	AESENC	X14, X14
  1446  	AESENC	X15, X15
  1447  
  1448  	// combine results
  1449  	PXOR	X12, X8
  1450  	PXOR	X13, X9
  1451  	PXOR	X14, X10
  1452  	PXOR	X15, X11
  1453  	PXOR	X10, X8
  1454  	PXOR	X11, X9
  1455  	PXOR	X9, X8
  1456  	// X15 must be zero on return
  1457  	PXOR	X15, X15
  1458  	MOVQ	X8, AX	// return X8
  1459  	RET
  1460  
  1461  aes129plus:
  1462  	// make 7 more starting seeds
  1463  	MOVO	X1, X2
  1464  	MOVO	X1, X3
  1465  	MOVO	X1, X4
  1466  	MOVO	X1, X5
  1467  	MOVO	X1, X6
  1468  	MOVO	X1, X7
  1469  	PXOR	runtime·aeskeysched+16(SB), X1
  1470  	PXOR	runtime·aeskeysched+32(SB), X2
  1471  	PXOR	runtime·aeskeysched+48(SB), X3
  1472  	PXOR	runtime·aeskeysched+64(SB), X4
  1473  	PXOR	runtime·aeskeysched+80(SB), X5
  1474  	PXOR	runtime·aeskeysched+96(SB), X6
  1475  	PXOR	runtime·aeskeysched+112(SB), X7
  1476  	AESENC	X1, X1
  1477  	AESENC	X2, X2
  1478  	AESENC	X3, X3
  1479  	AESENC	X4, X4
  1480  	AESENC	X5, X5
  1481  	AESENC	X6, X6
  1482  	AESENC	X7, X7
  1483  
  1484  	// start with last (possibly overlapping) block
  1485  	MOVOU	-128(AX)(CX*1), X8
  1486  	MOVOU	-112(AX)(CX*1), X9
  1487  	MOVOU	-96(AX)(CX*1), X10
  1488  	MOVOU	-80(AX)(CX*1), X11
  1489  	MOVOU	-64(AX)(CX*1), X12
  1490  	MOVOU	-48(AX)(CX*1), X13
  1491  	MOVOU	-32(AX)(CX*1), X14
  1492  	MOVOU	-16(AX)(CX*1), X15
  1493  
  1494  	// xor in seed
  1495  	PXOR	X0, X8
  1496  	PXOR	X1, X9
  1497  	PXOR	X2, X10
  1498  	PXOR	X3, X11
  1499  	PXOR	X4, X12
  1500  	PXOR	X5, X13
  1501  	PXOR	X6, X14
  1502  	PXOR	X7, X15
  1503  
  1504  	// compute number of remaining 128-byte blocks
  1505  	DECQ	CX
  1506  	SHRQ	$7, CX
  1507  
  1508  	PCALIGN $16
  1509  aesloop:
  1510  	// scramble state
  1511  	AESENC	X8, X8
  1512  	AESENC	X9, X9
  1513  	AESENC	X10, X10
  1514  	AESENC	X11, X11
  1515  	AESENC	X12, X12
  1516  	AESENC	X13, X13
  1517  	AESENC	X14, X14
  1518  	AESENC	X15, X15
  1519  
  1520  	// scramble state, xor in a block
  1521  	MOVOU	(AX), X0
  1522  	MOVOU	16(AX), X1
  1523  	MOVOU	32(AX), X2
  1524  	MOVOU	48(AX), X3
  1525  	AESENC	X0, X8
  1526  	AESENC	X1, X9
  1527  	AESENC	X2, X10
  1528  	AESENC	X3, X11
  1529  	MOVOU	64(AX), X4
  1530  	MOVOU	80(AX), X5
  1531  	MOVOU	96(AX), X6
  1532  	MOVOU	112(AX), X7
  1533  	AESENC	X4, X12
  1534  	AESENC	X5, X13
  1535  	AESENC	X6, X14
  1536  	AESENC	X7, X15
  1537  
  1538  	ADDQ	$128, AX
  1539  	DECQ	CX
  1540  	JNE	aesloop
  1541  
  1542  	// 3 more scrambles to finish
  1543  	AESENC	X8, X8
  1544  	AESENC	X9, X9
  1545  	AESENC	X10, X10
  1546  	AESENC	X11, X11
  1547  	AESENC	X12, X12
  1548  	AESENC	X13, X13
  1549  	AESENC	X14, X14
  1550  	AESENC	X15, X15
  1551  	AESENC	X8, X8
  1552  	AESENC	X9, X9
  1553  	AESENC	X10, X10
  1554  	AESENC	X11, X11
  1555  	AESENC	X12, X12
  1556  	AESENC	X13, X13
  1557  	AESENC	X14, X14
  1558  	AESENC	X15, X15
  1559  	AESENC	X8, X8
  1560  	AESENC	X9, X9
  1561  	AESENC	X10, X10
  1562  	AESENC	X11, X11
  1563  	AESENC	X12, X12
  1564  	AESENC	X13, X13
  1565  	AESENC	X14, X14
  1566  	AESENC	X15, X15
  1567  
  1568  	PXOR	X12, X8
  1569  	PXOR	X13, X9
  1570  	PXOR	X14, X10
  1571  	PXOR	X15, X11
  1572  	PXOR	X10, X8
  1573  	PXOR	X11, X9
  1574  	PXOR	X9, X8
  1575  	// X15 must be zero on return
  1576  	PXOR	X15, X15
  1577  	MOVQ	X8, AX	// return X8
  1578  	RET
  1579  
  1580  // func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1581  // ABIInternal for performance.
  1582  TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1583  	// AX = ptr to data
  1584  	// BX = seed
  1585  	CMPB	runtime·useAeshash(SB), $0
  1586  	JEQ	noaes
  1587  	MOVQ	BX, X0	// X0 = seed
  1588  	PINSRD	$2, (AX), X0	// data
  1589  	AESENC	runtime·aeskeysched+0(SB), X0
  1590  	AESENC	runtime·aeskeysched+16(SB), X0
  1591  	AESENC	runtime·aeskeysched+32(SB), X0
  1592  	MOVQ	X0, AX	// return X0
  1593  	RET
  1594  noaes:
  1595  	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1596  
  1597  // func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1598  // ABIInternal for performance.
  1599  TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1600  	// AX = ptr to data
  1601  	// BX = seed
  1602  	CMPB	runtime·useAeshash(SB), $0
  1603  	JEQ	noaes
  1604  	MOVQ	BX, X0	// X0 = seed
  1605  	PINSRQ	$1, (AX), X0	// data
  1606  	AESENC	runtime·aeskeysched+0(SB), X0
  1607  	AESENC	runtime·aeskeysched+16(SB), X0
  1608  	AESENC	runtime·aeskeysched+32(SB), X0
  1609  	MOVQ	X0, AX	// return X0
  1610  	RET
  1611  noaes:
  1612  	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1613  
  1614  // simple mask to get rid of data in the high part of the register.
  1615  DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1616  DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1617  DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1618  DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1619  DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1620  DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1621  DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1622  DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1623  DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1624  DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1625  DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1626  DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1627  DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1628  DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1629  DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1630  DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1631  DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1632  DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1633  DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1634  DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1635  DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1636  DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1637  DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1638  DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1639  DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1640  DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1641  DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1642  DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1643  DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1644  DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1645  DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1646  DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1647  GLOBL masks<>(SB),RODATA,$256
  1648  
  1649  // func checkASM() bool
  1650  TEXT ·checkASM(SB),NOSPLIT,$0-1
  1651  	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1652  	MOVQ	$masks<>(SB), AX
  1653  	MOVQ	$shifts<>(SB), BX
  1654  	ORQ	BX, AX
  1655  	TESTQ	$15, AX
  1656  	SETEQ	ret+0(FP)
  1657  	RET
  1658  
  1659  // these are arguments to pshufb. They move data down from
  1660  // the high bytes of the register to the low bytes of the register.
  1661  // index is how many bytes to move.
  1662  DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1663  DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1664  DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1665  DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1666  DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1667  DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1668  DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1669  DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1670  DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1671  DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1672  DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1673  DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1674  DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1675  DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1676  DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1677  DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1678  DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1679  DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1680  DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1681  DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1682  DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1683  DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1684  DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1685  DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1686  DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1687  DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1688  DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1689  DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1690  DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1691  DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1692  DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1693  DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1694  GLOBL shifts<>(SB),RODATA,$256
  1695  
  1696  // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1697  // Must obey the gcc calling convention.
  1698  TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1699  	get_tls(CX)
  1700  	MOVQ	g(CX), AX
  1701  	MOVQ	g_m(AX), AX
  1702  	MOVQ	m_curg(AX), AX
  1703  	MOVQ	(g_stack+stack_hi)(AX), AX
  1704  	RET
  1705  
  1706  // The top-most function running on a goroutine
  1707  // returns to goexit+PCQuantum.
  1708  TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1709  	BYTE	$0x90	// NOP
  1710  	CALL	runtime·goexit1(SB)	// does not return
  1711  	// traceback from goexit1 must hit code range of goexit
  1712  	BYTE	$0x90	// NOP
  1713  
  1714  // This is called from .init_array and follows the platform, not Go, ABI.
  1715  TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1716  	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1717  	MOVQ	runtime·lastmoduledatap(SB), AX
  1718  	MOVQ	DI, moduledata_next(AX)
  1719  	MOVQ	DI, runtime·lastmoduledatap(SB)
  1720  	POPQ	R15
  1721  	RET
  1722  
  1723  // Initialize special registers then jump to sigpanic.
  1724  // This function is injected from the signal handler for panicking
  1725  // signals. It is quite painful to set X15 in the signal context,
  1726  // so we do it here.
  1727  TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1728  	get_tls(R14)
  1729  	MOVQ	g(R14), R14
  1730  	XORPS	X15, X15
  1731  	JMP	·sigpanic<ABIInternal>(SB)
  1732  
  1733  // gcWriteBarrier informs the GC about heap pointer writes.
  1734  //
  1735  // gcWriteBarrier returns space in a write barrier buffer which
  1736  // should be filled in by the caller.
  1737  // gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1738  // number of bytes of buffer needed in R11, and returns a pointer
  1739  // to the buffer space in R11.
  1740  // It clobbers FLAGS. It does not clobber any general-purpose registers,
  1741  // but may clobber others (e.g., SSE registers).
  1742  // Typical use would be, when doing *(CX+88) = AX
  1743  //     CMPL    $0, runtime.writeBarrier(SB)
  1744  //     JEQ     dowrite
  1745  //     CALL    runtime.gcBatchBarrier2(SB)
  1746  //     MOVQ    AX, (R11)
  1747  //     MOVQ    88(CX), DX
  1748  //     MOVQ    DX, 8(R11)
  1749  // dowrite:
  1750  //     MOVQ    AX, 88(CX)
  1751  TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1752  	// Save the registers clobbered by the fast path. This is slightly
  1753  	// faster than having the caller spill these.
  1754  	MOVQ	R12, 96(SP)
  1755  	MOVQ	R13, 104(SP)
  1756  retry:
  1757  	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1758  	// across a sequence of write barriers.
  1759  	MOVQ	g_m(R14), R13
  1760  	MOVQ	m_p(R13), R13
  1761  	// Get current buffer write position.
  1762  	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1763  	ADDQ	R11, R12			// new next position
  1764  	// Is the buffer full?
  1765  	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1766  	JA	flush
  1767  	// Commit to the larger buffer.
  1768  	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1769  	// Make return value (the original next position)
  1770  	SUBQ	R11, R12
  1771  	MOVQ	R12, R11
  1772  	// Restore registers.
  1773  	MOVQ	96(SP), R12
  1774  	MOVQ	104(SP), R13
  1775  	RET
  1776  
  1777  flush:
  1778  	// Save all general purpose registers since these could be
  1779  	// clobbered by wbBufFlush and were not saved by the caller.
  1780  	// It is possible for wbBufFlush to clobber other registers
  1781  	// (e.g., SSE registers), but the compiler takes care of saving
  1782  	// those in the caller if necessary. This strikes a balance
  1783  	// with registers that are likely to be used.
  1784  	//
  1785  	// We don't have type information for these, but all code under
  1786  	// here is NOSPLIT, so nothing will observe these.
  1787  	//
  1788  	// TODO: We could strike a different balance; e.g., saving X0
  1789  	// and not saving GP registers that are less likely to be used.
  1790  	MOVQ	DI, 0(SP)
  1791  	MOVQ	AX, 8(SP)
  1792  	MOVQ	BX, 16(SP)
  1793  	MOVQ	CX, 24(SP)
  1794  	MOVQ	DX, 32(SP)
  1795  	// DI already saved
  1796  	MOVQ	SI, 40(SP)
  1797  	MOVQ	BP, 48(SP)
  1798  	MOVQ	R8, 56(SP)
  1799  	MOVQ	R9, 64(SP)
  1800  	MOVQ	R10, 72(SP)
  1801  	MOVQ	R11, 80(SP)
  1802  	// R12 already saved
  1803  	// R13 already saved
  1804  	// R14 is g
  1805  	MOVQ	R15, 88(SP)
  1806  
  1807  	CALL	runtime·wbBufFlush(SB)
  1808  
  1809  	MOVQ	0(SP), DI
  1810  	MOVQ	8(SP), AX
  1811  	MOVQ	16(SP), BX
  1812  	MOVQ	24(SP), CX
  1813  	MOVQ	32(SP), DX
  1814  	MOVQ	40(SP), SI
  1815  	MOVQ	48(SP), BP
  1816  	MOVQ	56(SP), R8
  1817  	MOVQ	64(SP), R9
  1818  	MOVQ	72(SP), R10
  1819  	MOVQ	80(SP), R11
  1820  	MOVQ	88(SP), R15
  1821  	JMP	retry
  1822  
  1823  TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1824  	MOVL   $8, R11
  1825  	JMP     gcWriteBarrier<>(SB)
  1826  TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1827  	MOVL   $16, R11
  1828  	JMP     gcWriteBarrier<>(SB)
  1829  TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1830  	MOVL   $24, R11
  1831  	JMP     gcWriteBarrier<>(SB)
  1832  TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1833  	MOVL   $32, R11
  1834  	JMP     gcWriteBarrier<>(SB)
  1835  TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1836  	MOVL   $40, R11
  1837  	JMP     gcWriteBarrier<>(SB)
  1838  TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1839  	MOVL   $48, R11
  1840  	JMP     gcWriteBarrier<>(SB)
  1841  TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1842  	MOVL   $56, R11
  1843  	JMP     gcWriteBarrier<>(SB)
  1844  TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1845  	MOVL   $64, R11
  1846  	JMP     gcWriteBarrier<>(SB)
  1847  
  1848  DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1849  GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1850  
  1851  // debugCallV2 is the entry point for debugger-injected function
  1852  // calls on running goroutines. It informs the runtime that a
  1853  // debug call has been injected and creates a call frame for the
  1854  // debugger to fill in.
  1855  //
  1856  // To inject a function call, a debugger should:
  1857  // 1. Check that the goroutine is in state _Grunning and that
  1858  //    there are at least 256 bytes free on the stack.
  1859  // 2. Push the current PC on the stack (updating SP).
  1860  // 3. Write the desired argument frame size at SP-16 (using the SP
  1861  //    after step 2).
  1862  // 4. Save all machine registers (including flags and XMM registers)
  1863  //    so they can be restored later by the debugger.
  1864  // 5. Set the PC to debugCallV2 and resume execution.
  1865  //
  1866  // If the goroutine is in state _Grunnable, then it's not generally
  1867  // safe to inject a call because it may return out via other runtime
  1868  // operations. Instead, the debugger should unwind the stack to find
  1869  // the return to non-runtime code, add a temporary breakpoint there,
  1870  // and inject the call once that breakpoint is hit.
  1871  //
  1872  // If the goroutine is in any other state, it's not safe to inject a call.
  1873  //
  1874  // This function communicates back to the debugger by setting R12 and
  1875  // invoking INT3 to raise a breakpoint signal. See the comments in the
  1876  // implementation for the protocol the debugger is expected to
  1877  // follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1878  //
  1879  // The debugger must ensure that any pointers passed to the function
  1880  // obey escape analysis requirements. Specifically, it must not pass
  1881  // a stack pointer to an escaping argument. debugCallV2 cannot check
  1882  // this invariant.
  1883  //
  1884  // This is ABIInternal because Go code injects its PC directly into new
  1885  // goroutine stacks.
  1886  TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1887  	// Save all registers that may contain pointers so they can be
  1888  	// conservatively scanned.
  1889  	//
  1890  	// We can't do anything that might clobber any of these
  1891  	// registers before this.
  1892  	MOVQ	R15, r15-(14*8+8)(SP)
  1893  	MOVQ	R14, r14-(13*8+8)(SP)
  1894  	MOVQ	R13, r13-(12*8+8)(SP)
  1895  	MOVQ	R12, r12-(11*8+8)(SP)
  1896  	MOVQ	R11, r11-(10*8+8)(SP)
  1897  	MOVQ	R10, r10-(9*8+8)(SP)
  1898  	MOVQ	R9, r9-(8*8+8)(SP)
  1899  	MOVQ	R8, r8-(7*8+8)(SP)
  1900  	MOVQ	DI, di-(6*8+8)(SP)
  1901  	MOVQ	SI, si-(5*8+8)(SP)
  1902  	MOVQ	BP, bp-(4*8+8)(SP)
  1903  	MOVQ	BX, bx-(3*8+8)(SP)
  1904  	MOVQ	DX, dx-(2*8+8)(SP)
  1905  	// Save the frame size before we clobber it. Either of the last
  1906  	// saves could clobber this depending on whether there's a saved BP.
  1907  	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1908  	MOVQ	CX, cx-(1*8+8)(SP)
  1909  	MOVQ	AX, ax-(0*8+8)(SP)
  1910  
  1911  	// Save the argument frame size.
  1912  	MOVQ	DX, frameSize-128(SP)
  1913  
  1914  	// Perform a safe-point check.
  1915  	MOVQ	retpc-8(FP), AX	// Caller's PC
  1916  	MOVQ	AX, 0(SP)
  1917  	CALL	runtime·debugCallCheck(SB)
  1918  	MOVQ	8(SP), AX
  1919  	TESTQ	AX, AX
  1920  	JZ	good
  1921  	// The safety check failed. Put the reason string at the top
  1922  	// of the stack.
  1923  	MOVQ	AX, 0(SP)
  1924  	MOVQ	16(SP), AX
  1925  	MOVQ	AX, 8(SP)
  1926  	// Set R12 to 8 and invoke INT3. The debugger should get the
  1927  	// reason a call can't be injected from the top of the stack
  1928  	// and resume execution.
  1929  	MOVQ	$8, R12
  1930  	BYTE	$0xcc
  1931  	JMP	restore
  1932  
  1933  good:
  1934  	// Registers are saved and it's safe to make a call.
  1935  	// Open up a call frame, moving the stack if necessary.
  1936  	//
  1937  	// Once the frame is allocated, this will set R12 to 0 and
  1938  	// invoke INT3. The debugger should write the argument
  1939  	// frame for the call at SP, set up argument registers, push
  1940  	// the trapping PC on the stack, set the PC to the function to
  1941  	// call, set RDX to point to the closure (if a closure call),
  1942  	// and resume execution.
  1943  	//
  1944  	// If the function returns, this will set R12 to 1 and invoke
  1945  	// INT3. The debugger can then inspect any return value saved
  1946  	// on the stack at SP and in registers and resume execution again.
  1947  	//
  1948  	// If the function panics, this will set R12 to 2 and invoke INT3.
  1949  	// The interface{} value of the panic will be at SP. The debugger
  1950  	// can inspect the panic value and resume execution again.
  1951  #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1952  	CMPQ	AX, $MAXSIZE;			\
  1953  	JA	5(PC);				\
  1954  	MOVQ	$NAME(SB), AX;			\
  1955  	MOVQ	AX, 0(SP);			\
  1956  	CALL	runtime·debugCallWrap(SB);	\
  1957  	JMP	restore
  1958  
  1959  	MOVQ	frameSize-128(SP), AX
  1960  	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1961  	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1962  	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1963  	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1964  	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1965  	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1966  	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1967  	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1968  	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1969  	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1970  	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1971  	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1972  	// The frame size is too large. Report the error.
  1973  	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1974  	MOVQ	AX, 0(SP)
  1975  	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1976  	MOVQ	$8, R12
  1977  	BYTE	$0xcc
  1978  	JMP	restore
  1979  
  1980  restore:
  1981  	// Calls and failures resume here.
  1982  	//
  1983  	// Set R12 to 16 and invoke INT3. The debugger should restore
  1984  	// all registers except RIP and RSP and resume execution.
  1985  	MOVQ	$16, R12
  1986  	BYTE	$0xcc
  1987  	// We must not modify flags after this point.
  1988  
  1989  	// Restore pointer-containing registers, which may have been
  1990  	// modified from the debugger's copy by stack copying.
  1991  	MOVQ	ax-(0*8+8)(SP), AX
  1992  	MOVQ	cx-(1*8+8)(SP), CX
  1993  	MOVQ	dx-(2*8+8)(SP), DX
  1994  	MOVQ	bx-(3*8+8)(SP), BX
  1995  	MOVQ	bp-(4*8+8)(SP), BP
  1996  	MOVQ	si-(5*8+8)(SP), SI
  1997  	MOVQ	di-(6*8+8)(SP), DI
  1998  	MOVQ	r8-(7*8+8)(SP), R8
  1999  	MOVQ	r9-(8*8+8)(SP), R9
  2000  	MOVQ	r10-(9*8+8)(SP), R10
  2001  	MOVQ	r11-(10*8+8)(SP), R11
  2002  	MOVQ	r12-(11*8+8)(SP), R12
  2003  	MOVQ	r13-(12*8+8)(SP), R13
  2004  	MOVQ	r14-(13*8+8)(SP), R14
  2005  	MOVQ	r15-(14*8+8)(SP), R15
  2006  
  2007  	RET
  2008  
  2009  // runtime.debugCallCheck assumes that functions defined with the
  2010  // DEBUG_CALL_FN macro are safe points to inject calls.
  2011  #define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  2012  TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  2013  	NO_LOCAL_POINTERS;			\
  2014  	MOVQ	$0, R12;				\
  2015  	BYTE	$0xcc;				\
  2016  	MOVQ	$1, R12;				\
  2017  	BYTE	$0xcc;				\
  2018  	RET
  2019  DEBUG_CALL_FN(debugCall32<>, 32)
  2020  DEBUG_CALL_FN(debugCall64<>, 64)
  2021  DEBUG_CALL_FN(debugCall128<>, 128)
  2022  DEBUG_CALL_FN(debugCall256<>, 256)
  2023  DEBUG_CALL_FN(debugCall512<>, 512)
  2024  DEBUG_CALL_FN(debugCall1024<>, 1024)
  2025  DEBUG_CALL_FN(debugCall2048<>, 2048)
  2026  DEBUG_CALL_FN(debugCall4096<>, 4096)
  2027  DEBUG_CALL_FN(debugCall8192<>, 8192)
  2028  DEBUG_CALL_FN(debugCall16384<>, 16384)
  2029  DEBUG_CALL_FN(debugCall32768<>, 32768)
  2030  DEBUG_CALL_FN(debugCall65536<>, 65536)
  2031  
  2032  // func debugCallPanicked(val interface{})
  2033  TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2034  	// Copy the panic value to the top of stack.
  2035  	MOVQ	val_type+0(FP), AX
  2036  	MOVQ	AX, 0(SP)
  2037  	MOVQ	val_data+8(FP), AX
  2038  	MOVQ	AX, 8(SP)
  2039  	MOVQ	$2, R12
  2040  	BYTE	$0xcc
  2041  	RET
  2042  
  2043  TEXT runtime·panicBounds<ABIInternal>(SB),NOSPLIT,$144-0
  2044  	NO_LOCAL_POINTERS
  2045  	// Save all 14 int registers that could have an index in them.
  2046  	// They may be pointers, but if they are they are dead.
  2047  	MOVQ	AX, 16(SP)
  2048  	MOVQ	CX, 24(SP)
  2049  	MOVQ	DX, 32(SP)
  2050  	MOVQ	BX, 40(SP)
  2051  	// skip SP @ 48(SP)
  2052  	MOVQ	BP, 56(SP)
  2053  	MOVQ	SI, 64(SP)
  2054  	MOVQ	DI, 72(SP)
  2055  	MOVQ	R8, 80(SP)
  2056  	MOVQ	R9, 88(SP)
  2057  	MOVQ	R10, 96(SP)
  2058  	MOVQ	R11, 104(SP)
  2059  	MOVQ	R12, 112(SP)
  2060  	MOVQ	R13, 120(SP)
  2061  	// skip R14 @ 128(SP) (aka G)
  2062  	MOVQ	R15, 136(SP)
  2063  
  2064  	MOVQ	SP, AX		// hide SP read from vet
  2065  	MOVQ	152(AX), AX	// PC immediately after call to panicBounds
  2066  	LEAQ	16(SP), BX
  2067  	CALL	runtime·panicBounds64<ABIInternal>(SB)
  2068  	RET
  2069  
  2070  #ifdef GOOS_android
  2071  // Use the free TLS_SLOT_APP slot #2 on Android Q.
  2072  // Earlier androids are set up in gcc_android.c.
  2073  DATA runtime·tls_g+0(SB)/8, $16
  2074  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2075  #endif
  2076  #ifdef GOOS_windows
  2077  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2078  #endif
  2079  
  2080  // The compiler and assembler's -spectre=ret mode rewrites
  2081  // all indirect CALL AX / JMP AX instructions to be
  2082  // CALL retpolineAX / JMP retpolineAX.
  2083  // See https://support.google.com/faqs/answer/7625886.
  2084  #define RETPOLINE(reg) \
  2085  	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2086  	/* nospec: */									\
  2087  	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2088  	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2089  	/* setup: */									\
  2090  	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2091  	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2092  	/*   RET */             BYTE $0xC3
  2093  
  2094  TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2095  TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2096  TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2097  TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2098  /* SP is 4, can't happen / magic encodings */
  2099  TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2100  TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2101  TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2102  TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2103  TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2104  TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2105  TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2106  TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2107  TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2108  TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2109  TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2110  
  2111  TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2112  	MOVQ BP, AX
  2113  	RET
  2114  

View as plain text