Source file src/runtime/cgocall.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) calls entersyscall so as not to block
    12  // other goroutines or the garbage collector, and then calls
    13  // runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go. If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF initializes "frame", a structure containing all of its
    39  // arguments and slots for p.GoF's results. It calls
    40  // crosscall2(_cgoexp_GoF, frame, framesize, ctxt) using the gcc ABI.
    41  //
    42  // crosscall2 (in cgo/asm_$GOARCH.s) is a four-argument adapter from
    43  // the gcc function call ABI to the gc function call ABI. At this
    44  // point we're in the Go runtime, but we're still running on m.g0's
    45  // stack and outside the $GOMAXPROCS limit. crosscall2 calls
    46  // runtime.cgocallback(_cgoexp_GoF, frame, ctxt) using the gc ABI.
    47  // (crosscall2's framesize argument is no longer used, but there's one
    48  // case where SWIG calls crosscall2 directly and expects to pass this
    49  // argument. See _cgo_panic.)
    50  //
    51  // runtime.cgocallback (in asm_$GOARCH.s) switches from m.g0's stack
    52  // to the original g (m.curg)'s stack, on which it calls
    53  // runtime.cgocallbackg(_cgoexp_GoF, frame, ctxt). As part of the
    54  // stack switch, runtime.cgocallback saves the current SP as
    55  // m.g0.sched.sp, so that any use of m.g0's stack during the execution
    56  // of the callback will be done below the existing stack frames.
    57  // Before overwriting m.g0.sched.sp, it pushes the old value on the
    58  // m.g0 stack, so that it can be restored later.
    59  //
    60  // runtime.cgocallbackg (below) is now running on a real goroutine
    61  // stack (not an m.g0 stack).  First it calls runtime.exitsyscall, which will
    62  // block until the $GOMAXPROCS limit allows running this goroutine.
    63  // Once exitsyscall has returned, it is safe to do things like call the memory
    64  // allocator or invoke the Go callback function.  runtime.cgocallbackg
    65  // first defers a function to unwind m.g0.sched.sp, so that if p.GoF
    66  // panics, m.g0.sched.sp will be restored to its old value: the m.g0 stack
    67  // and the m.curg stack will be unwound in lock step.
    68  // Then it calls _cgoexp_GoF(frame).
    69  //
    70  // _cgoexp_GoF, which was generated by cmd/cgo, unpacks the arguments
    71  // from frame, calls p.GoF, writes the results back to frame, and
    72  // returns. Now we start unwinding this whole process.
    73  //
    74  // runtime.cgocallbackg pops but does not execute the deferred
    75  // function to unwind m.g0.sched.sp, calls runtime.entersyscall, and
    76  // returns to runtime.cgocallback.
    77  //
    78  // After it regains control, runtime.cgocallback switches back to
    79  // m.g0's stack (the pointer is still in m.g0.sched.sp), restores the old
    80  // m.g0.sched.sp value from the stack, and returns to crosscall2.
    81  //
    82  // crosscall2 restores the callee-save registers for gcc and returns
    83  // to GoF, which unpacks any result values and returns to f.
    84  
    85  package runtime
    86  
    87  import (
    88  	"internal/abi"
    89  	"internal/goarch"
    90  	"internal/goexperiment"
    91  	"runtime/internal/sys"
    92  	"unsafe"
    93  )
    94  
    95  // Addresses collected in a cgo backtrace when crashing.
    96  // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
    97  type cgoCallers [32]uintptr
    98  
    99  // argset matches runtime/cgo/linux_syscall.c:argset_t
   100  type argset struct {
   101  	args   unsafe.Pointer
   102  	retval uintptr
   103  }
   104  
   105  // wrapper for syscall package to call cgocall for libc (cgo) calls.
   106  //
   107  //go:linkname syscall_cgocaller syscall.cgocaller
   108  //go:nosplit
   109  //go:uintptrescapes
   110  func syscall_cgocaller(fn unsafe.Pointer, args ...uintptr) uintptr {
   111  	as := argset{args: unsafe.Pointer(&args[0])}
   112  	cgocall(fn, unsafe.Pointer(&as))
   113  	return as.retval
   114  }
   115  
   116  var ncgocall uint64 // number of cgo calls in total for dead m
   117  
   118  // Call from Go to C.
   119  //
   120  // This must be nosplit because it's used for syscalls on some
   121  // platforms. Syscalls may have untyped arguments on the stack, so
   122  // it's not safe to grow or scan the stack.
   123  //
   124  //go:nosplit
   125  func cgocall(fn, arg unsafe.Pointer) int32 {
   126  	if !iscgo && GOOS != "solaris" && GOOS != "illumos" && GOOS != "windows" {
   127  		throw("cgocall unavailable")
   128  	}
   129  
   130  	if fn == nil {
   131  		throw("cgocall nil")
   132  	}
   133  
   134  	if raceenabled {
   135  		racereleasemerge(unsafe.Pointer(&racecgosync))
   136  	}
   137  
   138  	mp := getg().m
   139  	mp.ncgocall++
   140  
   141  	// Reset traceback.
   142  	mp.cgoCallers[0] = 0
   143  
   144  	// Announce we are entering a system call
   145  	// so that the scheduler knows to create another
   146  	// M to run goroutines while we are in the
   147  	// foreign code.
   148  	//
   149  	// The call to asmcgocall is guaranteed not to
   150  	// grow the stack and does not allocate memory,
   151  	// so it is safe to call while "in a system call", outside
   152  	// the $GOMAXPROCS accounting.
   153  	//
   154  	// fn may call back into Go code, in which case we'll exit the
   155  	// "system call", run the Go code (which may grow the stack),
   156  	// and then re-enter the "system call" reusing the PC and SP
   157  	// saved by entersyscall here.
   158  	entersyscall()
   159  
   160  	// Tell asynchronous preemption that we're entering external
   161  	// code. We do this after entersyscall because this may block
   162  	// and cause an async preemption to fail, but at this point a
   163  	// sync preemption will succeed (though this is not a matter
   164  	// of correctness).
   165  	osPreemptExtEnter(mp)
   166  
   167  	mp.incgo = true
   168  	// We use ncgo as a check during execution tracing for whether there is
   169  	// any C on the call stack, which there will be after this point. If
   170  	// there isn't, we can use frame pointer unwinding to collect call
   171  	// stacks efficiently. This will be the case for the first Go-to-C call
   172  	// on a stack, so it's preferable to update it here, after we emit a
   173  	// trace event in entersyscall above.
   174  	mp.ncgo++
   175  
   176  	errno := asmcgocall(fn, arg)
   177  
   178  	// Update accounting before exitsyscall because exitsyscall may
   179  	// reschedule us on to a different M.
   180  	mp.incgo = false
   181  	mp.ncgo--
   182  
   183  	osPreemptExtExit(mp)
   184  
   185  	// Save current syscall parameters, so m.winsyscall can be
   186  	// used again if callback decide to make syscall.
   187  	winsyscall := mp.winsyscall
   188  
   189  	exitsyscall()
   190  
   191  	getg().m.winsyscall = winsyscall
   192  
   193  	// Note that raceacquire must be called only after exitsyscall has
   194  	// wired this M to a P.
   195  	if raceenabled {
   196  		raceacquire(unsafe.Pointer(&racecgosync))
   197  	}
   198  
   199  	// From the garbage collector's perspective, time can move
   200  	// backwards in the sequence above. If there's a callback into
   201  	// Go code, GC will see this function at the call to
   202  	// asmcgocall. When the Go call later returns to C, the
   203  	// syscall PC/SP is rolled back and the GC sees this function
   204  	// back at the call to entersyscall. Normally, fn and arg
   205  	// would be live at entersyscall and dead at asmcgocall, so if
   206  	// time moved backwards, GC would see these arguments as dead
   207  	// and then live. Prevent these undead arguments from crashing
   208  	// GC by forcing them to stay live across this time warp.
   209  	KeepAlive(fn)
   210  	KeepAlive(arg)
   211  	KeepAlive(mp)
   212  
   213  	return errno
   214  }
   215  
   216  // Set or reset the system stack bounds for a callback on sp.
   217  //
   218  // Must be nosplit because it is called by needm prior to fully initializing
   219  // the M.
   220  //
   221  //go:nosplit
   222  func callbackUpdateSystemStack(mp *m, sp uintptr, signal bool) {
   223  	g0 := mp.g0
   224  	if sp > g0.stack.lo && sp <= g0.stack.hi {
   225  		// Stack already in bounds, nothing to do.
   226  		return
   227  	}
   228  
   229  	if mp.ncgo > 0 {
   230  		// ncgo > 0 indicates that this M was in Go further up the stack
   231  		// (it called C and is now receiving a callback). It is not
   232  		// safe for the C call to change the stack out from under us.
   233  
   234  		// Note that this case isn't possible for signal == true, as
   235  		// that is always passing a new M from needm.
   236  
   237  		// Stack is bogus, but reset the bounds anyway so we can print.
   238  		hi := g0.stack.hi
   239  		lo := g0.stack.lo
   240  		g0.stack.hi = sp + 1024
   241  		g0.stack.lo = sp - 32*1024
   242  		g0.stackguard0 = g0.stack.lo + stackGuard
   243  		g0.stackguard1 = g0.stackguard0
   244  
   245  		print("M ", mp.id, " procid ", mp.procid, " runtime: cgocallback with sp=", hex(sp), " out of bounds [", hex(lo), ", ", hex(hi), "]")
   246  		print("\n")
   247  		exit(2)
   248  	}
   249  
   250  	// This M does not have Go further up the stack. However, it may have
   251  	// previously called into Go, initializing the stack bounds. Between
   252  	// that call returning and now the stack may have changed (perhaps the
   253  	// C thread is running a coroutine library). We need to update the
   254  	// stack bounds for this case.
   255  	//
   256  	// Set the stack bounds to match the current stack. If we don't
   257  	// actually know how big the stack is, like we don't know how big any
   258  	// scheduling stack is, but we assume there's at least 32 kB. If we
   259  	// can get a more accurate stack bound from pthread, use that, provided
   260  	// it actually contains SP..
   261  	g0.stack.hi = sp + 1024
   262  	g0.stack.lo = sp - 32*1024
   263  	if !signal && _cgo_getstackbound != nil {
   264  		// Don't adjust if called from the signal handler.
   265  		// We are on the signal stack, not the pthread stack.
   266  		// (We could get the stack bounds from sigaltstack, but
   267  		// we're getting out of the signal handler very soon
   268  		// anyway. Not worth it.)
   269  		var bounds [2]uintptr
   270  		asmcgocall(_cgo_getstackbound, unsafe.Pointer(&bounds))
   271  		// getstackbound is an unsupported no-op on Windows.
   272  		//
   273  		// Don't use these bounds if they don't contain SP. Perhaps we
   274  		// were called by something not using the standard thread
   275  		// stack.
   276  		if bounds[0] != 0 && sp > bounds[0] && sp <= bounds[1] {
   277  			g0.stack.lo = bounds[0]
   278  			g0.stack.hi = bounds[1]
   279  		}
   280  	}
   281  	g0.stackguard0 = g0.stack.lo + stackGuard
   282  	g0.stackguard1 = g0.stackguard0
   283  }
   284  
   285  // Call from C back to Go. fn must point to an ABIInternal Go entry-point.
   286  //
   287  //go:nosplit
   288  func cgocallbackg(fn, frame unsafe.Pointer, ctxt uintptr) {
   289  	gp := getg()
   290  	if gp != gp.m.curg {
   291  		println("runtime: bad g in cgocallback")
   292  		exit(2)
   293  	}
   294  
   295  	sp := gp.m.g0.sched.sp // system sp saved by cgocallback.
   296  	callbackUpdateSystemStack(gp.m, sp, false)
   297  
   298  	// The call from C is on gp.m's g0 stack, so we must ensure
   299  	// that we stay on that M. We have to do this before calling
   300  	// exitsyscall, since it would otherwise be free to move us to
   301  	// a different M. The call to unlockOSThread is in this function
   302  	// after cgocallbackg1, or in the case of panicking, in unwindm.
   303  	lockOSThread()
   304  
   305  	checkm := gp.m
   306  
   307  	// Save current syscall parameters, so m.winsyscall can be
   308  	// used again if callback decide to make syscall.
   309  	winsyscall := gp.m.winsyscall
   310  
   311  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   312  	// stack. However, since we're returning to an earlier stack frame and
   313  	// need to pair with the entersyscall() call made by cgocall, we must
   314  	// save syscall* and let reentersyscall restore them.
   315  	savedsp := unsafe.Pointer(gp.syscallsp)
   316  	savedpc := gp.syscallpc
   317  	savedbp := gp.syscallbp
   318  	exitsyscall() // coming out of cgo call
   319  	gp.m.incgo = false
   320  	if gp.m.isextra {
   321  		gp.m.isExtraInC = false
   322  	}
   323  
   324  	osPreemptExtExit(gp.m)
   325  
   326  	if gp.nocgocallback {
   327  		panic("runtime: function marked with #cgo nocallback called back into Go")
   328  	}
   329  
   330  	cgocallbackg1(fn, frame, ctxt)
   331  
   332  	// At this point we're about to call unlockOSThread.
   333  	// The following code must not change to a different m.
   334  	// This is enforced by checking incgo in the schedule function.
   335  	gp.m.incgo = true
   336  	unlockOSThread()
   337  
   338  	if gp.m.isextra {
   339  		gp.m.isExtraInC = true
   340  	}
   341  
   342  	if gp.m != checkm {
   343  		throw("m changed unexpectedly in cgocallbackg")
   344  	}
   345  
   346  	osPreemptExtEnter(gp.m)
   347  
   348  	// going back to cgo call
   349  	reentersyscall(savedpc, uintptr(savedsp), savedbp)
   350  
   351  	gp.m.winsyscall = winsyscall
   352  }
   353  
   354  func cgocallbackg1(fn, frame unsafe.Pointer, ctxt uintptr) {
   355  	gp := getg()
   356  
   357  	if gp.m.needextram || extraMWaiters.Load() > 0 {
   358  		gp.m.needextram = false
   359  		systemstack(newextram)
   360  	}
   361  
   362  	if ctxt != 0 {
   363  		s := append(gp.cgoCtxt, ctxt)
   364  
   365  		// Now we need to set gp.cgoCtxt = s, but we could get
   366  		// a SIGPROF signal while manipulating the slice, and
   367  		// the SIGPROF handler could pick up gp.cgoCtxt while
   368  		// tracing up the stack.  We need to ensure that the
   369  		// handler always sees a valid slice, so set the
   370  		// values in an order such that it always does.
   371  		p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   372  		atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0]))
   373  		p.cap = cap(s)
   374  		p.len = len(s)
   375  
   376  		defer func(gp *g) {
   377  			// Decrease the length of the slice by one, safely.
   378  			p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   379  			p.len--
   380  		}(gp)
   381  	}
   382  
   383  	if gp.m.ncgo == 0 {
   384  		// The C call to Go came from a thread not currently running
   385  		// any Go. In the case of -buildmode=c-archive or c-shared,
   386  		// this call may be coming in before package initialization
   387  		// is complete. Wait until it is.
   388  		<-main_init_done
   389  	}
   390  
   391  	// Check whether the profiler needs to be turned on or off; this route to
   392  	// run Go code does not use runtime.execute, so bypasses the check there.
   393  	hz := sched.profilehz
   394  	if gp.m.profilehz != hz {
   395  		setThreadCPUProfiler(hz)
   396  	}
   397  
   398  	// Add entry to defer stack in case of panic.
   399  	restore := true
   400  	defer unwindm(&restore)
   401  
   402  	if raceenabled {
   403  		raceacquire(unsafe.Pointer(&racecgosync))
   404  	}
   405  
   406  	// Invoke callback. This function is generated by cmd/cgo and
   407  	// will unpack the argument frame and call the Go function.
   408  	var cb func(frame unsafe.Pointer)
   409  	cbFV := funcval{uintptr(fn)}
   410  	*(*unsafe.Pointer)(unsafe.Pointer(&cb)) = noescape(unsafe.Pointer(&cbFV))
   411  	cb(frame)
   412  
   413  	if raceenabled {
   414  		racereleasemerge(unsafe.Pointer(&racecgosync))
   415  	}
   416  
   417  	// Do not unwind m->g0->sched.sp.
   418  	// Our caller, cgocallback, will do that.
   419  	restore = false
   420  }
   421  
   422  func unwindm(restore *bool) {
   423  	if *restore {
   424  		// Restore sp saved by cgocallback during
   425  		// unwind of g's stack (see comment at top of file).
   426  		mp := acquirem()
   427  		sched := &mp.g0.sched
   428  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + alignUp(sys.MinFrameSize, sys.StackAlign)))
   429  
   430  		// Do the accounting that cgocall will not have a chance to do
   431  		// during an unwind.
   432  		//
   433  		// In the case where a Go call originates from C, ncgo is 0
   434  		// and there is no matching cgocall to end.
   435  		if mp.ncgo > 0 {
   436  			mp.incgo = false
   437  			mp.ncgo--
   438  			osPreemptExtExit(mp)
   439  		}
   440  
   441  		// Undo the call to lockOSThread in cgocallbackg, only on the
   442  		// panicking path. In normal return case cgocallbackg will call
   443  		// unlockOSThread, ensuring no preemption point after the unlock.
   444  		// Here we don't need to worry about preemption, because we're
   445  		// panicking out of the callback and unwinding the g0 stack,
   446  		// instead of reentering cgo (which requires the same thread).
   447  		unlockOSThread()
   448  
   449  		releasem(mp)
   450  	}
   451  }
   452  
   453  // called from assembly.
   454  func badcgocallback() {
   455  	throw("misaligned stack in cgocallback")
   456  }
   457  
   458  // called from (incomplete) assembly.
   459  func cgounimpl() {
   460  	throw("cgo not implemented")
   461  }
   462  
   463  var racecgosync uint64 // represents possible synchronization in C code
   464  
   465  // Pointer checking for cgo code.
   466  
   467  // We want to detect all cases where a program that does not use
   468  // unsafe makes a cgo call passing a Go pointer to memory that
   469  // contains an unpinned Go pointer. Here a Go pointer is defined as a
   470  // pointer to memory allocated by the Go runtime. Programs that use
   471  // unsafe can evade this restriction easily, so we don't try to catch
   472  // them. The cgo program will rewrite all possibly bad pointer
   473  // arguments to call cgoCheckPointer, where we can catch cases of a Go
   474  // pointer pointing to an unpinned Go pointer.
   475  
   476  // Complicating matters, taking the address of a slice or array
   477  // element permits the C program to access all elements of the slice
   478  // or array. In that case we will see a pointer to a single element,
   479  // but we need to check the entire data structure.
   480  
   481  // The cgoCheckPointer call takes additional arguments indicating that
   482  // it was called on an address expression. An additional argument of
   483  // true means that it only needs to check a single element. An
   484  // additional argument of a slice or array means that it needs to
   485  // check the entire slice/array, but nothing else. Otherwise, the
   486  // pointer could be anything, and we check the entire heap object,
   487  // which is conservative but safe.
   488  
   489  // When and if we implement a moving garbage collector,
   490  // cgoCheckPointer will pin the pointer for the duration of the cgo
   491  // call.  (This is necessary but not sufficient; the cgo program will
   492  // also have to change to pin Go pointers that cannot point to Go
   493  // pointers.)
   494  
   495  // cgoCheckPointer checks if the argument contains a Go pointer that
   496  // points to an unpinned Go pointer, and panics if it does.
   497  func cgoCheckPointer(ptr any, arg any) {
   498  	if !goexperiment.CgoCheck2 && debug.cgocheck == 0 {
   499  		return
   500  	}
   501  
   502  	ep := efaceOf(&ptr)
   503  	t := ep._type
   504  
   505  	top := true
   506  	if arg != nil && (t.Kind_&abi.KindMask == abi.Pointer || t.Kind_&abi.KindMask == abi.UnsafePointer) {
   507  		p := ep.data
   508  		if t.Kind_&abi.KindDirectIface == 0 {
   509  			p = *(*unsafe.Pointer)(p)
   510  		}
   511  		if p == nil || !cgoIsGoPointer(p) {
   512  			return
   513  		}
   514  		aep := efaceOf(&arg)
   515  		switch aep._type.Kind_ & abi.KindMask {
   516  		case abi.Bool:
   517  			if t.Kind_&abi.KindMask == abi.UnsafePointer {
   518  				// We don't know the type of the element.
   519  				break
   520  			}
   521  			pt := (*ptrtype)(unsafe.Pointer(t))
   522  			cgoCheckArg(pt.Elem, p, true, false, cgoCheckPointerFail)
   523  			return
   524  		case abi.Slice:
   525  			// Check the slice rather than the pointer.
   526  			ep = aep
   527  			t = ep._type
   528  		case abi.Array:
   529  			// Check the array rather than the pointer.
   530  			// Pass top as false since we have a pointer
   531  			// to the array.
   532  			ep = aep
   533  			t = ep._type
   534  			top = false
   535  		default:
   536  			throw("can't happen")
   537  		}
   538  	}
   539  
   540  	cgoCheckArg(t, ep.data, t.Kind_&abi.KindDirectIface == 0, top, cgoCheckPointerFail)
   541  }
   542  
   543  const cgoCheckPointerFail = "cgo argument has Go pointer to unpinned Go pointer"
   544  const cgoResultFail = "cgo result is unpinned Go pointer or points to unpinned Go pointer"
   545  
   546  // cgoCheckArg is the real work of cgoCheckPointer. The argument p
   547  // is either a pointer to the value (of type t), or the value itself,
   548  // depending on indir. The top parameter is whether we are at the top
   549  // level, where Go pointers are allowed. Go pointers to pinned objects are
   550  // allowed as long as they don't reference other unpinned pointers.
   551  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   552  	if !t.Pointers() || p == nil {
   553  		// If the type has no pointers there is nothing to do.
   554  		return
   555  	}
   556  
   557  	switch t.Kind_ & abi.KindMask {
   558  	default:
   559  		throw("can't happen")
   560  	case abi.Array:
   561  		at := (*arraytype)(unsafe.Pointer(t))
   562  		if !indir {
   563  			if at.Len != 1 {
   564  				throw("can't happen")
   565  			}
   566  			cgoCheckArg(at.Elem, p, at.Elem.Kind_&abi.KindDirectIface == 0, top, msg)
   567  			return
   568  		}
   569  		for i := uintptr(0); i < at.Len; i++ {
   570  			cgoCheckArg(at.Elem, p, true, top, msg)
   571  			p = add(p, at.Elem.Size_)
   572  		}
   573  	case abi.Chan, abi.Map:
   574  		// These types contain internal pointers that will
   575  		// always be allocated in the Go heap. It's never OK
   576  		// to pass them to C.
   577  		panic(errorString(msg))
   578  	case abi.Func:
   579  		if indir {
   580  			p = *(*unsafe.Pointer)(p)
   581  		}
   582  		if !cgoIsGoPointer(p) {
   583  			return
   584  		}
   585  		panic(errorString(msg))
   586  	case abi.Interface:
   587  		it := *(**_type)(p)
   588  		if it == nil {
   589  			return
   590  		}
   591  		// A type known at compile time is OK since it's
   592  		// constant. A type not known at compile time will be
   593  		// in the heap and will not be OK.
   594  		if inheap(uintptr(unsafe.Pointer(it))) {
   595  			panic(errorString(msg))
   596  		}
   597  		p = *(*unsafe.Pointer)(add(p, goarch.PtrSize))
   598  		if !cgoIsGoPointer(p) {
   599  			return
   600  		}
   601  		if !top && !isPinned(p) {
   602  			panic(errorString(msg))
   603  		}
   604  		cgoCheckArg(it, p, it.Kind_&abi.KindDirectIface == 0, false, msg)
   605  	case abi.Slice:
   606  		st := (*slicetype)(unsafe.Pointer(t))
   607  		s := (*slice)(p)
   608  		p = s.array
   609  		if p == nil || !cgoIsGoPointer(p) {
   610  			return
   611  		}
   612  		if !top && !isPinned(p) {
   613  			panic(errorString(msg))
   614  		}
   615  		if !st.Elem.Pointers() {
   616  			return
   617  		}
   618  		for i := 0; i < s.cap; i++ {
   619  			cgoCheckArg(st.Elem, p, true, false, msg)
   620  			p = add(p, st.Elem.Size_)
   621  		}
   622  	case abi.String:
   623  		ss := (*stringStruct)(p)
   624  		if !cgoIsGoPointer(ss.str) {
   625  			return
   626  		}
   627  		if !top && !isPinned(ss.str) {
   628  			panic(errorString(msg))
   629  		}
   630  	case abi.Struct:
   631  		st := (*structtype)(unsafe.Pointer(t))
   632  		if !indir {
   633  			if len(st.Fields) != 1 {
   634  				throw("can't happen")
   635  			}
   636  			cgoCheckArg(st.Fields[0].Typ, p, st.Fields[0].Typ.Kind_&abi.KindDirectIface == 0, top, msg)
   637  			return
   638  		}
   639  		for _, f := range st.Fields {
   640  			if !f.Typ.Pointers() {
   641  				continue
   642  			}
   643  			cgoCheckArg(f.Typ, add(p, f.Offset), true, top, msg)
   644  		}
   645  	case abi.Pointer, abi.UnsafePointer:
   646  		if indir {
   647  			p = *(*unsafe.Pointer)(p)
   648  			if p == nil {
   649  				return
   650  			}
   651  		}
   652  
   653  		if !cgoIsGoPointer(p) {
   654  			return
   655  		}
   656  		if !top && !isPinned(p) {
   657  			panic(errorString(msg))
   658  		}
   659  
   660  		cgoCheckUnknownPointer(p, msg)
   661  	}
   662  }
   663  
   664  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   665  // memory. It checks whether that Go memory contains any other
   666  // pointer into unpinned Go memory. If it does, we panic.
   667  // The return values are unused but useful to see in panic tracebacks.
   668  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   669  	if inheap(uintptr(p)) {
   670  		b, span, _ := findObject(uintptr(p), 0, 0)
   671  		base = b
   672  		if base == 0 {
   673  			return
   674  		}
   675  		tp := span.typePointersOfUnchecked(base)
   676  		for {
   677  			var addr uintptr
   678  			if tp, addr = tp.next(base + span.elemsize); addr == 0 {
   679  				break
   680  			}
   681  			pp := *(*unsafe.Pointer)(unsafe.Pointer(addr))
   682  			if cgoIsGoPointer(pp) && !isPinned(pp) {
   683  				panic(errorString(msg))
   684  			}
   685  		}
   686  		return
   687  	}
   688  
   689  	for _, datap := range activeModules() {
   690  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   691  			// We have no way to know the size of the object.
   692  			// We have to assume that it might contain a pointer.
   693  			panic(errorString(msg))
   694  		}
   695  		// In the text or noptr sections, we know that the
   696  		// pointer does not point to a Go pointer.
   697  	}
   698  
   699  	return
   700  }
   701  
   702  // cgoIsGoPointer reports whether the pointer is a Go pointer--a
   703  // pointer to Go memory. We only care about Go memory that might
   704  // contain pointers.
   705  //
   706  //go:nosplit
   707  //go:nowritebarrierrec
   708  func cgoIsGoPointer(p unsafe.Pointer) bool {
   709  	if p == nil {
   710  		return false
   711  	}
   712  
   713  	if inHeapOrStack(uintptr(p)) {
   714  		return true
   715  	}
   716  
   717  	for _, datap := range activeModules() {
   718  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   719  			return true
   720  		}
   721  	}
   722  
   723  	return false
   724  }
   725  
   726  // cgoInRange reports whether p is between start and end.
   727  //
   728  //go:nosplit
   729  //go:nowritebarrierrec
   730  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   731  	return start <= uintptr(p) && uintptr(p) < end
   732  }
   733  
   734  // cgoCheckResult is called to check the result parameter of an
   735  // exported Go function. It panics if the result is or contains any
   736  // other pointer into unpinned Go memory.
   737  func cgoCheckResult(val any) {
   738  	if !goexperiment.CgoCheck2 && debug.cgocheck == 0 {
   739  		return
   740  	}
   741  
   742  	ep := efaceOf(&val)
   743  	t := ep._type
   744  	cgoCheckArg(t, ep.data, t.Kind_&abi.KindDirectIface == 0, false, cgoResultFail)
   745  }
   746  

View as plain text