// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build (dragonfly || freebsd || linux) && !goexperiment.spinbitmutex package runtime import ( "internal/runtime/atomic" ) // This implementation depends on OS-specific implementations of // // futexsleep(addr *uint32, val uint32, ns int64) // Atomically, // if *addr == val { sleep } // Might be woken up spuriously; that's allowed. // Don't sleep longer than ns; ns < 0 means forever. // // futexwakeup(addr *uint32, cnt uint32) // If any procs are sleeping on addr, wake up at most cnt. const ( mutex_unlocked = 0 mutex_locked = 1 mutex_sleeping = 2 active_spin = 4 active_spin_cnt = 30 passive_spin = 1 ) // Possible lock states are mutex_unlocked, mutex_locked and mutex_sleeping. // mutex_sleeping means that there is presumably at least one sleeping thread. // Note that there can be spinning threads during all states - they do not // affect mutex's state. type mWaitList struct{} func lockVerifyMSize() {} func mutexContended(l *mutex) bool { return atomic.Load(key32(&l.key)) > mutex_locked } func lock(l *mutex) { lockWithRank(l, getLockRank(l)) } func lock2(l *mutex) { gp := getg() if gp.m.locks < 0 { throw("runtimeĀ·lock: lock count") } gp.m.locks++ // Speculative grab for lock. v := atomic.Xchg(key32(&l.key), mutex_locked) if v == mutex_unlocked { return } // wait is either MUTEX_LOCKED or MUTEX_SLEEPING // depending on whether there is a thread sleeping // on this mutex. If we ever change l->key from // MUTEX_SLEEPING to some other value, we must be // careful to change it back to MUTEX_SLEEPING before // returning, to ensure that the sleeping thread gets // its wakeup call. wait := v timer := &lockTimer{lock: l} timer.begin() // On uniprocessors, no point spinning. // On multiprocessors, spin for ACTIVE_SPIN attempts. spin := 0 if ncpu > 1 { spin = active_spin } for { // Try for lock, spinning. for i := 0; i < spin; i++ { for l.key == mutex_unlocked { if atomic.Cas(key32(&l.key), mutex_unlocked, wait) { timer.end() return } } procyield(active_spin_cnt) } // Try for lock, rescheduling. for i := 0; i < passive_spin; i++ { for l.key == mutex_unlocked { if atomic.Cas(key32(&l.key), mutex_unlocked, wait) { timer.end() return } } osyield() } // Sleep. v = atomic.Xchg(key32(&l.key), mutex_sleeping) if v == mutex_unlocked { timer.end() return } wait = mutex_sleeping futexsleep(key32(&l.key), mutex_sleeping, -1) } } func unlock(l *mutex) { unlockWithRank(l) } func unlock2(l *mutex) { v := atomic.Xchg(key32(&l.key), mutex_unlocked) if v == mutex_unlocked { throw("unlock of unlocked lock") } if v == mutex_sleeping { futexwakeup(key32(&l.key), 1) } gp := getg() gp.m.mLockProfile.recordUnlock(l) gp.m.locks-- if gp.m.locks < 0 { throw("runtimeĀ·unlock: lock count") } if gp.m.locks == 0 && gp.preempt { // restore the preemption request in case we've cleared it in newstack gp.stackguard0 = stackPreempt } }