// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: type and heap bitmaps. // // Stack, data, and bss bitmaps // // Stack frames and global variables in the data and bss sections are // described by bitmaps with 1 bit per pointer-sized word. A "1" bit // means the word is a live pointer to be visited by the GC (referred to // as "pointer"). A "0" bit means the word should be ignored by GC // (referred to as "scalar", though it could be a dead pointer value). // // Heap bitmaps // // The heap bitmap comprises 1 bit for each pointer-sized word in the heap, // recording whether a pointer is stored in that word or not. This bitmap // is stored at the end of a span for small objects and is unrolled at // runtime from type metadata for all larger objects. Objects without // pointers have neither a bitmap nor associated type metadata. // // Bits in all cases correspond to words in little-endian order. // // For small objects, if s is the mspan for the span starting at "start", // then s.heapBits() returns a slice containing the bitmap for the whole span. // That is, s.heapBits()[0] holds the goarch.PtrSize*8 bits for the first // goarch.PtrSize*8 words from "start" through "start+63*ptrSize" in the span. // On a related note, small objects are always small enough that their bitmap // fits in goarch.PtrSize*8 bits, so writing out bitmap data takes two bitmap // writes at most (because object boundaries don't generally lie on // s.heapBits()[i] boundaries). // // For larger objects, if t is the type for the object starting at "start", // within some span whose mspan is s, then the bitmap at t.GCData is "tiled" // from "start" through "start+s.elemsize". // Specifically, the first bit of t.GCData corresponds to the word at "start", // the second to the word after "start", and so on up to t.PtrBytes. At t.PtrBytes, // we skip to "start+t.Size_" and begin again from there. This process is // repeated until we hit "start+s.elemsize". // This tiling algorithm supports array data, since the type always refers to // the element type of the array. Single objects are considered the same as // single-element arrays. // The tiling algorithm may scan data past the end of the compiler-recognized // object, but any unused data within the allocation slot (i.e. within s.elemsize) // is zeroed, so the GC just observes nil pointers. // Note that this "tiled" bitmap isn't stored anywhere; it is generated on-the-fly. // // For objects without their own span, the type metadata is stored in the first // word before the object at the beginning of the allocation slot. For objects // with their own span, the type metadata is stored in the mspan. // // The bitmap for small unallocated objects in scannable spans is not maintained // (can be junk). package runtime import ( "internal/abi" "internal/goarch" "internal/runtime/atomic" "runtime/internal/sys" "unsafe" ) const ( // A malloc header is functionally a single type pointer, but // we need to use 8 here to ensure 8-byte alignment of allocations // on 32-bit platforms. It's wasteful, but a lot of code relies on // 8-byte alignment for 8-byte atomics. mallocHeaderSize = 8 // The minimum object size that has a malloc header, exclusive. // // The size of this value controls overheads from the malloc header. // The minimum size is bound by writeHeapBitsSmall, which assumes that the // pointer bitmap for objects of a size smaller than this doesn't cross // more than one pointer-word boundary. This sets an upper-bound on this // value at the number of bits in a uintptr, multiplied by the pointer // size in bytes. // // We choose a value here that has a natural cutover point in terms of memory // overheads. This value just happens to be the maximum possible value this // can be. // // A span with heap bits in it will have 128 bytes of heap bits on 64-bit // platforms, and 256 bytes of heap bits on 32-bit platforms. The first size // class where malloc headers match this overhead for 64-bit platforms is // 512 bytes (8 KiB / 512 bytes * 8 bytes-per-header = 128 bytes of overhead). // On 32-bit platforms, this same point is the 256 byte size class // (8 KiB / 256 bytes * 8 bytes-per-header = 256 bytes of overhead). // // Guaranteed to be exactly at a size class boundary. The reason this value is // an exclusive minimum is subtle. Suppose we're allocating a 504-byte object // and its rounded up to 512 bytes for the size class. If minSizeForMallocHeader // is 512 and an inclusive minimum, then a comparison against minSizeForMallocHeader // by the two values would produce different results. In other words, the comparison // would not be invariant to size-class rounding. Eschewing this property means a // more complex check or possibly storing additional state to determine whether a // span has malloc headers. minSizeForMallocHeader = goarch.PtrSize * ptrBits ) // heapBitsInSpan returns true if the size of an object implies its ptr/scalar // data is stored at the end of the span, and is accessible via span.heapBits. // // Note: this works for both rounded-up sizes (span.elemsize) and unrounded // type sizes because minSizeForMallocHeader is guaranteed to be at a size // class boundary. // //go:nosplit func heapBitsInSpan(userSize uintptr) bool { // N.B. minSizeForMallocHeader is an exclusive minimum so that this function is // invariant under size-class rounding on its input. return userSize <= minSizeForMallocHeader } // typePointers is an iterator over the pointers in a heap object. // // Iteration through this type implements the tiling algorithm described at the // top of this file. type typePointers struct { // elem is the address of the current array element of type typ being iterated over. // Objects that are not arrays are treated as single-element arrays, in which case // this value does not change. elem uintptr // addr is the address the iterator is currently working from and describes // the address of the first word referenced by mask. addr uintptr // mask is a bitmask where each bit corresponds to pointer-words after addr. // Bit 0 is the pointer-word at addr, Bit 1 is the next word, and so on. // If a bit is 1, then there is a pointer at that word. // nextFast and next mask out bits in this mask as their pointers are processed. mask uintptr // typ is a pointer to the type information for the heap object's type. // This may be nil if the object is in a span where heapBitsInSpan(span.elemsize) is true. typ *_type } // typePointersOf returns an iterator over all heap pointers in the range [addr, addr+size). // // addr and addr+size must be in the range [span.base(), span.limit). // // Note: addr+size must be passed as the limit argument to the iterator's next method on // each iteration. This slightly awkward API is to allow typePointers to be destructured // by the compiler. // // nosplit because it is used during write barriers and must not be preempted. // //go:nosplit func (span *mspan) typePointersOf(addr, size uintptr) typePointers { base := span.objBase(addr) tp := span.typePointersOfUnchecked(base) if base == addr && size == span.elemsize { return tp } return tp.fastForward(addr-tp.addr, addr+size) } // typePointersOfUnchecked is like typePointersOf, but assumes addr is the base // of an allocation slot in a span (the start of the object if no header, the // header otherwise). It returns an iterator that generates all pointers // in the range [addr, addr+span.elemsize). // // nosplit because it is used during write barriers and must not be preempted. // //go:nosplit func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers { const doubleCheck = false if doubleCheck && span.objBase(addr) != addr { print("runtime: addr=", addr, " base=", span.objBase(addr), "\n") throw("typePointersOfUnchecked consisting of non-base-address for object") } spc := span.spanclass if spc.noscan() { return typePointers{} } if heapBitsInSpan(span.elemsize) { // Handle header-less objects. return typePointers{elem: addr, addr: addr, mask: span.heapBitsSmallForAddr(addr)} } // All of these objects have a header. var typ *_type if spc.sizeclass() != 0 { // Pull the allocation header from the first word of the object. typ = *(**_type)(unsafe.Pointer(addr)) addr += mallocHeaderSize } else { typ = span.largeType if typ == nil { // Allow a nil type here for delayed zeroing. See mallocgc. return typePointers{} } } gcdata := typ.GCData return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ} } // typePointersOfType is like typePointersOf, but assumes addr points to one or more // contiguous instances of the provided type. The provided type must not be nil and // it must not have its type metadata encoded as a gcprog. // // It returns an iterator that tiles typ.GCData starting from addr. It's the caller's // responsibility to limit iteration. // // nosplit because its callers are nosplit and require all their callees to be nosplit. // //go:nosplit func (span *mspan) typePointersOfType(typ *abi.Type, addr uintptr) typePointers { const doubleCheck = false if doubleCheck && (typ == nil || typ.Kind_&abi.KindGCProg != 0) { throw("bad type passed to typePointersOfType") } if span.spanclass.noscan() { return typePointers{} } // Since we have the type, pretend we have a header. gcdata := typ.GCData return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ} } // nextFast is the fast path of next. nextFast is written to be inlineable and, // as the name implies, fast. // // Callers that are performance-critical should iterate using the following // pattern: // // for { // var addr uintptr // if tp, addr = tp.nextFast(); addr == 0 { // if tp, addr = tp.next(limit); addr == 0 { // break // } // } // // Use addr. // ... // } // // nosplit because it is used during write barriers and must not be preempted. // //go:nosplit func (tp typePointers) nextFast() (typePointers, uintptr) { // TESTQ/JEQ if tp.mask == 0 { return tp, 0 } // BSFQ var i int if goarch.PtrSize == 8 { i = sys.TrailingZeros64(uint64(tp.mask)) } else { i = sys.TrailingZeros32(uint32(tp.mask)) } // BTCQ tp.mask ^= uintptr(1) << (i & (ptrBits - 1)) // LEAQ (XX)(XX*8) return tp, tp.addr + uintptr(i)*goarch.PtrSize } // next advances the pointers iterator, returning the updated iterator and // the address of the next pointer. // // limit must be the same each time it is passed to next. // // nosplit because it is used during write barriers and must not be preempted. // //go:nosplit func (tp typePointers) next(limit uintptr) (typePointers, uintptr) { for { if tp.mask != 0 { return tp.nextFast() } // Stop if we don't actually have type information. if tp.typ == nil { return typePointers{}, 0 } // Advance to the next element if necessary. if tp.addr+goarch.PtrSize*ptrBits >= tp.elem+tp.typ.PtrBytes { tp.elem += tp.typ.Size_ tp.addr = tp.elem } else { tp.addr += ptrBits * goarch.PtrSize } // Check if we've exceeded the limit with the last update. if tp.addr >= limit { return typePointers{}, 0 } // Grab more bits and try again. tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8)) if tp.addr+goarch.PtrSize*ptrBits > limit { bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) } } } // fastForward moves the iterator forward by n bytes. n must be a multiple // of goarch.PtrSize. limit must be the same limit passed to next for this // iterator. // // nosplit because it is used during write barriers and must not be preempted. // //go:nosplit func (tp typePointers) fastForward(n, limit uintptr) typePointers { // Basic bounds check. target := tp.addr + n if target >= limit { return typePointers{} } if tp.typ == nil { // Handle small objects. // Clear any bits before the target address. tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1 // Clear any bits past the limit. if tp.addr+goarch.PtrSize*ptrBits > limit { bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) } return tp } // Move up elem and addr. // Offsets within an element are always at a ptrBits*goarch.PtrSize boundary. if n >= tp.typ.Size_ { // elem needs to be moved to the element containing // tp.addr + n. oldelem := tp.elem tp.elem += (tp.addr - tp.elem + n) / tp.typ.Size_ * tp.typ.Size_ tp.addr = tp.elem + alignDown(n-(tp.elem-oldelem), ptrBits*goarch.PtrSize) } else { tp.addr += alignDown(n, ptrBits*goarch.PtrSize) } if tp.addr-tp.elem >= tp.typ.PtrBytes { // We're starting in the non-pointer area of an array. // Move up to the next element. tp.elem += tp.typ.Size_ tp.addr = tp.elem tp.mask = readUintptr(tp.typ.GCData) // We may have exceeded the limit after this. Bail just like next does. if tp.addr >= limit { return typePointers{} } } else { // Grab the mask, but then clear any bits before the target address and any // bits over the limit. tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8)) tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1 } if tp.addr+goarch.PtrSize*ptrBits > limit { bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) } return tp } // objBase returns the base pointer for the object containing addr in span. // // Assumes that addr points into a valid part of span (span.base() <= addr < span.limit). // //go:nosplit func (span *mspan) objBase(addr uintptr) uintptr { return span.base() + span.objIndex(addr)*span.elemsize } // bulkBarrierPreWrite executes a write barrier // for every pointer slot in the memory range [src, src+size), // using pointer/scalar information from [dst, dst+size). // This executes the write barriers necessary before a memmove. // src, dst, and size must be pointer-aligned. // The range [dst, dst+size) must lie within a single object. // It does not perform the actual writes. // // As a special case, src == 0 indicates that this is being used for a // memclr. bulkBarrierPreWrite will pass 0 for the src of each write // barrier. // // Callers should call bulkBarrierPreWrite immediately before // calling memmove(dst, src, size). This function is marked nosplit // to avoid being preempted; the GC must not stop the goroutine // between the memmove and the execution of the barriers. // The caller is also responsible for cgo pointer checks if this // may be writing Go pointers into non-Go memory. // // Pointer data is not maintained for allocations containing // no pointers at all; any caller of bulkBarrierPreWrite must first // make sure the underlying allocation contains pointers, usually // by checking typ.PtrBytes. // // The typ argument is the type of the space at src and dst (and the // element type if src and dst refer to arrays) and it is optional. // If typ is nil, the barrier will still behave as expected and typ // is used purely as an optimization. However, it must be used with // care. // // If typ is not nil, then src and dst must point to one or more values // of type typ. The caller must ensure that the ranges [src, src+size) // and [dst, dst+size) refer to one or more whole values of type src and // dst (leaving off the pointerless tail of the space is OK). If this // precondition is not followed, this function will fail to scan the // right pointers. // // When in doubt, pass nil for typ. That is safe and will always work. // // Callers must perform cgo checks if goexperiment.CgoCheck2. // //go:nosplit func bulkBarrierPreWrite(dst, src, size uintptr, typ *abi.Type) { if (dst|src|size)&(goarch.PtrSize-1) != 0 { throw("bulkBarrierPreWrite: unaligned arguments") } if !writeBarrier.enabled { return } s := spanOf(dst) if s == nil { // If dst is a global, use the data or BSS bitmaps to // execute write barriers. for _, datap := range activeModules() { if datap.data <= dst && dst < datap.edata { bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) return } } for _, datap := range activeModules() { if datap.bss <= dst && dst < datap.ebss { bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) return } } return } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { // dst was heap memory at some point, but isn't now. // It can't be a global. It must be either our stack, // or in the case of direct channel sends, it could be // another stack. Either way, no need for barriers. // This will also catch if dst is in a freed span, // though that should never have. return } buf := &getg().m.p.ptr().wbBuf // Double-check that the bitmaps generated in the two possible paths match. const doubleCheck = false if doubleCheck { doubleCheckTypePointersOfType(s, typ, dst, size) } var tp typePointers if typ != nil && typ.Kind_&abi.KindGCProg == 0 { tp = s.typePointersOfType(typ, dst) } else { tp = s.typePointersOf(dst, size) } if src == 0 { for { var addr uintptr if tp, addr = tp.next(dst + size); addr == 0 { break } dstx := (*uintptr)(unsafe.Pointer(addr)) p := buf.get1() p[0] = *dstx } } else { for { var addr uintptr if tp, addr = tp.next(dst + size); addr == 0 { break } dstx := (*uintptr)(unsafe.Pointer(addr)) srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) p := buf.get2() p[0] = *dstx p[1] = *srcx } } } // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but // does not execute write barriers for [dst, dst+size). // // In addition to the requirements of bulkBarrierPreWrite // callers need to ensure [dst, dst+size) is zeroed. // // This is used for special cases where e.g. dst was just // created and zeroed with malloc. // // The type of the space can be provided purely as an optimization. // See bulkBarrierPreWrite's comment for more details -- use this // optimization with great care. // //go:nosplit func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, typ *abi.Type) { if (dst|src|size)&(goarch.PtrSize-1) != 0 { throw("bulkBarrierPreWrite: unaligned arguments") } if !writeBarrier.enabled { return } buf := &getg().m.p.ptr().wbBuf s := spanOf(dst) // Double-check that the bitmaps generated in the two possible paths match. const doubleCheck = false if doubleCheck { doubleCheckTypePointersOfType(s, typ, dst, size) } var tp typePointers if typ != nil && typ.Kind_&abi.KindGCProg == 0 { tp = s.typePointersOfType(typ, dst) } else { tp = s.typePointersOf(dst, size) } for { var addr uintptr if tp, addr = tp.next(dst + size); addr == 0 { break } srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) p := buf.get1() p[0] = *srcx } } // initHeapBits initializes the heap bitmap for a span. // // TODO(mknyszek): This should set the heap bits for single pointer // allocations eagerly to avoid calling heapSetType at allocation time, // just to write one bit. func (s *mspan) initHeapBits(forceClear bool) { if (!s.spanclass.noscan() && heapBitsInSpan(s.elemsize)) || s.isUserArenaChunk { b := s.heapBits() clear(b) } } // heapBits returns the heap ptr/scalar bits stored at the end of the span for // small object spans and heap arena spans. // // Note that the uintptr of each element means something different for small object // spans and for heap arena spans. Small object spans are easy: they're never interpreted // as anything but uintptr, so they're immune to differences in endianness. However, the // heapBits for user arena spans is exposed through a dummy type descriptor, so the byte // ordering needs to match the same byte ordering the compiler would emit. The compiler always // emits the bitmap data in little endian byte ordering, so on big endian platforms these // uintptrs will have their byte orders swapped from what they normally would be. // // heapBitsInSpan(span.elemsize) or span.isUserArenaChunk must be true. // //go:nosplit func (span *mspan) heapBits() []uintptr { const doubleCheck = false if doubleCheck && !span.isUserArenaChunk { if span.spanclass.noscan() { throw("heapBits called for noscan") } if span.elemsize > minSizeForMallocHeader { throw("heapBits called for span class that should have a malloc header") } } // Find the bitmap at the end of the span. // // Nearly every span with heap bits is exactly one page in size. Arenas are the only exception. if span.npages == 1 { // This will be inlined and constant-folded down. return heapBitsSlice(span.base(), pageSize) } return heapBitsSlice(span.base(), span.npages*pageSize) } // Helper for constructing a slice for the span's heap bits. // //go:nosplit func heapBitsSlice(spanBase, spanSize uintptr) []uintptr { bitmapSize := spanSize / goarch.PtrSize / 8 elems := int(bitmapSize / goarch.PtrSize) var sl notInHeapSlice sl = notInHeapSlice{(*notInHeap)(unsafe.Pointer(spanBase + spanSize - bitmapSize)), elems, elems} return *(*[]uintptr)(unsafe.Pointer(&sl)) } // heapBitsSmallForAddr loads the heap bits for the object stored at addr from span.heapBits. // // addr must be the base pointer of an object in the span. heapBitsInSpan(span.elemsize) // must be true. // //go:nosplit func (span *mspan) heapBitsSmallForAddr(addr uintptr) uintptr { spanSize := span.npages * pageSize bitmapSize := spanSize / goarch.PtrSize / 8 hbits := (*byte)(unsafe.Pointer(span.base() + spanSize - bitmapSize)) // These objects are always small enough that their bitmaps // fit in a single word, so just load the word or two we need. // // Mirrors mspan.writeHeapBitsSmall. // // We should be using heapBits(), but unfortunately it introduces // both bounds checks panics and throw which causes us to exceed // the nosplit limit in quite a few cases. i := (addr - span.base()) / goarch.PtrSize / ptrBits j := (addr - span.base()) / goarch.PtrSize % ptrBits bits := span.elemsize / goarch.PtrSize word0 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+0)))) word1 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+1)))) var read uintptr if j+bits > ptrBits { // Two reads. bits0 := ptrBits - j bits1 := bits - bits0 read = *word0 >> j read |= (*word1 & ((1 << bits1) - 1)) << bits0 } else { // One read. read = (*word0 >> j) & ((1 << bits) - 1) } return read } // writeHeapBitsSmall writes the heap bits for small objects whose ptr/scalar data is // stored as a bitmap at the end of the span. // // Assumes dataSize is <= ptrBits*goarch.PtrSize. x must be a pointer into the span. // heapBitsInSpan(dataSize) must be true. dataSize must be >= typ.Size_. // //go:nosplit func (span *mspan) writeHeapBitsSmall(x, dataSize uintptr, typ *_type) (scanSize uintptr) { // The objects here are always really small, so a single load is sufficient. src0 := readUintptr(typ.GCData) // Create repetitions of the bitmap if we have a small array. bits := span.elemsize / goarch.PtrSize scanSize = typ.PtrBytes src := src0 switch typ.Size_ { case goarch.PtrSize: src = (1 << (dataSize / goarch.PtrSize)) - 1 default: for i := typ.Size_; i < dataSize; i += typ.Size_ { src |= src0 << (i / goarch.PtrSize) scanSize += typ.Size_ } } // Since we're never writing more than one uintptr's worth of bits, we're either going // to do one or two writes. dst := span.heapBits() o := (x - span.base()) / goarch.PtrSize i := o / ptrBits j := o % ptrBits if j+bits > ptrBits { // Two writes. bits0 := ptrBits - j bits1 := bits - bits0 dst[i+0] = dst[i+0]&(^uintptr(0)>>bits0) | (src << j) dst[i+1] = dst[i+1]&^((1<> bits0) } else { // One write. dst[i] = (dst[i] &^ (((1 << bits) - 1) << j)) | (src << j) } const doubleCheck = false if doubleCheck { srcRead := span.heapBitsSmallForAddr(x) if srcRead != src { print("runtime: x=", hex(x), " i=", i, " j=", j, " bits=", bits, "\n") print("runtime: dataSize=", dataSize, " typ.Size_=", typ.Size_, " typ.PtrBytes=", typ.PtrBytes, "\n") print("runtime: src0=", hex(src0), " src=", hex(src), " srcRead=", hex(srcRead), "\n") throw("bad pointer bits written for small object") } } return } // heapSetType records that the new allocation [x, x+size) // holds in [x, x+dataSize) one or more values of type typ. // (The number of values is given by dataSize / typ.Size.) // If dataSize < size, the fragment [x+dataSize, x+size) is // recorded as non-pointer data. // It is known that the type has pointers somewhere; // malloc does not call heapSetType when there are no pointers. // // There can be read-write races between heapSetType and things // that read the heap metadata like scanobject. However, since // heapSetType is only used for objects that have not yet been // made reachable, readers will ignore bits being modified by this // function. This does mean this function cannot transiently modify // shared memory that belongs to neighboring objects. Also, on weakly-ordered // machines, callers must execute a store/store (publication) barrier // between calling this function and making the object reachable. func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) { const doubleCheck = false gctyp := typ if header == nil { if doubleCheck && (!heapBitsInSpan(dataSize) || !heapBitsInSpan(span.elemsize)) { throw("tried to write heap bits, but no heap bits in span") } // Handle the case where we have no malloc header. scanSize = span.writeHeapBitsSmall(x, dataSize, typ) } else { if typ.Kind_&abi.KindGCProg != 0 { // Allocate space to unroll the gcprog. This space will consist of // a dummy _type value and the unrolled gcprog. The dummy _type will // refer to the bitmap, and the mspan will refer to the dummy _type. if span.spanclass.sizeclass() != 0 { throw("GCProg for type that isn't large") } spaceNeeded := alignUp(unsafe.Sizeof(_type{}), goarch.PtrSize) heapBitsOff := spaceNeeded spaceNeeded += alignUp(typ.PtrBytes/goarch.PtrSize/8, goarch.PtrSize) npages := alignUp(spaceNeeded, pageSize) / pageSize var progSpan *mspan systemstack(func() { progSpan = mheap_.allocManual(npages, spanAllocPtrScalarBits) memclrNoHeapPointers(unsafe.Pointer(progSpan.base()), progSpan.npages*pageSize) }) // Write a dummy _type in the new space. // // We only need to write size, PtrBytes, and GCData, since that's all // the GC cares about. gctyp = (*_type)(unsafe.Pointer(progSpan.base())) gctyp.Size_ = typ.Size_ gctyp.PtrBytes = typ.PtrBytes gctyp.GCData = (*byte)(add(unsafe.Pointer(progSpan.base()), heapBitsOff)) gctyp.TFlag = abi.TFlagUnrolledBitmap // Expand the GC program into space reserved at the end of the new span. runGCProg(addb(typ.GCData, 4), gctyp.GCData) } // Write out the header. *header = gctyp scanSize = span.elemsize } if doubleCheck { doubleCheckHeapPointers(x, dataSize, gctyp, header, span) // To exercise the less common path more often, generate // a random interior pointer and make sure iterating from // that point works correctly too. maxIterBytes := span.elemsize if header == nil { maxIterBytes = dataSize } off := alignUp(uintptr(cheaprand())%dataSize, goarch.PtrSize) size := dataSize - off if size == 0 { off -= goarch.PtrSize size += goarch.PtrSize } interior := x + off size -= alignDown(uintptr(cheaprand())%size, goarch.PtrSize) if size == 0 { size = goarch.PtrSize } // Round up the type to the size of the type. size = (size + gctyp.Size_ - 1) / gctyp.Size_ * gctyp.Size_ if interior+size > x+maxIterBytes { size = x + maxIterBytes - interior } doubleCheckHeapPointersInterior(x, interior, size, dataSize, gctyp, header, span) } return } func doubleCheckHeapPointers(x, dataSize uintptr, typ *_type, header **_type, span *mspan) { // Check that scanning the full object works. tp := span.typePointersOfUnchecked(span.objBase(x)) maxIterBytes := span.elemsize if header == nil { maxIterBytes = dataSize } bad := false for i := uintptr(0); i < maxIterBytes; i += goarch.PtrSize { // Compute the pointer bit we want at offset i. want := false if i < span.elemsize { off := i % typ.Size_ if off < typ.PtrBytes { j := off / goarch.PtrSize want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 } } if want { var addr uintptr tp, addr = tp.next(x + span.elemsize) if addr == 0 { println("runtime: found bad iterator") } if addr != x+i { print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n") bad = true } } } if !bad { var addr uintptr tp, addr = tp.next(x + span.elemsize) if addr == 0 { return } println("runtime: extra pointer:", hex(addr)) } print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, " hasGCProg=", typ.Kind_&abi.KindGCProg != 0, "\n") print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, "\n") print("runtime: typ=", unsafe.Pointer(typ), " typ.PtrBytes=", typ.PtrBytes, "\n") print("runtime: limit=", hex(x+span.elemsize), "\n") tp = span.typePointersOfUnchecked(x) dumpTypePointers(tp) for { var addr uintptr if tp, addr = tp.next(x + span.elemsize); addr == 0 { println("runtime: would've stopped here") dumpTypePointers(tp) break } print("runtime: addr=", hex(addr), "\n") dumpTypePointers(tp) } throw("heapSetType: pointer entry not correct") } func doubleCheckHeapPointersInterior(x, interior, size, dataSize uintptr, typ *_type, header **_type, span *mspan) { bad := false if interior < x { print("runtime: interior=", hex(interior), " x=", hex(x), "\n") throw("found bad interior pointer") } off := interior - x tp := span.typePointersOf(interior, size) for i := off; i < off+size; i += goarch.PtrSize { // Compute the pointer bit we want at offset i. want := false if i < span.elemsize { off := i % typ.Size_ if off < typ.PtrBytes { j := off / goarch.PtrSize want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 } } if want { var addr uintptr tp, addr = tp.next(interior + size) if addr == 0 { println("runtime: found bad iterator") bad = true } if addr != x+i { print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n") bad = true } } } if !bad { var addr uintptr tp, addr = tp.next(interior + size) if addr == 0 { return } println("runtime: extra pointer:", hex(addr)) } print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, "\n") print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, " interior=", hex(interior), " size=", size, "\n") print("runtime: limit=", hex(interior+size), "\n") tp = span.typePointersOf(interior, size) dumpTypePointers(tp) for { var addr uintptr if tp, addr = tp.next(interior + size); addr == 0 { println("runtime: would've stopped here") dumpTypePointers(tp) break } print("runtime: addr=", hex(addr), "\n") dumpTypePointers(tp) } print("runtime: want: ") for i := off; i < off+size; i += goarch.PtrSize { // Compute the pointer bit we want at offset i. want := false if i < dataSize { off := i % typ.Size_ if off < typ.PtrBytes { j := off / goarch.PtrSize want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 } } if want { print("1") } else { print("0") } } println() throw("heapSetType: pointer entry not correct") } //go:nosplit func doubleCheckTypePointersOfType(s *mspan, typ *_type, addr, size uintptr) { if typ == nil || typ.Kind_&abi.KindGCProg != 0 { return } if typ.Kind_&abi.KindMask == abi.Interface { // Interfaces are unfortunately inconsistently handled // when it comes to the type pointer, so it's easy to // produce a lot of false positives here. return } tp0 := s.typePointersOfType(typ, addr) tp1 := s.typePointersOf(addr, size) failed := false for { var addr0, addr1 uintptr tp0, addr0 = tp0.next(addr + size) tp1, addr1 = tp1.next(addr + size) if addr0 != addr1 { failed = true break } if addr0 == 0 { break } } if failed { tp0 := s.typePointersOfType(typ, addr) tp1 := s.typePointersOf(addr, size) print("runtime: addr=", hex(addr), " size=", size, "\n") print("runtime: type=", toRType(typ).string(), "\n") dumpTypePointers(tp0) dumpTypePointers(tp1) for { var addr0, addr1 uintptr tp0, addr0 = tp0.next(addr + size) tp1, addr1 = tp1.next(addr + size) print("runtime: ", hex(addr0), " ", hex(addr1), "\n") if addr0 == 0 && addr1 == 0 { break } } throw("mismatch between typePointersOfType and typePointersOf") } } func dumpTypePointers(tp typePointers) { print("runtime: tp.elem=", hex(tp.elem), " tp.typ=", unsafe.Pointer(tp.typ), "\n") print("runtime: tp.addr=", hex(tp.addr), " tp.mask=") for i := uintptr(0); i < ptrBits; i++ { if tp.mask&(uintptr(1)< snelems { throw("s.freeindex > s.nelems") } aCache := s.allocCache bitIndex := sys.TrailingZeros64(aCache) for bitIndex == 64 { // Move index to start of next cached bits. sfreeindex = (sfreeindex + 64) &^ (64 - 1) if sfreeindex >= snelems { s.freeindex = snelems return snelems } whichByte := sfreeindex / 8 // Refill s.allocCache with the next 64 alloc bits. s.refillAllocCache(whichByte) aCache = s.allocCache bitIndex = sys.TrailingZeros64(aCache) // nothing available in cached bits // grab the next 8 bytes and try again. } result := sfreeindex + uint16(bitIndex) if result >= snelems { s.freeindex = snelems return snelems } s.allocCache >>= uint(bitIndex + 1) sfreeindex = result + 1 if sfreeindex%64 == 0 && sfreeindex != snelems { // We just incremented s.freeindex so it isn't 0. // As each 1 in s.allocCache was encountered and used for allocation // it was shifted away. At this point s.allocCache contains all 0s. // Refill s.allocCache so that it corresponds // to the bits at s.allocBits starting at s.freeindex. whichByte := sfreeindex / 8 s.refillAllocCache(whichByte) } s.freeindex = sfreeindex return result } // isFree reports whether the index'th object in s is unallocated. // // The caller must ensure s.state is mSpanInUse, and there must have // been no preemption points since ensuring this (which could allow a // GC transition, which would allow the state to change). func (s *mspan) isFree(index uintptr) bool { if index < uintptr(s.freeIndexForScan) { return false } bytep, mask := s.allocBits.bitp(index) return *bytep&mask == 0 } // divideByElemSize returns n/s.elemsize. // n must be within [0, s.npages*_PageSize), // or may be exactly s.npages*_PageSize // if s.elemsize is from sizeclasses.go. // // nosplit, because it is called by objIndex, which is nosplit // //go:nosplit func (s *mspan) divideByElemSize(n uintptr) uintptr { const doubleCheck = false // See explanation in mksizeclasses.go's computeDivMagic. q := uintptr((uint64(n) * uint64(s.divMul)) >> 32) if doubleCheck && q != n/s.elemsize { println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q) throw("bad magic division") } return q } // nosplit, because it is called by other nosplit code like findObject // //go:nosplit func (s *mspan) objIndex(p uintptr) uintptr { return s.divideByElemSize(p - s.base()) } func markBitsForAddr(p uintptr) markBits { s := spanOf(p) objIndex := s.objIndex(p) return s.markBitsForIndex(objIndex) } func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { bytep, mask := s.gcmarkBits.bitp(objIndex) return markBits{bytep, mask, objIndex} } func (s *mspan) markBitsForBase() markBits { return markBits{&s.gcmarkBits.x, uint8(1), 0} } // isMarked reports whether mark bit m is set. func (m markBits) isMarked() bool { return *m.bytep&m.mask != 0 } // setMarked sets the marked bit in the markbits, atomically. func (m markBits) setMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.Or8(m.bytep, m.mask) } // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. func (m markBits) setMarkedNonAtomic() { *m.bytep |= m.mask } // clearMarked clears the marked bit in the markbits, atomically. func (m markBits) clearMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.And8(m.bytep, ^m.mask) } // markBitsForSpan returns the markBits for the span base address base. func markBitsForSpan(base uintptr) (mbits markBits) { mbits = markBitsForAddr(base) if mbits.mask != 1 { throw("markBitsForSpan: unaligned start") } return mbits } // advance advances the markBits to the next object in the span. func (m *markBits) advance() { if m.mask == 1<<7 { m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) m.mask = 1 } else { m.mask = m.mask << 1 } m.index++ } // clobberdeadPtr is a special value that is used by the compiler to // clobber dead stack slots, when -clobberdead flag is set. const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32)) // badPointer throws bad pointer in heap panic. func badPointer(s *mspan, p, refBase, refOff uintptr) { // Typically this indicates an incorrect use // of unsafe or cgo to store a bad pointer in // the Go heap. It may also indicate a runtime // bug. // // TODO(austin): We could be more aggressive // and detect pointers to unallocated objects // in allocated spans. printlock() print("runtime: pointer ", hex(p)) if s != nil { state := s.state.get() if state != mSpanInUse { print(" to unallocated span") } else { print(" to unused region of span") } print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state) } print("\n") if refBase != 0 { print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") gcDumpObject("object", refBase, refOff) } getg().m.traceback = 2 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") } // findObject returns the base address for the heap object containing // the address p, the object's span, and the index of the object in s. // If p does not point into a heap object, it returns base == 0. // // If p points is an invalid heap pointer and debug.invalidptr != 0, // findObject panics. // // refBase and refOff optionally give the base address of the object // in which the pointer p was found and the byte offset at which it // was found. These are used for error reporting. // // It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. // Since p is a uintptr, it would not be adjusted if the stack were to move. // //go:nosplit func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { s = spanOf(p) // If s is nil, the virtual address has never been part of the heap. // This pointer may be to some mmap'd region, so we allow it. if s == nil { if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 { // Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now, // as they are the only platform where compiler's clobberdead mode is // implemented. On these platforms clobberdeadPtr cannot be a valid address. badPointer(s, p, refBase, refOff) } return } // If p is a bad pointer, it may not be in s's bounds. // // Check s.state to synchronize with span initialization // before checking other fields. See also spanOfHeap. if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { // Pointers into stacks are also ok, the runtime manages these explicitly. if state == mSpanManual { return } // The following ensures that we are rigorous about what data // structures hold valid pointers. if debug.invalidptr != 0 { badPointer(s, p, refBase, refOff) } return } objIndex = s.objIndex(p) base = s.base() + objIndex*s.elemsize return } // reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok. // //go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr func reflect_verifyNotInHeapPtr(p uintptr) bool { // Conversion to a pointer is ok as long as findObject above does not call badPointer. // Since we're already promised that p doesn't point into the heap, just disallow heap // pointers and the special clobbered pointer. return spanOf(p) == nil && p != clobberdeadPtr } const ptrBits = 8 * goarch.PtrSize // bulkBarrierBitmap executes write barriers for copying from [src, // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is // assumed to start maskOffset bytes into the data covered by the // bitmap in bits (which may not be a multiple of 8). // // This is used by bulkBarrierPreWrite for writes to data and BSS. // //go:nosplit func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { word := maskOffset / goarch.PtrSize bits = addb(bits, word/8) mask := uint8(1) << (word % 8) buf := &getg().m.p.ptr().wbBuf for i := uintptr(0); i < size; i += goarch.PtrSize { if mask == 0 { bits = addb(bits, 1) if *bits == 0 { // Skip 8 words. i += 7 * goarch.PtrSize continue } mask = 1 } if *bits&mask != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) if src == 0 { p := buf.get1() p[0] = *dstx } else { srcx := (*uintptr)(unsafe.Pointer(src + i)) p := buf.get2() p[0] = *dstx p[1] = *srcx } } mask <<= 1 } } // typeBitsBulkBarrier executes a write barrier for every // pointer that would be copied from [src, src+size) to [dst, // dst+size) by a memmove using the type bitmap to locate those // pointer slots. // // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). // dst, src, and size must be pointer-aligned. // The type typ must have a plain bitmap, not a GC program. // The only use of this function is in channel sends, and the // 64 kB channel element limit takes care of this for us. // // Must not be preempted because it typically runs right before memmove, // and the GC must observe them as an atomic action. // // Callers must perform cgo checks if goexperiment.CgoCheck2. // //go:nosplit func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { if typ == nil { throw("runtime: typeBitsBulkBarrier without type") } if typ.Size_ != size { println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " of size ", typ.Size_, " but memory size", size) throw("runtime: invalid typeBitsBulkBarrier") } if typ.Kind_&abi.KindGCProg != 0 { println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " with GC prog") throw("runtime: invalid typeBitsBulkBarrier") } if !writeBarrier.enabled { return } ptrmask := typ.GCData buf := &getg().m.p.ptr().wbBuf var bits uint32 for i := uintptr(0); i < typ.PtrBytes; i += goarch.PtrSize { if i&(goarch.PtrSize*8-1) == 0 { bits = uint32(*ptrmask) ptrmask = addb(ptrmask, 1) } else { bits = bits >> 1 } if bits&1 != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) srcx := (*uintptr)(unsafe.Pointer(src + i)) p := buf.get2() p[0] = *dstx p[1] = *srcx } } } // countAlloc returns the number of objects allocated in span s by // scanning the mark bitmap. func (s *mspan) countAlloc() int { count := 0 bytes := divRoundUp(uintptr(s.nelems), 8) // Iterate over each 8-byte chunk and count allocations // with an intrinsic. Note that newMarkBits guarantees that // gcmarkBits will be 8-byte aligned, so we don't have to // worry about edge cases, irrelevant bits will simply be zero. for i := uintptr(0); i < bytes; i += 8 { // Extract 64 bits from the byte pointer and get a OnesCount. // Note that the unsafe cast here doesn't preserve endianness, // but that's OK. We only care about how many bits are 1, not // about the order we discover them in. mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) count += sys.OnesCount64(mrkBits) } return count } // Read the bytes starting at the aligned pointer p into a uintptr. // Read is little-endian. func readUintptr(p *byte) uintptr { x := *(*uintptr)(unsafe.Pointer(p)) if goarch.BigEndian { if goarch.PtrSize == 8 { return uintptr(sys.Bswap64(uint64(x))) } return uintptr(sys.Bswap32(uint32(x))) } return x } var debugPtrmask struct { lock mutex data *byte } // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. // size the size of the region described by prog, in bytes. // The resulting bitvector will have no more than size/goarch.PtrSize bits. func progToPointerMask(prog *byte, size uintptr) bitvector { n := (size/goarch.PtrSize + 7) / 8 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] x[len(x)-1] = 0xa1 // overflow check sentinel n = runGCProg(prog, &x[0]) if x[len(x)-1] != 0xa1 { throw("progToPointerMask: overflow") } return bitvector{int32(n), &x[0]} } // Packed GC pointer bitmaps, aka GC programs. // // For large types containing arrays, the type information has a // natural repetition that can be encoded to save space in the // binary and in the memory representation of the type information. // // The encoding is a simple Lempel-Ziv style bytecode machine // with the following instructions: // // 00000000: stop // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes // 10000000 n c: repeat the previous n bits c times; n, c are varints // 1nnnnnnn c: repeat the previous n bits c times; c is a varint // runGCProg returns the number of 1-bit entries written to memory. func runGCProg(prog, dst *byte) uintptr { dstStart := dst // Bits waiting to be written to memory. var bits uintptr var nbits uintptr p := prog Run: for { // Flush accumulated full bytes. // The rest of the loop assumes that nbits <= 7. for ; nbits >= 8; nbits -= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } // Process one instruction. inst := uintptr(*p) p = add1(p) n := inst & 0x7F if inst&0x80 == 0 { // Literal bits; n == 0 means end of program. if n == 0 { // Program is over. break Run } nbyte := n / 8 for i := uintptr(0); i < nbyte; i++ { bits |= uintptr(*p) << nbits p = add1(p) *dst = uint8(bits) dst = add1(dst) bits >>= 8 } if n %= 8; n > 0 { bits |= uintptr(*p) << nbits p = add1(p) nbits += n } continue Run } // Repeat. If n == 0, it is encoded in a varint in the next bytes. if n == 0 { for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) n |= (x & 0x7F) << off if x&0x80 == 0 { break } } } // Count is encoded in a varint in the next bytes. c := uintptr(0) for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) c |= (x & 0x7F) << off if x&0x80 == 0 { break } } c *= n // now total number of bits to copy // If the number of bits being repeated is small, load them // into a register and use that register for the entire loop // instead of repeatedly reading from memory. // Handling fewer than 8 bits here makes the general loop simpler. // The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add // the pattern to a bit buffer holding at most 7 bits (a partial byte) // it will not overflow. src := dst const maxBits = goarch.PtrSize*8 - 7 if n <= maxBits { // Start with bits in output buffer. pattern := bits npattern := nbits // If we need more bits, fetch them from memory. src = subtract1(src) for npattern < n { pattern <<= 8 pattern |= uintptr(*src) src = subtract1(src) npattern += 8 } // We started with the whole bit output buffer, // and then we loaded bits from whole bytes. // Either way, we might now have too many instead of too few. // Discard the extra. if npattern > n { pattern >>= npattern - n npattern = n } // Replicate pattern to at most maxBits. if npattern == 1 { // One bit being repeated. // If the bit is 1, make the pattern all 1s. // If the bit is 0, the pattern is already all 0s, // but we can claim that the number of bits // in the word is equal to the number we need (c), // because right shift of bits will zero fill. if pattern == 1 { pattern = 1<8 bits, there will be full bytes to flush // on each iteration. for ; c >= npattern; c -= npattern { bits |= pattern << nbits nbits += npattern for nbits >= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 nbits -= 8 } } // Add final fragment to bit buffer. if c > 0 { pattern &= 1< nbits because n > maxBits and nbits <= 7 // Leading src fragment. src = subtractb(src, (off+7)/8) if frag := off & 7; frag != 0 { bits |= uintptr(*src) >> (8 - frag) << nbits src = add1(src) nbits += frag c -= frag } // Main loop: load one byte, write another. // The bits are rotating through the bit buffer. for i := c / 8; i > 0; i-- { bits |= uintptr(*src) << nbits src = add1(src) *dst = uint8(bits) dst = add1(dst) bits >>= 8 } // Final src fragment. if c %= 8; c > 0 { bits |= (uintptr(*src) & (1< 0; nbits -= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } return totalBits } // materializeGCProg allocates space for the (1-bit) pointer bitmask // for an object of size ptrdata. Then it fills that space with the // pointer bitmask specified by the program prog. // The bitmask starts at s.startAddr. // The result must be deallocated with dematerializeGCProg. func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { // Each word of ptrdata needs one bit in the bitmap. bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize) // Compute the number of pages needed for bitmapBytes. pages := divRoundUp(bitmapBytes, pageSize) s := mheap_.allocManual(pages, spanAllocPtrScalarBits) runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr))) return s } func dematerializeGCProg(s *mspan) { mheap_.freeManual(s, spanAllocPtrScalarBits) } func dumpGCProg(p *byte) { nptr := 0 for { x := *p p = add1(p) if x == 0 { print("\t", nptr, " end\n") break } if x&0x80 == 0 { print("\t", nptr, " lit ", x, ":") n := int(x+7) / 8 for i := 0; i < n; i++ { print(" ", hex(*p)) p = add1(p) } print("\n") nptr += int(x) } else { nbit := int(x &^ 0x80) if nbit == 0 { for nb := uint(0); ; nb += 7 { x := *p p = add1(p) nbit |= int(x&0x7f) << nb if x&0x80 == 0 { break } } } count := 0 for nb := uint(0); ; nb += 7 { x := *p p = add1(p) count |= int(x&0x7f) << nb if x&0x80 == 0 { break } } print("\t", nptr, " repeat ", nbit, " × ", count, "\n") nptr += nbit * count } } } // Testing. // reflect_gcbits returns the GC type info for x, for testing. // The result is the bitmap entries (0 or 1), one entry per byte. // //go:linkname reflect_gcbits reflect.gcbits func reflect_gcbits(x any) []byte { return getgcmask(x) } // Returns GC type info for the pointer stored in ep for testing. // If ep points to the stack, only static live information will be returned // (i.e. not for objects which are only dynamically live stack objects). func getgcmask(ep any) (mask []byte) { e := *efaceOf(&ep) p := e.data t := e._type var et *_type if t.Kind_&abi.KindMask != abi.Pointer { throw("bad argument to getgcmask: expected type to be a pointer to the value type whose mask is being queried") } et = (*ptrtype)(unsafe.Pointer(t)).Elem // data or bss for _, datap := range activeModules() { // data if datap.data <= uintptr(p) && uintptr(p) < datap.edata { bitmap := datap.gcdatamask.bytedata n := et.Size_ mask = make([]byte, n/goarch.PtrSize) for i := uintptr(0); i < n; i += goarch.PtrSize { off := (uintptr(p) + i - datap.data) / goarch.PtrSize mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } // bss if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { bitmap := datap.gcbssmask.bytedata n := et.Size_ mask = make([]byte, n/goarch.PtrSize) for i := uintptr(0); i < n; i += goarch.PtrSize { off := (uintptr(p) + i - datap.bss) / goarch.PtrSize mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } } // heap if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { if s.spanclass.noscan() { return nil } limit := base + s.elemsize // Move the base up to the iterator's start, because // we want to hide evidence of a malloc header from the // caller. tp := s.typePointersOfUnchecked(base) base = tp.addr // Unroll the full bitmap the GC would actually observe. maskFromHeap := make([]byte, (limit-base)/goarch.PtrSize) for { var addr uintptr if tp, addr = tp.next(limit); addr == 0 { break } maskFromHeap[(addr-base)/goarch.PtrSize] = 1 } // Double-check that every part of the ptr/scalar we're not // showing the caller is zeroed. This keeps us honest that // that information is actually irrelevant. for i := limit; i < s.elemsize; i++ { if *(*byte)(unsafe.Pointer(i)) != 0 { throw("found non-zeroed tail of allocation") } } // Callers (and a check we're about to run) expects this mask // to end at the last pointer. for len(maskFromHeap) > 0 && maskFromHeap[len(maskFromHeap)-1] == 0 { maskFromHeap = maskFromHeap[:len(maskFromHeap)-1] } if et.Kind_&abi.KindGCProg == 0 { // Unroll again, but this time from the type information. maskFromType := make([]byte, (limit-base)/goarch.PtrSize) tp = s.typePointersOfType(et, base) for { var addr uintptr if tp, addr = tp.next(limit); addr == 0 { break } maskFromType[(addr-base)/goarch.PtrSize] = 1 } // Validate that the prefix of maskFromType is equal to // maskFromHeap. maskFromType may contain more pointers than // maskFromHeap produces because maskFromHeap may be able to // get exact type information for certain classes of objects. // With maskFromType, we're always just tiling the type bitmap // through to the elemsize. // // It's OK if maskFromType has pointers in elemsize that extend // past the actual populated space; we checked above that all // that space is zeroed, so just the GC will just see nil pointers. differs := false for i := range maskFromHeap { if maskFromHeap[i] != maskFromType[i] { differs = true break } } if differs { print("runtime: heap mask=") for _, b := range maskFromHeap { print(b) } println() print("runtime: type mask=") for _, b := range maskFromType { print(b) } println() print("runtime: type=", toRType(et).string(), "\n") throw("found two different masks from two different methods") } } // Select the heap mask to return. We may not have a type mask. mask = maskFromHeap // Make sure we keep ep alive. We may have stopped referencing // ep's data pointer sometime before this point and it's possible // for that memory to get freed. KeepAlive(ep) return } // stack if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { found := false var u unwinder for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() { if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp { found = true break } } if found { locals, _, _ := u.frame.getStackMap(false) if locals.n == 0 { return } size := uintptr(locals.n) * goarch.PtrSize n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_ mask = make([]byte, n/goarch.PtrSize) for i := uintptr(0); i < n; i += goarch.PtrSize { off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize mask[i/goarch.PtrSize] = locals.ptrbit(off) } } return } // otherwise, not something the GC knows about. // possibly read-only data, like malloc(0). // must not have pointers return }