Source file src/runtime/mgc.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector (GC).
     6  //
     7  // The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
     8  // GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
     9  // non-generational and non-compacting. Allocation is done using size segregated per P allocation
    10  // areas to minimize fragmentation while eliminating locks in the common case.
    11  //
    12  // The algorithm decomposes into several steps.
    13  // This is a high level description of the algorithm being used. For an overview of GC a good
    14  // place to start is Richard Jones' gchandbook.org.
    15  //
    16  // The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
    17  // Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
    18  // On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
    19  // 966-975.
    20  // For journal quality proofs that these steps are complete, correct, and terminate see
    21  // Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
    22  // Concurrency and Computation: Practice and Experience 15(3-5), 2003.
    23  //
    24  // 1. GC performs sweep termination.
    25  //
    26  //    a. Stop the world. This causes all Ps to reach a GC safe-point.
    27  //
    28  //    b. Sweep any unswept spans. There will only be unswept spans if
    29  //    this GC cycle was forced before the expected time.
    30  //
    31  // 2. GC performs the mark phase.
    32  //
    33  //    a. Prepare for the mark phase by setting gcphase to _GCmark
    34  //    (from _GCoff), enabling the write barrier, enabling mutator
    35  //    assists, and enqueueing root mark jobs. No objects may be
    36  //    scanned until all Ps have enabled the write barrier, which is
    37  //    accomplished using STW.
    38  //
    39  //    b. Start the world. From this point, GC work is done by mark
    40  //    workers started by the scheduler and by assists performed as
    41  //    part of allocation. The write barrier shades both the
    42  //    overwritten pointer and the new pointer value for any pointer
    43  //    writes (see mbarrier.go for details). Newly allocated objects
    44  //    are immediately marked black.
    45  //
    46  //    c. GC performs root marking jobs. This includes scanning all
    47  //    stacks, shading all globals, and shading any heap pointers in
    48  //    off-heap runtime data structures. Scanning a stack stops a
    49  //    goroutine, shades any pointers found on its stack, and then
    50  //    resumes the goroutine.
    51  //
    52  //    d. GC drains the work queue of grey objects, scanning each grey
    53  //    object to black and shading all pointers found in the object
    54  //    (which in turn may add those pointers to the work queue).
    55  //
    56  //    e. Because GC work is spread across local caches, GC uses a
    57  //    distributed termination algorithm to detect when there are no
    58  //    more root marking jobs or grey objects (see gcMarkDone). At this
    59  //    point, GC transitions to mark termination.
    60  //
    61  // 3. GC performs mark termination.
    62  //
    63  //    a. Stop the world.
    64  //
    65  //    b. Set gcphase to _GCmarktermination, and disable workers and
    66  //    assists.
    67  //
    68  //    c. Perform housekeeping like flushing mcaches.
    69  //
    70  // 4. GC performs the sweep phase.
    71  //
    72  //    a. Prepare for the sweep phase by setting gcphase to _GCoff,
    73  //    setting up sweep state and disabling the write barrier.
    74  //
    75  //    b. Start the world. From this point on, newly allocated objects
    76  //    are white, and allocating sweeps spans before use if necessary.
    77  //
    78  //    c. GC does concurrent sweeping in the background and in response
    79  //    to allocation. See description below.
    80  //
    81  // 5. When sufficient allocation has taken place, replay the sequence
    82  // starting with 1 above. See discussion of GC rate below.
    83  
    84  // Concurrent sweep.
    85  //
    86  // The sweep phase proceeds concurrently with normal program execution.
    87  // The heap is swept span-by-span both lazily (when a goroutine needs another span)
    88  // and concurrently in a background goroutine (this helps programs that are not CPU bound).
    89  // At the end of STW mark termination all spans are marked as "needs sweeping".
    90  //
    91  // The background sweeper goroutine simply sweeps spans one-by-one.
    92  //
    93  // To avoid requesting more OS memory while there are unswept spans, when a
    94  // goroutine needs another span, it first attempts to reclaim that much memory
    95  // by sweeping. When a goroutine needs to allocate a new small-object span, it
    96  // sweeps small-object spans for the same object size until it frees at least
    97  // one object. When a goroutine needs to allocate large-object span from heap,
    98  // it sweeps spans until it frees at least that many pages into heap. There is
    99  // one case where this may not suffice: if a goroutine sweeps and frees two
   100  // nonadjacent one-page spans to the heap, it will allocate a new two-page
   101  // span, but there can still be other one-page unswept spans which could be
   102  // combined into a two-page span.
   103  //
   104  // It's critical to ensure that no operations proceed on unswept spans (that would corrupt
   105  // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
   106  // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
   107  // When a goroutine explicitly frees an object or sets a finalizer, it ensures that
   108  // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
   109  // The finalizer goroutine is kicked off only when all spans are swept.
   110  // When the next GC starts, it sweeps all not-yet-swept spans (if any).
   111  
   112  // GC rate.
   113  // Next GC is after we've allocated an extra amount of memory proportional to
   114  // the amount already in use. The proportion is controlled by GOGC environment variable
   115  // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
   116  // (this mark is computed by the gcController.heapGoal method). This keeps the GC cost in
   117  // linear proportion to the allocation cost. Adjusting GOGC just changes the linear constant
   118  // (and also the amount of extra memory used).
   119  
   120  // Oblets
   121  //
   122  // In order to prevent long pauses while scanning large objects and to
   123  // improve parallelism, the garbage collector breaks up scan jobs for
   124  // objects larger than maxObletBytes into "oblets" of at most
   125  // maxObletBytes. When scanning encounters the beginning of a large
   126  // object, it scans only the first oblet and enqueues the remaining
   127  // oblets as new scan jobs.
   128  
   129  package runtime
   130  
   131  import (
   132  	"internal/cpu"
   133  	"internal/runtime/atomic"
   134  	"unsafe"
   135  )
   136  
   137  const (
   138  	_DebugGC      = 0
   139  	_FinBlockSize = 4 * 1024
   140  
   141  	// concurrentSweep is a debug flag. Disabling this flag
   142  	// ensures all spans are swept while the world is stopped.
   143  	concurrentSweep = true
   144  
   145  	// debugScanConservative enables debug logging for stack
   146  	// frames that are scanned conservatively.
   147  	debugScanConservative = false
   148  
   149  	// sweepMinHeapDistance is a lower bound on the heap distance
   150  	// (in bytes) reserved for concurrent sweeping between GC
   151  	// cycles.
   152  	sweepMinHeapDistance = 1024 * 1024
   153  )
   154  
   155  // heapObjectsCanMove always returns false in the current garbage collector.
   156  // It exists for go4.org/unsafe/assume-no-moving-gc, which is an
   157  // unfortunate idea that had an even more unfortunate implementation.
   158  // Every time a new Go release happened, the package stopped building,
   159  // and the authors had to add a new file with a new //go:build line, and
   160  // then the entire ecosystem of packages with that as a dependency had to
   161  // explicitly update to the new version. Many packages depend on
   162  // assume-no-moving-gc transitively, through paths like
   163  // inet.af/netaddr -> go4.org/intern -> assume-no-moving-gc.
   164  // This was causing a significant amount of friction around each new
   165  // release, so we added this bool for the package to //go:linkname
   166  // instead. The bool is still unfortunate, but it's not as bad as
   167  // breaking the ecosystem on every new release.
   168  //
   169  // If the Go garbage collector ever does move heap objects, we can set
   170  // this to true to break all the programs using assume-no-moving-gc.
   171  //
   172  //go:linkname heapObjectsCanMove
   173  func heapObjectsCanMove() bool {
   174  	return false
   175  }
   176  
   177  func gcinit() {
   178  	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
   179  		throw("size of Workbuf is suboptimal")
   180  	}
   181  	// No sweep on the first cycle.
   182  	sweep.active.state.Store(sweepDrainedMask)
   183  
   184  	// Initialize GC pacer state.
   185  	// Use the environment variable GOGC for the initial gcPercent value.
   186  	// Use the environment variable GOMEMLIMIT for the initial memoryLimit value.
   187  	gcController.init(readGOGC(), readGOMEMLIMIT())
   188  
   189  	work.startSema = 1
   190  	work.markDoneSema = 1
   191  	lockInit(&work.sweepWaiters.lock, lockRankSweepWaiters)
   192  	lockInit(&work.assistQueue.lock, lockRankAssistQueue)
   193  	lockInit(&work.wbufSpans.lock, lockRankWbufSpans)
   194  }
   195  
   196  // gcenable is called after the bulk of the runtime initialization,
   197  // just before we're about to start letting user code run.
   198  // It kicks off the background sweeper goroutine, the background
   199  // scavenger goroutine, and enables GC.
   200  func gcenable() {
   201  	// Kick off sweeping and scavenging.
   202  	c := make(chan int, 2)
   203  	go bgsweep(c)
   204  	go bgscavenge(c)
   205  	<-c
   206  	<-c
   207  	memstats.enablegc = true // now that runtime is initialized, GC is okay
   208  }
   209  
   210  // Garbage collector phase.
   211  // Indicates to write barrier and synchronization task to perform.
   212  var gcphase uint32
   213  
   214  // The compiler knows about this variable.
   215  // If you change it, you must change builtin/runtime.go, too.
   216  // If you change the first four bytes, you must also change the write
   217  // barrier insertion code.
   218  var writeBarrier struct {
   219  	enabled bool    // compiler emits a check of this before calling write barrier
   220  	pad     [3]byte // compiler uses 32-bit load for "enabled" field
   221  	alignme uint64  // guarantee alignment so that compiler can use a 32 or 64-bit load
   222  }
   223  
   224  // gcBlackenEnabled is 1 if mutator assists and background mark
   225  // workers are allowed to blacken objects. This must only be set when
   226  // gcphase == _GCmark.
   227  var gcBlackenEnabled uint32
   228  
   229  const (
   230  	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
   231  	_GCmark                   // GC marking roots and workbufs: allocate black, write barrier ENABLED
   232  	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
   233  )
   234  
   235  //go:nosplit
   236  func setGCPhase(x uint32) {
   237  	atomic.Store(&gcphase, x)
   238  	writeBarrier.enabled = gcphase == _GCmark || gcphase == _GCmarktermination
   239  }
   240  
   241  // gcMarkWorkerMode represents the mode that a concurrent mark worker
   242  // should operate in.
   243  //
   244  // Concurrent marking happens through four different mechanisms. One
   245  // is mutator assists, which happen in response to allocations and are
   246  // not scheduled. The other three are variations in the per-P mark
   247  // workers and are distinguished by gcMarkWorkerMode.
   248  type gcMarkWorkerMode int
   249  
   250  const (
   251  	// gcMarkWorkerNotWorker indicates that the next scheduled G is not
   252  	// starting work and the mode should be ignored.
   253  	gcMarkWorkerNotWorker gcMarkWorkerMode = iota
   254  
   255  	// gcMarkWorkerDedicatedMode indicates that the P of a mark
   256  	// worker is dedicated to running that mark worker. The mark
   257  	// worker should run without preemption.
   258  	gcMarkWorkerDedicatedMode
   259  
   260  	// gcMarkWorkerFractionalMode indicates that a P is currently
   261  	// running the "fractional" mark worker. The fractional worker
   262  	// is necessary when GOMAXPROCS*gcBackgroundUtilization is not
   263  	// an integer and using only dedicated workers would result in
   264  	// utilization too far from the target of gcBackgroundUtilization.
   265  	// The fractional worker should run until it is preempted and
   266  	// will be scheduled to pick up the fractional part of
   267  	// GOMAXPROCS*gcBackgroundUtilization.
   268  	gcMarkWorkerFractionalMode
   269  
   270  	// gcMarkWorkerIdleMode indicates that a P is running the mark
   271  	// worker because it has nothing else to do. The idle worker
   272  	// should run until it is preempted and account its time
   273  	// against gcController.idleMarkTime.
   274  	gcMarkWorkerIdleMode
   275  )
   276  
   277  // gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes
   278  // to use in execution traces.
   279  var gcMarkWorkerModeStrings = [...]string{
   280  	"Not worker",
   281  	"GC (dedicated)",
   282  	"GC (fractional)",
   283  	"GC (idle)",
   284  }
   285  
   286  // pollFractionalWorkerExit reports whether a fractional mark worker
   287  // should self-preempt. It assumes it is called from the fractional
   288  // worker.
   289  func pollFractionalWorkerExit() bool {
   290  	// This should be kept in sync with the fractional worker
   291  	// scheduler logic in findRunnableGCWorker.
   292  	now := nanotime()
   293  	delta := now - gcController.markStartTime
   294  	if delta <= 0 {
   295  		return true
   296  	}
   297  	p := getg().m.p.ptr()
   298  	selfTime := p.gcFractionalMarkTime + (now - p.gcMarkWorkerStartTime)
   299  	// Add some slack to the utilization goal so that the
   300  	// fractional worker isn't behind again the instant it exits.
   301  	return float64(selfTime)/float64(delta) > 1.2*gcController.fractionalUtilizationGoal
   302  }
   303  
   304  var work workType
   305  
   306  type workType struct {
   307  	full  lfstack          // lock-free list of full blocks workbuf
   308  	_     cpu.CacheLinePad // prevents false-sharing between full and empty
   309  	empty lfstack          // lock-free list of empty blocks workbuf
   310  	_     cpu.CacheLinePad // prevents false-sharing between empty and nproc/nwait
   311  
   312  	wbufSpans struct {
   313  		lock mutex
   314  		// free is a list of spans dedicated to workbufs, but
   315  		// that don't currently contain any workbufs.
   316  		free mSpanList
   317  		// busy is a list of all spans containing workbufs on
   318  		// one of the workbuf lists.
   319  		busy mSpanList
   320  	}
   321  
   322  	// Restore 64-bit alignment on 32-bit.
   323  	_ uint32
   324  
   325  	// bytesMarked is the number of bytes marked this cycle. This
   326  	// includes bytes blackened in scanned objects, noscan objects
   327  	// that go straight to black, and permagrey objects scanned by
   328  	// markroot during the concurrent scan phase. This is updated
   329  	// atomically during the cycle. Updates may be batched
   330  	// arbitrarily, since the value is only read at the end of the
   331  	// cycle.
   332  	//
   333  	// Because of benign races during marking, this number may not
   334  	// be the exact number of marked bytes, but it should be very
   335  	// close.
   336  	//
   337  	// Put this field here because it needs 64-bit atomic access
   338  	// (and thus 8-byte alignment even on 32-bit architectures).
   339  	bytesMarked uint64
   340  
   341  	markrootNext uint32 // next markroot job
   342  	markrootJobs uint32 // number of markroot jobs
   343  
   344  	nproc  uint32
   345  	tstart int64
   346  	nwait  uint32
   347  
   348  	// Number of roots of various root types. Set by gcMarkRootPrepare.
   349  	//
   350  	// nStackRoots == len(stackRoots), but we have nStackRoots for
   351  	// consistency.
   352  	nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int
   353  
   354  	// Base indexes of each root type. Set by gcMarkRootPrepare.
   355  	baseData, baseBSS, baseSpans, baseStacks, baseEnd uint32
   356  
   357  	// stackRoots is a snapshot of all of the Gs that existed
   358  	// before the beginning of concurrent marking. The backing
   359  	// store of this must not be modified because it might be
   360  	// shared with allgs.
   361  	stackRoots []*g
   362  
   363  	// Each type of GC state transition is protected by a lock.
   364  	// Since multiple threads can simultaneously detect the state
   365  	// transition condition, any thread that detects a transition
   366  	// condition must acquire the appropriate transition lock,
   367  	// re-check the transition condition and return if it no
   368  	// longer holds or perform the transition if it does.
   369  	// Likewise, any transition must invalidate the transition
   370  	// condition before releasing the lock. This ensures that each
   371  	// transition is performed by exactly one thread and threads
   372  	// that need the transition to happen block until it has
   373  	// happened.
   374  	//
   375  	// startSema protects the transition from "off" to mark or
   376  	// mark termination.
   377  	startSema uint32
   378  	// markDoneSema protects transitions from mark to mark termination.
   379  	markDoneSema uint32
   380  
   381  	bgMarkDone uint32 // cas to 1 when at a background mark completion point
   382  	// Background mark completion signaling
   383  
   384  	// mode is the concurrency mode of the current GC cycle.
   385  	mode gcMode
   386  
   387  	// userForced indicates the current GC cycle was forced by an
   388  	// explicit user call.
   389  	userForced bool
   390  
   391  	// initialHeapLive is the value of gcController.heapLive at the
   392  	// beginning of this GC cycle.
   393  	initialHeapLive uint64
   394  
   395  	// assistQueue is a queue of assists that are blocked because
   396  	// there was neither enough credit to steal or enough work to
   397  	// do.
   398  	assistQueue struct {
   399  		lock mutex
   400  		q    gQueue
   401  	}
   402  
   403  	// sweepWaiters is a list of blocked goroutines to wake when
   404  	// we transition from mark termination to sweep.
   405  	sweepWaiters struct {
   406  		lock mutex
   407  		list gList
   408  	}
   409  
   410  	// cycles is the number of completed GC cycles, where a GC
   411  	// cycle is sweep termination, mark, mark termination, and
   412  	// sweep. This differs from memstats.numgc, which is
   413  	// incremented at mark termination.
   414  	cycles atomic.Uint32
   415  
   416  	// Timing/utilization stats for this cycle.
   417  	stwprocs, maxprocs                 int32
   418  	tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start
   419  
   420  	// pauseNS is the total STW time this cycle, measured as the time between
   421  	// when stopping began (just before trying to stop Ps) and just after the
   422  	// world started again.
   423  	pauseNS int64
   424  
   425  	// debug.gctrace heap sizes for this cycle.
   426  	heap0, heap1, heap2 uint64
   427  
   428  	// Cumulative estimated CPU usage.
   429  	cpuStats
   430  }
   431  
   432  // GC runs a garbage collection and blocks the caller until the
   433  // garbage collection is complete. It may also block the entire
   434  // program.
   435  func GC() {
   436  	// We consider a cycle to be: sweep termination, mark, mark
   437  	// termination, and sweep. This function shouldn't return
   438  	// until a full cycle has been completed, from beginning to
   439  	// end. Hence, we always want to finish up the current cycle
   440  	// and start a new one. That means:
   441  	//
   442  	// 1. In sweep termination, mark, or mark termination of cycle
   443  	// N, wait until mark termination N completes and transitions
   444  	// to sweep N.
   445  	//
   446  	// 2. In sweep N, help with sweep N.
   447  	//
   448  	// At this point we can begin a full cycle N+1.
   449  	//
   450  	// 3. Trigger cycle N+1 by starting sweep termination N+1.
   451  	//
   452  	// 4. Wait for mark termination N+1 to complete.
   453  	//
   454  	// 5. Help with sweep N+1 until it's done.
   455  	//
   456  	// This all has to be written to deal with the fact that the
   457  	// GC may move ahead on its own. For example, when we block
   458  	// until mark termination N, we may wake up in cycle N+2.
   459  
   460  	// Wait until the current sweep termination, mark, and mark
   461  	// termination complete.
   462  	n := work.cycles.Load()
   463  	gcWaitOnMark(n)
   464  
   465  	// We're now in sweep N or later. Trigger GC cycle N+1, which
   466  	// will first finish sweep N if necessary and then enter sweep
   467  	// termination N+1.
   468  	gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1})
   469  
   470  	// Wait for mark termination N+1 to complete.
   471  	gcWaitOnMark(n + 1)
   472  
   473  	// Finish sweep N+1 before returning. We do this both to
   474  	// complete the cycle and because runtime.GC() is often used
   475  	// as part of tests and benchmarks to get the system into a
   476  	// relatively stable and isolated state.
   477  	for work.cycles.Load() == n+1 && sweepone() != ^uintptr(0) {
   478  		Gosched()
   479  	}
   480  
   481  	// Callers may assume that the heap profile reflects the
   482  	// just-completed cycle when this returns (historically this
   483  	// happened because this was a STW GC), but right now the
   484  	// profile still reflects mark termination N, not N+1.
   485  	//
   486  	// As soon as all of the sweep frees from cycle N+1 are done,
   487  	// we can go ahead and publish the heap profile.
   488  	//
   489  	// First, wait for sweeping to finish. (We know there are no
   490  	// more spans on the sweep queue, but we may be concurrently
   491  	// sweeping spans, so we have to wait.)
   492  	for work.cycles.Load() == n+1 && !isSweepDone() {
   493  		Gosched()
   494  	}
   495  
   496  	// Now we're really done with sweeping, so we can publish the
   497  	// stable heap profile. Only do this if we haven't already hit
   498  	// another mark termination.
   499  	mp := acquirem()
   500  	cycle := work.cycles.Load()
   501  	if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) {
   502  		mProf_PostSweep()
   503  	}
   504  	releasem(mp)
   505  }
   506  
   507  // gcWaitOnMark blocks until GC finishes the Nth mark phase. If GC has
   508  // already completed this mark phase, it returns immediately.
   509  func gcWaitOnMark(n uint32) {
   510  	for {
   511  		// Disable phase transitions.
   512  		lock(&work.sweepWaiters.lock)
   513  		nMarks := work.cycles.Load()
   514  		if gcphase != _GCmark {
   515  			// We've already completed this cycle's mark.
   516  			nMarks++
   517  		}
   518  		if nMarks > n {
   519  			// We're done.
   520  			unlock(&work.sweepWaiters.lock)
   521  			return
   522  		}
   523  
   524  		// Wait until sweep termination, mark, and mark
   525  		// termination of cycle N complete.
   526  		work.sweepWaiters.list.push(getg())
   527  		goparkunlock(&work.sweepWaiters.lock, waitReasonWaitForGCCycle, traceBlockUntilGCEnds, 1)
   528  	}
   529  }
   530  
   531  // gcMode indicates how concurrent a GC cycle should be.
   532  type gcMode int
   533  
   534  const (
   535  	gcBackgroundMode gcMode = iota // concurrent GC and sweep
   536  	gcForceMode                    // stop-the-world GC now, concurrent sweep
   537  	gcForceBlockMode               // stop-the-world GC now and STW sweep (forced by user)
   538  )
   539  
   540  // A gcTrigger is a predicate for starting a GC cycle. Specifically,
   541  // it is an exit condition for the _GCoff phase.
   542  type gcTrigger struct {
   543  	kind gcTriggerKind
   544  	now  int64  // gcTriggerTime: current time
   545  	n    uint32 // gcTriggerCycle: cycle number to start
   546  }
   547  
   548  type gcTriggerKind int
   549  
   550  const (
   551  	// gcTriggerHeap indicates that a cycle should be started when
   552  	// the heap size reaches the trigger heap size computed by the
   553  	// controller.
   554  	gcTriggerHeap gcTriggerKind = iota
   555  
   556  	// gcTriggerTime indicates that a cycle should be started when
   557  	// it's been more than forcegcperiod nanoseconds since the
   558  	// previous GC cycle.
   559  	gcTriggerTime
   560  
   561  	// gcTriggerCycle indicates that a cycle should be started if
   562  	// we have not yet started cycle number gcTrigger.n (relative
   563  	// to work.cycles).
   564  	gcTriggerCycle
   565  )
   566  
   567  // test reports whether the trigger condition is satisfied, meaning
   568  // that the exit condition for the _GCoff phase has been met. The exit
   569  // condition should be tested when allocating.
   570  func (t gcTrigger) test() bool {
   571  	if !memstats.enablegc || panicking.Load() != 0 || gcphase != _GCoff {
   572  		return false
   573  	}
   574  	switch t.kind {
   575  	case gcTriggerHeap:
   576  		trigger, _ := gcController.trigger()
   577  		return gcController.heapLive.Load() >= trigger
   578  	case gcTriggerTime:
   579  		if gcController.gcPercent.Load() < 0 {
   580  			return false
   581  		}
   582  		lastgc := int64(atomic.Load64(&memstats.last_gc_nanotime))
   583  		return lastgc != 0 && t.now-lastgc > forcegcperiod
   584  	case gcTriggerCycle:
   585  		// t.n > work.cycles, but accounting for wraparound.
   586  		return int32(t.n-work.cycles.Load()) > 0
   587  	}
   588  	return true
   589  }
   590  
   591  // gcStart starts the GC. It transitions from _GCoff to _GCmark (if
   592  // debug.gcstoptheworld == 0) or performs all of GC (if
   593  // debug.gcstoptheworld != 0).
   594  //
   595  // This may return without performing this transition in some cases,
   596  // such as when called on a system stack or with locks held.
   597  func gcStart(trigger gcTrigger) {
   598  	// Since this is called from malloc and malloc is called in
   599  	// the guts of a number of libraries that might be holding
   600  	// locks, don't attempt to start GC in non-preemptible or
   601  	// potentially unstable situations.
   602  	mp := acquirem()
   603  	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
   604  		releasem(mp)
   605  		return
   606  	}
   607  	releasem(mp)
   608  	mp = nil
   609  
   610  	// Pick up the remaining unswept/not being swept spans concurrently
   611  	//
   612  	// This shouldn't happen if we're being invoked in background
   613  	// mode since proportional sweep should have just finished
   614  	// sweeping everything, but rounding errors, etc, may leave a
   615  	// few spans unswept. In forced mode, this is necessary since
   616  	// GC can be forced at any point in the sweeping cycle.
   617  	//
   618  	// We check the transition condition continuously here in case
   619  	// this G gets delayed in to the next GC cycle.
   620  	for trigger.test() && sweepone() != ^uintptr(0) {
   621  	}
   622  
   623  	// Perform GC initialization and the sweep termination
   624  	// transition.
   625  	semacquire(&work.startSema)
   626  	// Re-check transition condition under transition lock.
   627  	if !trigger.test() {
   628  		semrelease(&work.startSema)
   629  		return
   630  	}
   631  
   632  	// In gcstoptheworld debug mode, upgrade the mode accordingly.
   633  	// We do this after re-checking the transition condition so
   634  	// that multiple goroutines that detect the heap trigger don't
   635  	// start multiple STW GCs.
   636  	mode := gcBackgroundMode
   637  	if debug.gcstoptheworld == 1 {
   638  		mode = gcForceMode
   639  	} else if debug.gcstoptheworld == 2 {
   640  		mode = gcForceBlockMode
   641  	}
   642  
   643  	// Ok, we're doing it! Stop everybody else
   644  	semacquire(&gcsema)
   645  	semacquire(&worldsema)
   646  
   647  	// For stats, check if this GC was forced by the user.
   648  	// Update it under gcsema to avoid gctrace getting wrong values.
   649  	work.userForced = trigger.kind == gcTriggerCycle
   650  
   651  	trace := traceAcquire()
   652  	if trace.ok() {
   653  		trace.GCStart()
   654  		traceRelease(trace)
   655  	}
   656  
   657  	// Check that all Ps have finished deferred mcache flushes.
   658  	for _, p := range allp {
   659  		if fg := p.mcache.flushGen.Load(); fg != mheap_.sweepgen {
   660  			println("runtime: p", p.id, "flushGen", fg, "!= sweepgen", mheap_.sweepgen)
   661  			throw("p mcache not flushed")
   662  		}
   663  	}
   664  
   665  	gcBgMarkStartWorkers()
   666  
   667  	systemstack(gcResetMarkState)
   668  
   669  	work.stwprocs, work.maxprocs = gomaxprocs, gomaxprocs
   670  	if work.stwprocs > ncpu {
   671  		// This is used to compute CPU time of the STW phases,
   672  		// so it can't be more than ncpu, even if GOMAXPROCS is.
   673  		work.stwprocs = ncpu
   674  	}
   675  	work.heap0 = gcController.heapLive.Load()
   676  	work.pauseNS = 0
   677  	work.mode = mode
   678  
   679  	now := nanotime()
   680  	work.tSweepTerm = now
   681  	var stw worldStop
   682  	systemstack(func() {
   683  		stw = stopTheWorldWithSema(stwGCSweepTerm)
   684  	})
   685  
   686  	// Accumulate fine-grained stopping time.
   687  	work.cpuStats.accumulateGCPauseTime(stw.stoppingCPUTime, 1)
   688  
   689  	// Finish sweep before we start concurrent scan.
   690  	systemstack(func() {
   691  		finishsweep_m()
   692  	})
   693  
   694  	// clearpools before we start the GC. If we wait the memory will not be
   695  	// reclaimed until the next GC cycle.
   696  	clearpools()
   697  
   698  	work.cycles.Add(1)
   699  
   700  	// Assists and workers can start the moment we start
   701  	// the world.
   702  	gcController.startCycle(now, int(gomaxprocs), trigger)
   703  
   704  	// Notify the CPU limiter that assists may begin.
   705  	gcCPULimiter.startGCTransition(true, now)
   706  
   707  	// In STW mode, disable scheduling of user Gs. This may also
   708  	// disable scheduling of this goroutine, so it may block as
   709  	// soon as we start the world again.
   710  	if mode != gcBackgroundMode {
   711  		schedEnableUser(false)
   712  	}
   713  
   714  	// Enter concurrent mark phase and enable
   715  	// write barriers.
   716  	//
   717  	// Because the world is stopped, all Ps will
   718  	// observe that write barriers are enabled by
   719  	// the time we start the world and begin
   720  	// scanning.
   721  	//
   722  	// Write barriers must be enabled before assists are
   723  	// enabled because they must be enabled before
   724  	// any non-leaf heap objects are marked. Since
   725  	// allocations are blocked until assists can
   726  	// happen, we want to enable assists as early as
   727  	// possible.
   728  	setGCPhase(_GCmark)
   729  
   730  	gcBgMarkPrepare() // Must happen before assists are enabled.
   731  	gcMarkRootPrepare()
   732  
   733  	// Mark all active tinyalloc blocks. Since we're
   734  	// allocating from these, they need to be black like
   735  	// other allocations. The alternative is to blacken
   736  	// the tiny block on every allocation from it, which
   737  	// would slow down the tiny allocator.
   738  	gcMarkTinyAllocs()
   739  
   740  	// At this point all Ps have enabled the write
   741  	// barrier, thus maintaining the no white to
   742  	// black invariant. Enable mutator assists to
   743  	// put back-pressure on fast allocating
   744  	// mutators.
   745  	atomic.Store(&gcBlackenEnabled, 1)
   746  
   747  	// In STW mode, we could block the instant systemstack
   748  	// returns, so make sure we're not preemptible.
   749  	mp = acquirem()
   750  
   751  	// Update the CPU stats pause time.
   752  	//
   753  	// Use maxprocs instead of stwprocs here because the total time
   754  	// computed in the CPU stats is based on maxprocs, and we want them
   755  	// to be comparable.
   756  	work.cpuStats.accumulateGCPauseTime(nanotime()-stw.finishedStopping, work.maxprocs)
   757  
   758  	// Concurrent mark.
   759  	systemstack(func() {
   760  		now = startTheWorldWithSema(0, stw)
   761  		work.pauseNS += now - stw.startedStopping
   762  		work.tMark = now
   763  
   764  		// Release the CPU limiter.
   765  		gcCPULimiter.finishGCTransition(now)
   766  	})
   767  
   768  	// Release the world sema before Gosched() in STW mode
   769  	// because we will need to reacquire it later but before
   770  	// this goroutine becomes runnable again, and we could
   771  	// self-deadlock otherwise.
   772  	semrelease(&worldsema)
   773  	releasem(mp)
   774  
   775  	// Make sure we block instead of returning to user code
   776  	// in STW mode.
   777  	if mode != gcBackgroundMode {
   778  		Gosched()
   779  	}
   780  
   781  	semrelease(&work.startSema)
   782  }
   783  
   784  // gcMarkDoneFlushed counts the number of P's with flushed work.
   785  //
   786  // Ideally this would be a captured local in gcMarkDone, but forEachP
   787  // escapes its callback closure, so it can't capture anything.
   788  //
   789  // This is protected by markDoneSema.
   790  var gcMarkDoneFlushed uint32
   791  
   792  // gcMarkDone transitions the GC from mark to mark termination if all
   793  // reachable objects have been marked (that is, there are no grey
   794  // objects and can be no more in the future). Otherwise, it flushes
   795  // all local work to the global queues where it can be discovered by
   796  // other workers.
   797  //
   798  // This should be called when all local mark work has been drained and
   799  // there are no remaining workers. Specifically, when
   800  //
   801  //	work.nwait == work.nproc && !gcMarkWorkAvailable(p)
   802  //
   803  // The calling context must be preemptible.
   804  //
   805  // Flushing local work is important because idle Ps may have local
   806  // work queued. This is the only way to make that work visible and
   807  // drive GC to completion.
   808  //
   809  // It is explicitly okay to have write barriers in this function. If
   810  // it does transition to mark termination, then all reachable objects
   811  // have been marked, so the write barrier cannot shade any more
   812  // objects.
   813  func gcMarkDone() {
   814  	// Ensure only one thread is running the ragged barrier at a
   815  	// time.
   816  	semacquire(&work.markDoneSema)
   817  
   818  top:
   819  	// Re-check transition condition under transition lock.
   820  	//
   821  	// It's critical that this checks the global work queues are
   822  	// empty before performing the ragged barrier. Otherwise,
   823  	// there could be global work that a P could take after the P
   824  	// has passed the ragged barrier.
   825  	if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
   826  		semrelease(&work.markDoneSema)
   827  		return
   828  	}
   829  
   830  	// forEachP needs worldsema to execute, and we'll need it to
   831  	// stop the world later, so acquire worldsema now.
   832  	semacquire(&worldsema)
   833  
   834  	// Flush all local buffers and collect flushedWork flags.
   835  	gcMarkDoneFlushed = 0
   836  	forEachP(waitReasonGCMarkTermination, func(pp *p) {
   837  		// Flush the write barrier buffer, since this may add
   838  		// work to the gcWork.
   839  		wbBufFlush1(pp)
   840  
   841  		// Flush the gcWork, since this may create global work
   842  		// and set the flushedWork flag.
   843  		//
   844  		// TODO(austin): Break up these workbufs to
   845  		// better distribute work.
   846  		pp.gcw.dispose()
   847  		// Collect the flushedWork flag.
   848  		if pp.gcw.flushedWork {
   849  			atomic.Xadd(&gcMarkDoneFlushed, 1)
   850  			pp.gcw.flushedWork = false
   851  		}
   852  	})
   853  
   854  	if gcMarkDoneFlushed != 0 {
   855  		// More grey objects were discovered since the
   856  		// previous termination check, so there may be more
   857  		// work to do. Keep going. It's possible the
   858  		// transition condition became true again during the
   859  		// ragged barrier, so re-check it.
   860  		semrelease(&worldsema)
   861  		goto top
   862  	}
   863  
   864  	// There was no global work, no local work, and no Ps
   865  	// communicated work since we took markDoneSema. Therefore
   866  	// there are no grey objects and no more objects can be
   867  	// shaded. Transition to mark termination.
   868  	now := nanotime()
   869  	work.tMarkTerm = now
   870  	getg().m.preemptoff = "gcing"
   871  	var stw worldStop
   872  	systemstack(func() {
   873  		stw = stopTheWorldWithSema(stwGCMarkTerm)
   874  	})
   875  	// The gcphase is _GCmark, it will transition to _GCmarktermination
   876  	// below. The important thing is that the wb remains active until
   877  	// all marking is complete. This includes writes made by the GC.
   878  
   879  	// Accumulate fine-grained stopping time.
   880  	work.cpuStats.accumulateGCPauseTime(stw.stoppingCPUTime, 1)
   881  
   882  	// There is sometimes work left over when we enter mark termination due
   883  	// to write barriers performed after the completion barrier above.
   884  	// Detect this and resume concurrent mark. This is obviously
   885  	// unfortunate.
   886  	//
   887  	// See issue #27993 for details.
   888  	//
   889  	// Switch to the system stack to call wbBufFlush1, though in this case
   890  	// it doesn't matter because we're non-preemptible anyway.
   891  	restart := false
   892  	systemstack(func() {
   893  		for _, p := range allp {
   894  			wbBufFlush1(p)
   895  			if !p.gcw.empty() {
   896  				restart = true
   897  				break
   898  			}
   899  		}
   900  	})
   901  	if restart {
   902  		getg().m.preemptoff = ""
   903  		systemstack(func() {
   904  			// Accumulate the time we were stopped before we had to start again.
   905  			work.cpuStats.accumulateGCPauseTime(nanotime()-stw.finishedStopping, work.maxprocs)
   906  
   907  			// Start the world again.
   908  			now := startTheWorldWithSema(0, stw)
   909  			work.pauseNS += now - stw.startedStopping
   910  		})
   911  		semrelease(&worldsema)
   912  		goto top
   913  	}
   914  
   915  	gcComputeStartingStackSize()
   916  
   917  	// Disable assists and background workers. We must do
   918  	// this before waking blocked assists.
   919  	atomic.Store(&gcBlackenEnabled, 0)
   920  
   921  	// Notify the CPU limiter that GC assists will now cease.
   922  	gcCPULimiter.startGCTransition(false, now)
   923  
   924  	// Wake all blocked assists. These will run when we
   925  	// start the world again.
   926  	gcWakeAllAssists()
   927  
   928  	// Likewise, release the transition lock. Blocked
   929  	// workers and assists will run when we start the
   930  	// world again.
   931  	semrelease(&work.markDoneSema)
   932  
   933  	// In STW mode, re-enable user goroutines. These will be
   934  	// queued to run after we start the world.
   935  	schedEnableUser(true)
   936  
   937  	// endCycle depends on all gcWork cache stats being flushed.
   938  	// The termination algorithm above ensured that up to
   939  	// allocations since the ragged barrier.
   940  	gcController.endCycle(now, int(gomaxprocs), work.userForced)
   941  
   942  	// Perform mark termination. This will restart the world.
   943  	gcMarkTermination(stw)
   944  }
   945  
   946  // World must be stopped and mark assists and background workers must be
   947  // disabled.
   948  func gcMarkTermination(stw worldStop) {
   949  	// Start marktermination (write barrier remains enabled for now).
   950  	setGCPhase(_GCmarktermination)
   951  
   952  	work.heap1 = gcController.heapLive.Load()
   953  	startTime := nanotime()
   954  
   955  	mp := acquirem()
   956  	mp.preemptoff = "gcing"
   957  	mp.traceback = 2
   958  	curgp := mp.curg
   959  	// N.B. The execution tracer is not aware of this status
   960  	// transition and handles it specially based on the
   961  	// wait reason.
   962  	casGToWaitingForGC(curgp, _Grunning, waitReasonGarbageCollection)
   963  
   964  	// Run gc on the g0 stack. We do this so that the g stack
   965  	// we're currently running on will no longer change. Cuts
   966  	// the root set down a bit (g0 stacks are not scanned, and
   967  	// we don't need to scan gc's internal state).  We also
   968  	// need to switch to g0 so we can shrink the stack.
   969  	systemstack(func() {
   970  		gcMark(startTime)
   971  		// Must return immediately.
   972  		// The outer function's stack may have moved
   973  		// during gcMark (it shrinks stacks, including the
   974  		// outer function's stack), so we must not refer
   975  		// to any of its variables. Return back to the
   976  		// non-system stack to pick up the new addresses
   977  		// before continuing.
   978  	})
   979  
   980  	var stwSwept bool
   981  	systemstack(func() {
   982  		work.heap2 = work.bytesMarked
   983  		if debug.gccheckmark > 0 {
   984  			// Run a full non-parallel, stop-the-world
   985  			// mark using checkmark bits, to check that we
   986  			// didn't forget to mark anything during the
   987  			// concurrent mark process.
   988  			startCheckmarks()
   989  			gcResetMarkState()
   990  			gcw := &getg().m.p.ptr().gcw
   991  			gcDrain(gcw, 0)
   992  			wbBufFlush1(getg().m.p.ptr())
   993  			gcw.dispose()
   994  			endCheckmarks()
   995  		}
   996  
   997  		// marking is complete so we can turn the write barrier off
   998  		setGCPhase(_GCoff)
   999  		stwSwept = gcSweep(work.mode)
  1000  	})
  1001  
  1002  	mp.traceback = 0
  1003  	casgstatus(curgp, _Gwaiting, _Grunning)
  1004  
  1005  	trace := traceAcquire()
  1006  	if trace.ok() {
  1007  		trace.GCDone()
  1008  		traceRelease(trace)
  1009  	}
  1010  
  1011  	// all done
  1012  	mp.preemptoff = ""
  1013  
  1014  	if gcphase != _GCoff {
  1015  		throw("gc done but gcphase != _GCoff")
  1016  	}
  1017  
  1018  	// Record heapInUse for scavenger.
  1019  	memstats.lastHeapInUse = gcController.heapInUse.load()
  1020  
  1021  	// Update GC trigger and pacing, as well as downstream consumers
  1022  	// of this pacing information, for the next cycle.
  1023  	systemstack(gcControllerCommit)
  1024  
  1025  	// Update timing memstats
  1026  	now := nanotime()
  1027  	sec, nsec, _ := time_now()
  1028  	unixNow := sec*1e9 + int64(nsec)
  1029  	work.pauseNS += now - stw.startedStopping
  1030  	work.tEnd = now
  1031  	atomic.Store64(&memstats.last_gc_unix, uint64(unixNow)) // must be Unix time to make sense to user
  1032  	atomic.Store64(&memstats.last_gc_nanotime, uint64(now)) // monotonic time for us
  1033  	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
  1034  	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
  1035  	memstats.pause_total_ns += uint64(work.pauseNS)
  1036  
  1037  	// Accumulate CPU stats.
  1038  	//
  1039  	// Use maxprocs instead of stwprocs for GC pause time because the total time
  1040  	// computed in the CPU stats is based on maxprocs, and we want them to be
  1041  	// comparable.
  1042  	//
  1043  	// Pass gcMarkPhase=true to accumulate so we can get all the latest GC CPU stats
  1044  	// in there too.
  1045  	work.cpuStats.accumulateGCPauseTime(now-stw.finishedStopping, work.maxprocs)
  1046  	work.cpuStats.accumulate(now, true)
  1047  
  1048  	// Compute overall GC CPU utilization.
  1049  	// Omit idle marking time from the overall utilization here since it's "free".
  1050  	memstats.gc_cpu_fraction = float64(work.cpuStats.GCTotalTime-work.cpuStats.GCIdleTime) / float64(work.cpuStats.TotalTime)
  1051  
  1052  	// Reset assist time and background time stats.
  1053  	//
  1054  	// Do this now, instead of at the start of the next GC cycle, because
  1055  	// these two may keep accumulating even if the GC is not active.
  1056  	scavenge.assistTime.Store(0)
  1057  	scavenge.backgroundTime.Store(0)
  1058  
  1059  	// Reset idle time stat.
  1060  	sched.idleTime.Store(0)
  1061  
  1062  	if work.userForced {
  1063  		memstats.numforcedgc++
  1064  	}
  1065  
  1066  	// Bump GC cycle count and wake goroutines waiting on sweep.
  1067  	lock(&work.sweepWaiters.lock)
  1068  	memstats.numgc++
  1069  	injectglist(&work.sweepWaiters.list)
  1070  	unlock(&work.sweepWaiters.lock)
  1071  
  1072  	// Increment the scavenge generation now.
  1073  	//
  1074  	// This moment represents peak heap in use because we're
  1075  	// about to start sweeping.
  1076  	mheap_.pages.scav.index.nextGen()
  1077  
  1078  	// Release the CPU limiter.
  1079  	gcCPULimiter.finishGCTransition(now)
  1080  
  1081  	// Finish the current heap profiling cycle and start a new
  1082  	// heap profiling cycle. We do this before starting the world
  1083  	// so events don't leak into the wrong cycle.
  1084  	mProf_NextCycle()
  1085  
  1086  	// There may be stale spans in mcaches that need to be swept.
  1087  	// Those aren't tracked in any sweep lists, so we need to
  1088  	// count them against sweep completion until we ensure all
  1089  	// those spans have been forced out.
  1090  	//
  1091  	// If gcSweep fully swept the heap (for example if the sweep
  1092  	// is not concurrent due to a GODEBUG setting), then we expect
  1093  	// the sweepLocker to be invalid, since sweeping is done.
  1094  	//
  1095  	// N.B. Below we might duplicate some work from gcSweep; this is
  1096  	// fine as all that work is idempotent within a GC cycle, and
  1097  	// we're still holding worldsema so a new cycle can't start.
  1098  	sl := sweep.active.begin()
  1099  	if !stwSwept && !sl.valid {
  1100  		throw("failed to set sweep barrier")
  1101  	} else if stwSwept && sl.valid {
  1102  		throw("non-concurrent sweep failed to drain all sweep queues")
  1103  	}
  1104  
  1105  	systemstack(func() {
  1106  		// The memstats updated above must be updated with the world
  1107  		// stopped to ensure consistency of some values, such as
  1108  		// sched.idleTime and sched.totaltime. memstats also include
  1109  		// the pause time (work,pauseNS), forcing computation of the
  1110  		// total pause time before the pause actually ends.
  1111  		//
  1112  		// Here we reuse the same now for start the world so that the
  1113  		// time added to /sched/pauses/total/gc:seconds will be
  1114  		// consistent with the value in memstats.
  1115  		startTheWorldWithSema(now, stw)
  1116  	})
  1117  
  1118  	// Flush the heap profile so we can start a new cycle next GC.
  1119  	// This is relatively expensive, so we don't do it with the
  1120  	// world stopped.
  1121  	mProf_Flush()
  1122  
  1123  	// Prepare workbufs for freeing by the sweeper. We do this
  1124  	// asynchronously because it can take non-trivial time.
  1125  	prepareFreeWorkbufs()
  1126  
  1127  	// Free stack spans. This must be done between GC cycles.
  1128  	systemstack(freeStackSpans)
  1129  
  1130  	// Ensure all mcaches are flushed. Each P will flush its own
  1131  	// mcache before allocating, but idle Ps may not. Since this
  1132  	// is necessary to sweep all spans, we need to ensure all
  1133  	// mcaches are flushed before we start the next GC cycle.
  1134  	//
  1135  	// While we're here, flush the page cache for idle Ps to avoid
  1136  	// having pages get stuck on them. These pages are hidden from
  1137  	// the scavenger, so in small idle heaps a significant amount
  1138  	// of additional memory might be held onto.
  1139  	//
  1140  	// Also, flush the pinner cache, to avoid leaking that memory
  1141  	// indefinitely.
  1142  	forEachP(waitReasonFlushProcCaches, func(pp *p) {
  1143  		pp.mcache.prepareForSweep()
  1144  		if pp.status == _Pidle {
  1145  			systemstack(func() {
  1146  				lock(&mheap_.lock)
  1147  				pp.pcache.flush(&mheap_.pages)
  1148  				unlock(&mheap_.lock)
  1149  			})
  1150  		}
  1151  		pp.pinnerCache = nil
  1152  	})
  1153  	if sl.valid {
  1154  		// Now that we've swept stale spans in mcaches, they don't
  1155  		// count against unswept spans.
  1156  		//
  1157  		// Note: this sweepLocker may not be valid if sweeping had
  1158  		// already completed during the STW. See the corresponding
  1159  		// begin() call that produced sl.
  1160  		sweep.active.end(sl)
  1161  	}
  1162  
  1163  	// Print gctrace before dropping worldsema. As soon as we drop
  1164  	// worldsema another cycle could start and smash the stats
  1165  	// we're trying to print.
  1166  	if debug.gctrace > 0 {
  1167  		util := int(memstats.gc_cpu_fraction * 100)
  1168  
  1169  		var sbuf [24]byte
  1170  		printlock()
  1171  		print("gc ", memstats.numgc,
  1172  			" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
  1173  			util, "%: ")
  1174  		prev := work.tSweepTerm
  1175  		for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
  1176  			if i != 0 {
  1177  				print("+")
  1178  			}
  1179  			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
  1180  			prev = ns
  1181  		}
  1182  		print(" ms clock, ")
  1183  		for i, ns := range []int64{
  1184  			int64(work.stwprocs) * (work.tMark - work.tSweepTerm),
  1185  			gcController.assistTime.Load(),
  1186  			gcController.dedicatedMarkTime.Load() + gcController.fractionalMarkTime.Load(),
  1187  			gcController.idleMarkTime.Load(),
  1188  			int64(work.stwprocs) * (work.tEnd - work.tMarkTerm),
  1189  		} {
  1190  			if i == 2 || i == 3 {
  1191  				// Separate mark time components with /.
  1192  				print("/")
  1193  			} else if i != 0 {
  1194  				print("+")
  1195  			}
  1196  			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
  1197  		}
  1198  		print(" ms cpu, ",
  1199  			work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
  1200  			gcController.lastHeapGoal>>20, " MB goal, ",
  1201  			gcController.lastStackScan.Load()>>20, " MB stacks, ",
  1202  			gcController.globalsScan.Load()>>20, " MB globals, ",
  1203  			work.maxprocs, " P")
  1204  		if work.userForced {
  1205  			print(" (forced)")
  1206  		}
  1207  		print("\n")
  1208  		printunlock()
  1209  	}
  1210  
  1211  	// Set any arena chunks that were deferred to fault.
  1212  	lock(&userArenaState.lock)
  1213  	faultList := userArenaState.fault
  1214  	userArenaState.fault = nil
  1215  	unlock(&userArenaState.lock)
  1216  	for _, lc := range faultList {
  1217  		lc.mspan.setUserArenaChunkToFault()
  1218  	}
  1219  
  1220  	// Enable huge pages on some metadata if we cross a heap threshold.
  1221  	if gcController.heapGoal() > minHeapForMetadataHugePages {
  1222  		systemstack(func() {
  1223  			mheap_.enableMetadataHugePages()
  1224  		})
  1225  	}
  1226  
  1227  	semrelease(&worldsema)
  1228  	semrelease(&gcsema)
  1229  	// Careful: another GC cycle may start now.
  1230  
  1231  	releasem(mp)
  1232  	mp = nil
  1233  
  1234  	// now that gc is done, kick off finalizer thread if needed
  1235  	if !concurrentSweep {
  1236  		// give the queued finalizers, if any, a chance to run
  1237  		Gosched()
  1238  	}
  1239  }
  1240  
  1241  // gcBgMarkStartWorkers prepares background mark worker goroutines. These
  1242  // goroutines will not run until the mark phase, but they must be started while
  1243  // the work is not stopped and from a regular G stack. The caller must hold
  1244  // worldsema.
  1245  func gcBgMarkStartWorkers() {
  1246  	// Background marking is performed by per-P G's. Ensure that each P has
  1247  	// a background GC G.
  1248  	//
  1249  	// Worker Gs don't exit if gomaxprocs is reduced. If it is raised
  1250  	// again, we can reuse the old workers; no need to create new workers.
  1251  	if gcBgMarkWorkerCount >= gomaxprocs {
  1252  		return
  1253  	}
  1254  
  1255  	// Increment mp.locks when allocating. We are called within gcStart,
  1256  	// and thus must not trigger another gcStart via an allocation. gcStart
  1257  	// bails when allocating with locks held, so simulate that for these
  1258  	// allocations.
  1259  	//
  1260  	// TODO(prattmic): cleanup gcStart to use a more explicit "in gcStart"
  1261  	// check for bailing.
  1262  	mp := acquirem()
  1263  	ready := make(chan struct{}, 1)
  1264  	releasem(mp)
  1265  
  1266  	for gcBgMarkWorkerCount < gomaxprocs {
  1267  		mp := acquirem() // See above, we allocate a closure here.
  1268  		go gcBgMarkWorker(ready)
  1269  		releasem(mp)
  1270  
  1271  		// N.B. we intentionally wait on each goroutine individually
  1272  		// rather than starting all in a batch and then waiting once
  1273  		// afterwards. By running one goroutine at a time, we can take
  1274  		// advantage of runnext to bounce back and forth between
  1275  		// workers and this goroutine. In an overloaded application,
  1276  		// this can reduce GC start latency by prioritizing these
  1277  		// goroutines rather than waiting on the end of the run queue.
  1278  		<-ready
  1279  		// The worker is now guaranteed to be added to the pool before
  1280  		// its P's next findRunnableGCWorker.
  1281  
  1282  		gcBgMarkWorkerCount++
  1283  	}
  1284  }
  1285  
  1286  // gcBgMarkPrepare sets up state for background marking.
  1287  // Mutator assists must not yet be enabled.
  1288  func gcBgMarkPrepare() {
  1289  	// Background marking will stop when the work queues are empty
  1290  	// and there are no more workers (note that, since this is
  1291  	// concurrent, this may be a transient state, but mark
  1292  	// termination will clean it up). Between background workers
  1293  	// and assists, we don't really know how many workers there
  1294  	// will be, so we pretend to have an arbitrarily large number
  1295  	// of workers, almost all of which are "waiting". While a
  1296  	// worker is working it decrements nwait. If nproc == nwait,
  1297  	// there are no workers.
  1298  	work.nproc = ^uint32(0)
  1299  	work.nwait = ^uint32(0)
  1300  }
  1301  
  1302  // gcBgMarkWorkerNode is an entry in the gcBgMarkWorkerPool. It points to a single
  1303  // gcBgMarkWorker goroutine.
  1304  type gcBgMarkWorkerNode struct {
  1305  	// Unused workers are managed in a lock-free stack. This field must be first.
  1306  	node lfnode
  1307  
  1308  	// The g of this worker.
  1309  	gp guintptr
  1310  
  1311  	// Release this m on park. This is used to communicate with the unlock
  1312  	// function, which cannot access the G's stack. It is unused outside of
  1313  	// gcBgMarkWorker().
  1314  	m muintptr
  1315  }
  1316  
  1317  func gcBgMarkWorker(ready chan struct{}) {
  1318  	gp := getg()
  1319  
  1320  	// We pass node to a gopark unlock function, so it can't be on
  1321  	// the stack (see gopark). Prevent deadlock from recursively
  1322  	// starting GC by disabling preemption.
  1323  	gp.m.preemptoff = "GC worker init"
  1324  	node := new(gcBgMarkWorkerNode)
  1325  	gp.m.preemptoff = ""
  1326  
  1327  	node.gp.set(gp)
  1328  
  1329  	node.m.set(acquirem())
  1330  
  1331  	ready <- struct{}{}
  1332  	// After this point, the background mark worker is generally scheduled
  1333  	// cooperatively by gcController.findRunnableGCWorker. While performing
  1334  	// work on the P, preemption is disabled because we are working on
  1335  	// P-local work buffers. When the preempt flag is set, this puts itself
  1336  	// into _Gwaiting to be woken up by gcController.findRunnableGCWorker
  1337  	// at the appropriate time.
  1338  	//
  1339  	// When preemption is enabled (e.g., while in gcMarkDone), this worker
  1340  	// may be preempted and schedule as a _Grunnable G from a runq. That is
  1341  	// fine; it will eventually gopark again for further scheduling via
  1342  	// findRunnableGCWorker.
  1343  	//
  1344  	// Since we disable preemption before notifying ready, we guarantee that
  1345  	// this G will be in the worker pool for the next findRunnableGCWorker.
  1346  	// This isn't strictly necessary, but it reduces latency between
  1347  	// _GCmark starting and the workers starting.
  1348  
  1349  	for {
  1350  		// Go to sleep until woken by
  1351  		// gcController.findRunnableGCWorker.
  1352  		gopark(func(g *g, nodep unsafe.Pointer) bool {
  1353  			node := (*gcBgMarkWorkerNode)(nodep)
  1354  
  1355  			if mp := node.m.ptr(); mp != nil {
  1356  				// The worker G is no longer running; release
  1357  				// the M.
  1358  				//
  1359  				// N.B. it is _safe_ to release the M as soon
  1360  				// as we are no longer performing P-local mark
  1361  				// work.
  1362  				//
  1363  				// However, since we cooperatively stop work
  1364  				// when gp.preempt is set, if we releasem in
  1365  				// the loop then the following call to gopark
  1366  				// would immediately preempt the G. This is
  1367  				// also safe, but inefficient: the G must
  1368  				// schedule again only to enter gopark and park
  1369  				// again. Thus, we defer the release until
  1370  				// after parking the G.
  1371  				releasem(mp)
  1372  			}
  1373  
  1374  			// Release this G to the pool.
  1375  			gcBgMarkWorkerPool.push(&node.node)
  1376  			// Note that at this point, the G may immediately be
  1377  			// rescheduled and may be running.
  1378  			return true
  1379  		}, unsafe.Pointer(node), waitReasonGCWorkerIdle, traceBlockSystemGoroutine, 0)
  1380  
  1381  		// Preemption must not occur here, or another G might see
  1382  		// p.gcMarkWorkerMode.
  1383  
  1384  		// Disable preemption so we can use the gcw. If the
  1385  		// scheduler wants to preempt us, we'll stop draining,
  1386  		// dispose the gcw, and then preempt.
  1387  		node.m.set(acquirem())
  1388  		pp := gp.m.p.ptr() // P can't change with preemption disabled.
  1389  
  1390  		if gcBlackenEnabled == 0 {
  1391  			println("worker mode", pp.gcMarkWorkerMode)
  1392  			throw("gcBgMarkWorker: blackening not enabled")
  1393  		}
  1394  
  1395  		if pp.gcMarkWorkerMode == gcMarkWorkerNotWorker {
  1396  			throw("gcBgMarkWorker: mode not set")
  1397  		}
  1398  
  1399  		startTime := nanotime()
  1400  		pp.gcMarkWorkerStartTime = startTime
  1401  		var trackLimiterEvent bool
  1402  		if pp.gcMarkWorkerMode == gcMarkWorkerIdleMode {
  1403  			trackLimiterEvent = pp.limiterEvent.start(limiterEventIdleMarkWork, startTime)
  1404  		}
  1405  
  1406  		decnwait := atomic.Xadd(&work.nwait, -1)
  1407  		if decnwait == work.nproc {
  1408  			println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
  1409  			throw("work.nwait was > work.nproc")
  1410  		}
  1411  
  1412  		systemstack(func() {
  1413  			// Mark our goroutine preemptible so its stack
  1414  			// can be scanned. This lets two mark workers
  1415  			// scan each other (otherwise, they would
  1416  			// deadlock). We must not modify anything on
  1417  			// the G stack. However, stack shrinking is
  1418  			// disabled for mark workers, so it is safe to
  1419  			// read from the G stack.
  1420  			//
  1421  			// N.B. The execution tracer is not aware of this status
  1422  			// transition and handles it specially based on the
  1423  			// wait reason.
  1424  			casGToWaitingForGC(gp, _Grunning, waitReasonGCWorkerActive)
  1425  			switch pp.gcMarkWorkerMode {
  1426  			default:
  1427  				throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
  1428  			case gcMarkWorkerDedicatedMode:
  1429  				gcDrainMarkWorkerDedicated(&pp.gcw, true)
  1430  				if gp.preempt {
  1431  					// We were preempted. This is
  1432  					// a useful signal to kick
  1433  					// everything out of the run
  1434  					// queue so it can run
  1435  					// somewhere else.
  1436  					if drainQ, n := runqdrain(pp); n > 0 {
  1437  						lock(&sched.lock)
  1438  						globrunqputbatch(&drainQ, int32(n))
  1439  						unlock(&sched.lock)
  1440  					}
  1441  				}
  1442  				// Go back to draining, this time
  1443  				// without preemption.
  1444  				gcDrainMarkWorkerDedicated(&pp.gcw, false)
  1445  			case gcMarkWorkerFractionalMode:
  1446  				gcDrainMarkWorkerFractional(&pp.gcw)
  1447  			case gcMarkWorkerIdleMode:
  1448  				gcDrainMarkWorkerIdle(&pp.gcw)
  1449  			}
  1450  			casgstatus(gp, _Gwaiting, _Grunning)
  1451  		})
  1452  
  1453  		// Account for time and mark us as stopped.
  1454  		now := nanotime()
  1455  		duration := now - startTime
  1456  		gcController.markWorkerStop(pp.gcMarkWorkerMode, duration)
  1457  		if trackLimiterEvent {
  1458  			pp.limiterEvent.stop(limiterEventIdleMarkWork, now)
  1459  		}
  1460  		if pp.gcMarkWorkerMode == gcMarkWorkerFractionalMode {
  1461  			atomic.Xaddint64(&pp.gcFractionalMarkTime, duration)
  1462  		}
  1463  
  1464  		// Was this the last worker and did we run out
  1465  		// of work?
  1466  		incnwait := atomic.Xadd(&work.nwait, +1)
  1467  		if incnwait > work.nproc {
  1468  			println("runtime: p.gcMarkWorkerMode=", pp.gcMarkWorkerMode,
  1469  				"work.nwait=", incnwait, "work.nproc=", work.nproc)
  1470  			throw("work.nwait > work.nproc")
  1471  		}
  1472  
  1473  		// We'll releasem after this point and thus this P may run
  1474  		// something else. We must clear the worker mode to avoid
  1475  		// attributing the mode to a different (non-worker) G in
  1476  		// traceGoStart.
  1477  		pp.gcMarkWorkerMode = gcMarkWorkerNotWorker
  1478  
  1479  		// If this worker reached a background mark completion
  1480  		// point, signal the main GC goroutine.
  1481  		if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
  1482  			// We don't need the P-local buffers here, allow
  1483  			// preemption because we may schedule like a regular
  1484  			// goroutine in gcMarkDone (block on locks, etc).
  1485  			releasem(node.m.ptr())
  1486  			node.m.set(nil)
  1487  
  1488  			gcMarkDone()
  1489  		}
  1490  	}
  1491  }
  1492  
  1493  // gcMarkWorkAvailable reports whether executing a mark worker
  1494  // on p is potentially useful. p may be nil, in which case it only
  1495  // checks the global sources of work.
  1496  func gcMarkWorkAvailable(p *p) bool {
  1497  	if p != nil && !p.gcw.empty() {
  1498  		return true
  1499  	}
  1500  	if !work.full.empty() {
  1501  		return true // global work available
  1502  	}
  1503  	if work.markrootNext < work.markrootJobs {
  1504  		return true // root scan work available
  1505  	}
  1506  	return false
  1507  }
  1508  
  1509  // gcMark runs the mark (or, for concurrent GC, mark termination)
  1510  // All gcWork caches must be empty.
  1511  // STW is in effect at this point.
  1512  func gcMark(startTime int64) {
  1513  	if debug.allocfreetrace > 0 {
  1514  		tracegc()
  1515  	}
  1516  
  1517  	if gcphase != _GCmarktermination {
  1518  		throw("in gcMark expecting to see gcphase as _GCmarktermination")
  1519  	}
  1520  	work.tstart = startTime
  1521  
  1522  	// Check that there's no marking work remaining.
  1523  	if work.full != 0 || work.markrootNext < work.markrootJobs {
  1524  		print("runtime: full=", hex(work.full), " next=", work.markrootNext, " jobs=", work.markrootJobs, " nDataRoots=", work.nDataRoots, " nBSSRoots=", work.nBSSRoots, " nSpanRoots=", work.nSpanRoots, " nStackRoots=", work.nStackRoots, "\n")
  1525  		panic("non-empty mark queue after concurrent mark")
  1526  	}
  1527  
  1528  	if debug.gccheckmark > 0 {
  1529  		// This is expensive when there's a large number of
  1530  		// Gs, so only do it if checkmark is also enabled.
  1531  		gcMarkRootCheck()
  1532  	}
  1533  
  1534  	// Drop allg snapshot. allgs may have grown, in which case
  1535  	// this is the only reference to the old backing store and
  1536  	// there's no need to keep it around.
  1537  	work.stackRoots = nil
  1538  
  1539  	// Clear out buffers and double-check that all gcWork caches
  1540  	// are empty. This should be ensured by gcMarkDone before we
  1541  	// enter mark termination.
  1542  	//
  1543  	// TODO: We could clear out buffers just before mark if this
  1544  	// has a non-negligible impact on STW time.
  1545  	for _, p := range allp {
  1546  		// The write barrier may have buffered pointers since
  1547  		// the gcMarkDone barrier. However, since the barrier
  1548  		// ensured all reachable objects were marked, all of
  1549  		// these must be pointers to black objects. Hence we
  1550  		// can just discard the write barrier buffer.
  1551  		if debug.gccheckmark > 0 {
  1552  			// For debugging, flush the buffer and make
  1553  			// sure it really was all marked.
  1554  			wbBufFlush1(p)
  1555  		} else {
  1556  			p.wbBuf.reset()
  1557  		}
  1558  
  1559  		gcw := &p.gcw
  1560  		if !gcw.empty() {
  1561  			printlock()
  1562  			print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
  1563  			if gcw.wbuf1 == nil {
  1564  				print(" wbuf1=<nil>")
  1565  			} else {
  1566  				print(" wbuf1.n=", gcw.wbuf1.nobj)
  1567  			}
  1568  			if gcw.wbuf2 == nil {
  1569  				print(" wbuf2=<nil>")
  1570  			} else {
  1571  				print(" wbuf2.n=", gcw.wbuf2.nobj)
  1572  			}
  1573  			print("\n")
  1574  			throw("P has cached GC work at end of mark termination")
  1575  		}
  1576  		// There may still be cached empty buffers, which we
  1577  		// need to flush since we're going to free them. Also,
  1578  		// there may be non-zero stats because we allocated
  1579  		// black after the gcMarkDone barrier.
  1580  		gcw.dispose()
  1581  	}
  1582  
  1583  	// Flush scanAlloc from each mcache since we're about to modify
  1584  	// heapScan directly. If we were to flush this later, then scanAlloc
  1585  	// might have incorrect information.
  1586  	//
  1587  	// Note that it's not important to retain this information; we know
  1588  	// exactly what heapScan is at this point via scanWork.
  1589  	for _, p := range allp {
  1590  		c := p.mcache
  1591  		if c == nil {
  1592  			continue
  1593  		}
  1594  		c.scanAlloc = 0
  1595  	}
  1596  
  1597  	// Reset controller state.
  1598  	gcController.resetLive(work.bytesMarked)
  1599  }
  1600  
  1601  // gcSweep must be called on the system stack because it acquires the heap
  1602  // lock. See mheap for details.
  1603  //
  1604  // Returns true if the heap was fully swept by this function.
  1605  //
  1606  // The world must be stopped.
  1607  //
  1608  //go:systemstack
  1609  func gcSweep(mode gcMode) bool {
  1610  	assertWorldStopped()
  1611  
  1612  	if gcphase != _GCoff {
  1613  		throw("gcSweep being done but phase is not GCoff")
  1614  	}
  1615  
  1616  	lock(&mheap_.lock)
  1617  	mheap_.sweepgen += 2
  1618  	sweep.active.reset()
  1619  	mheap_.pagesSwept.Store(0)
  1620  	mheap_.sweepArenas = mheap_.allArenas
  1621  	mheap_.reclaimIndex.Store(0)
  1622  	mheap_.reclaimCredit.Store(0)
  1623  	unlock(&mheap_.lock)
  1624  
  1625  	sweep.centralIndex.clear()
  1626  
  1627  	if !concurrentSweep || mode == gcForceBlockMode {
  1628  		// Special case synchronous sweep.
  1629  		// Record that no proportional sweeping has to happen.
  1630  		lock(&mheap_.lock)
  1631  		mheap_.sweepPagesPerByte = 0
  1632  		unlock(&mheap_.lock)
  1633  		// Flush all mcaches.
  1634  		for _, pp := range allp {
  1635  			pp.mcache.prepareForSweep()
  1636  		}
  1637  		// Sweep all spans eagerly.
  1638  		for sweepone() != ^uintptr(0) {
  1639  		}
  1640  		// Free workbufs eagerly.
  1641  		prepareFreeWorkbufs()
  1642  		for freeSomeWbufs(false) {
  1643  		}
  1644  		// All "free" events for this mark/sweep cycle have
  1645  		// now happened, so we can make this profile cycle
  1646  		// available immediately.
  1647  		mProf_NextCycle()
  1648  		mProf_Flush()
  1649  		return true
  1650  	}
  1651  
  1652  	// Background sweep.
  1653  	lock(&sweep.lock)
  1654  	if sweep.parked {
  1655  		sweep.parked = false
  1656  		ready(sweep.g, 0, true)
  1657  	}
  1658  	unlock(&sweep.lock)
  1659  	return false
  1660  }
  1661  
  1662  // gcResetMarkState resets global state prior to marking (concurrent
  1663  // or STW) and resets the stack scan state of all Gs.
  1664  //
  1665  // This is safe to do without the world stopped because any Gs created
  1666  // during or after this will start out in the reset state.
  1667  //
  1668  // gcResetMarkState must be called on the system stack because it acquires
  1669  // the heap lock. See mheap for details.
  1670  //
  1671  //go:systemstack
  1672  func gcResetMarkState() {
  1673  	// This may be called during a concurrent phase, so lock to make sure
  1674  	// allgs doesn't change.
  1675  	forEachG(func(gp *g) {
  1676  		gp.gcscandone = false // set to true in gcphasework
  1677  		gp.gcAssistBytes = 0
  1678  	})
  1679  
  1680  	// Clear page marks. This is just 1MB per 64GB of heap, so the
  1681  	// time here is pretty trivial.
  1682  	lock(&mheap_.lock)
  1683  	arenas := mheap_.allArenas
  1684  	unlock(&mheap_.lock)
  1685  	for _, ai := range arenas {
  1686  		ha := mheap_.arenas[ai.l1()][ai.l2()]
  1687  		clear(ha.pageMarks[:])
  1688  	}
  1689  
  1690  	work.bytesMarked = 0
  1691  	work.initialHeapLive = gcController.heapLive.Load()
  1692  }
  1693  
  1694  // Hooks for other packages
  1695  
  1696  var poolcleanup func()
  1697  var boringCaches []unsafe.Pointer // for crypto/internal/boring
  1698  
  1699  //go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
  1700  func sync_runtime_registerPoolCleanup(f func()) {
  1701  	poolcleanup = f
  1702  }
  1703  
  1704  //go:linkname boring_registerCache crypto/internal/boring/bcache.registerCache
  1705  func boring_registerCache(p unsafe.Pointer) {
  1706  	boringCaches = append(boringCaches, p)
  1707  }
  1708  
  1709  func clearpools() {
  1710  	// clear sync.Pools
  1711  	if poolcleanup != nil {
  1712  		poolcleanup()
  1713  	}
  1714  
  1715  	// clear boringcrypto caches
  1716  	for _, p := range boringCaches {
  1717  		atomicstorep(p, nil)
  1718  	}
  1719  
  1720  	// Clear central sudog cache.
  1721  	// Leave per-P caches alone, they have strictly bounded size.
  1722  	// Disconnect cached list before dropping it on the floor,
  1723  	// so that a dangling ref to one entry does not pin all of them.
  1724  	lock(&sched.sudoglock)
  1725  	var sg, sgnext *sudog
  1726  	for sg = sched.sudogcache; sg != nil; sg = sgnext {
  1727  		sgnext = sg.next
  1728  		sg.next = nil
  1729  	}
  1730  	sched.sudogcache = nil
  1731  	unlock(&sched.sudoglock)
  1732  
  1733  	// Clear central defer pool.
  1734  	// Leave per-P pools alone, they have strictly bounded size.
  1735  	lock(&sched.deferlock)
  1736  	// disconnect cached list before dropping it on the floor,
  1737  	// so that a dangling ref to one entry does not pin all of them.
  1738  	var d, dlink *_defer
  1739  	for d = sched.deferpool; d != nil; d = dlink {
  1740  		dlink = d.link
  1741  		d.link = nil
  1742  	}
  1743  	sched.deferpool = nil
  1744  	unlock(&sched.deferlock)
  1745  }
  1746  
  1747  // Timing
  1748  
  1749  // itoaDiv formats val/(10**dec) into buf.
  1750  func itoaDiv(buf []byte, val uint64, dec int) []byte {
  1751  	i := len(buf) - 1
  1752  	idec := i - dec
  1753  	for val >= 10 || i >= idec {
  1754  		buf[i] = byte(val%10 + '0')
  1755  		i--
  1756  		if i == idec {
  1757  			buf[i] = '.'
  1758  			i--
  1759  		}
  1760  		val /= 10
  1761  	}
  1762  	buf[i] = byte(val + '0')
  1763  	return buf[i:]
  1764  }
  1765  
  1766  // fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
  1767  func fmtNSAsMS(buf []byte, ns uint64) []byte {
  1768  	if ns >= 10e6 {
  1769  		// Format as whole milliseconds.
  1770  		return itoaDiv(buf, ns/1e6, 0)
  1771  	}
  1772  	// Format two digits of precision, with at most three decimal places.
  1773  	x := ns / 1e3
  1774  	if x == 0 {
  1775  		buf[0] = '0'
  1776  		return buf[:1]
  1777  	}
  1778  	dec := 3
  1779  	for x >= 100 {
  1780  		x /= 10
  1781  		dec--
  1782  	}
  1783  	return itoaDiv(buf, x, dec)
  1784  }
  1785  
  1786  // Helpers for testing GC.
  1787  
  1788  // gcTestMoveStackOnNextCall causes the stack to be moved on a call
  1789  // immediately following the call to this. It may not work correctly
  1790  // if any other work appears after this call (such as returning).
  1791  // Typically the following call should be marked go:noinline so it
  1792  // performs a stack check.
  1793  //
  1794  // In rare cases this may not cause the stack to move, specifically if
  1795  // there's a preemption between this call and the next.
  1796  func gcTestMoveStackOnNextCall() {
  1797  	gp := getg()
  1798  	gp.stackguard0 = stackForceMove
  1799  }
  1800  
  1801  // gcTestIsReachable performs a GC and returns a bit set where bit i
  1802  // is set if ptrs[i] is reachable.
  1803  func gcTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
  1804  	// This takes the pointers as unsafe.Pointers in order to keep
  1805  	// them live long enough for us to attach specials. After
  1806  	// that, we drop our references to them.
  1807  
  1808  	if len(ptrs) > 64 {
  1809  		panic("too many pointers for uint64 mask")
  1810  	}
  1811  
  1812  	// Block GC while we attach specials and drop our references
  1813  	// to ptrs. Otherwise, if a GC is in progress, it could mark
  1814  	// them reachable via this function before we have a chance to
  1815  	// drop them.
  1816  	semacquire(&gcsema)
  1817  
  1818  	// Create reachability specials for ptrs.
  1819  	specials := make([]*specialReachable, len(ptrs))
  1820  	for i, p := range ptrs {
  1821  		lock(&mheap_.speciallock)
  1822  		s := (*specialReachable)(mheap_.specialReachableAlloc.alloc())
  1823  		unlock(&mheap_.speciallock)
  1824  		s.special.kind = _KindSpecialReachable
  1825  		if !addspecial(p, &s.special) {
  1826  			throw("already have a reachable special (duplicate pointer?)")
  1827  		}
  1828  		specials[i] = s
  1829  		// Make sure we don't retain ptrs.
  1830  		ptrs[i] = nil
  1831  	}
  1832  
  1833  	semrelease(&gcsema)
  1834  
  1835  	// Force a full GC and sweep.
  1836  	GC()
  1837  
  1838  	// Process specials.
  1839  	for i, s := range specials {
  1840  		if !s.done {
  1841  			printlock()
  1842  			println("runtime: object", i, "was not swept")
  1843  			throw("IsReachable failed")
  1844  		}
  1845  		if s.reachable {
  1846  			mask |= 1 << i
  1847  		}
  1848  		lock(&mheap_.speciallock)
  1849  		mheap_.specialReachableAlloc.free(unsafe.Pointer(s))
  1850  		unlock(&mheap_.speciallock)
  1851  	}
  1852  
  1853  	return mask
  1854  }
  1855  
  1856  // gcTestPointerClass returns the category of what p points to, one of:
  1857  // "heap", "stack", "data", "bss", "other". This is useful for checking
  1858  // that a test is doing what it's intended to do.
  1859  //
  1860  // This is nosplit simply to avoid extra pointer shuffling that may
  1861  // complicate a test.
  1862  //
  1863  //go:nosplit
  1864  func gcTestPointerClass(p unsafe.Pointer) string {
  1865  	p2 := uintptr(noescape(p))
  1866  	gp := getg()
  1867  	if gp.stack.lo <= p2 && p2 < gp.stack.hi {
  1868  		return "stack"
  1869  	}
  1870  	if base, _, _ := findObject(p2, 0, 0); base != 0 {
  1871  		return "heap"
  1872  	}
  1873  	for _, datap := range activeModules() {
  1874  		if datap.data <= p2 && p2 < datap.edata || datap.noptrdata <= p2 && p2 < datap.enoptrdata {
  1875  			return "data"
  1876  		}
  1877  		if datap.bss <= p2 && p2 < datap.ebss || datap.noptrbss <= p2 && p2 <= datap.enoptrbss {
  1878  			return "bss"
  1879  		}
  1880  	}
  1881  	KeepAlive(p)
  1882  	return "other"
  1883  }
  1884  

View as plain text