Source file src/runtime/mspanset.go

     1  // Copyright 2020 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"internal/cpu"
     9  	"internal/goarch"
    10  	"internal/runtime/atomic"
    11  	"unsafe"
    12  )
    13  
    14  // A spanSet is a set of *mspans.
    15  //
    16  // spanSet is safe for concurrent push and pop operations.
    17  type spanSet struct {
    18  	// A spanSet is a two-level data structure consisting of a
    19  	// growable spine that points to fixed-sized blocks. The spine
    20  	// can be accessed without locks, but adding a block or
    21  	// growing it requires taking the spine lock.
    22  	//
    23  	// Because each mspan covers at least 8K of heap and takes at
    24  	// most 8 bytes in the spanSet, the growth of the spine is
    25  	// quite limited.
    26  	//
    27  	// The spine and all blocks are allocated off-heap, which
    28  	// allows this to be used in the memory manager and avoids the
    29  	// need for write barriers on all of these. spanSetBlocks are
    30  	// managed in a pool, though never freed back to the operating
    31  	// system. We never release spine memory because there could be
    32  	// concurrent lock-free access and we're likely to reuse it
    33  	// anyway. (In principle, we could do this during STW.)
    34  
    35  	spineLock mutex
    36  	spine     atomicSpanSetSpinePointer // *[N]atomic.Pointer[spanSetBlock]
    37  	spineLen  atomic.Uintptr            // Spine array length
    38  	spineCap  uintptr                   // Spine array cap, accessed under spineLock
    39  
    40  	// index is the head and tail of the spanSet in a single field.
    41  	// The head and the tail both represent an index into the logical
    42  	// concatenation of all blocks, with the head always behind or
    43  	// equal to the tail (indicating an empty set). This field is
    44  	// always accessed atomically.
    45  	//
    46  	// The head and the tail are only 32 bits wide, which means we
    47  	// can only support up to 2^32 pushes before a reset. If every
    48  	// span in the heap were stored in this set, and each span were
    49  	// the minimum size (1 runtime page, 8 KiB), then roughly the
    50  	// smallest heap which would be unrepresentable is 32 TiB in size.
    51  	index atomicHeadTailIndex
    52  }
    53  
    54  const (
    55  	spanSetBlockEntries = 512 // 4KB on 64-bit
    56  	spanSetInitSpineCap = 256 // Enough for 1GB heap on 64-bit
    57  )
    58  
    59  type spanSetBlockHeader struct {
    60  	// Free spanSetBlocks are managed via a lock-free stack.
    61  	lfnode
    62  
    63  	// popped is the number of pop operations that have occurred on
    64  	// this block. This number is used to help determine when a block
    65  	// may be safely recycled.
    66  	popped atomic.Uint32
    67  }
    68  
    69  type spanSetBlockHeader2 struct {
    70  	spanSetBlockHeader
    71  	pad [tagAlign - unsafe.Sizeof(spanSetBlockHeader{})]byte
    72  }
    73  
    74  type spanSetBlock struct {
    75  	spanSetBlockHeader2
    76  
    77  	// spans is the set of spans in this block.
    78  	spans [spanSetBlockEntries]atomicMSpanPointer
    79  }
    80  
    81  // push adds span s to buffer b. push is safe to call concurrently
    82  // with other push and pop operations.
    83  func (b *spanSet) push(s *mspan) {
    84  	// Obtain our slot.
    85  	cursor := uintptr(b.index.incTail().tail() - 1)
    86  	top, bottom := cursor/spanSetBlockEntries, cursor%spanSetBlockEntries
    87  
    88  	// Do we need to add a block?
    89  	spineLen := b.spineLen.Load()
    90  	var block *spanSetBlock
    91  retry:
    92  	if top < spineLen {
    93  		block = b.spine.Load().lookup(top).Load()
    94  	} else {
    95  		// Add a new block to the spine, potentially growing
    96  		// the spine.
    97  		lock(&b.spineLock)
    98  		// spineLen cannot change until we release the lock,
    99  		// but may have changed while we were waiting.
   100  		spineLen = b.spineLen.Load()
   101  		if top < spineLen {
   102  			unlock(&b.spineLock)
   103  			goto retry
   104  		}
   105  
   106  		spine := b.spine.Load()
   107  		if spineLen == b.spineCap {
   108  			// Grow the spine.
   109  			newCap := b.spineCap * 2
   110  			if newCap == 0 {
   111  				newCap = spanSetInitSpineCap
   112  			}
   113  			newSpine := persistentalloc(newCap*goarch.PtrSize, cpu.CacheLineSize, &memstats.gcMiscSys)
   114  			if b.spineCap != 0 {
   115  				// Blocks are allocated off-heap, so
   116  				// no write barriers.
   117  				memmove(newSpine, spine.p, b.spineCap*goarch.PtrSize)
   118  			}
   119  			spine = spanSetSpinePointer{newSpine}
   120  
   121  			// Spine is allocated off-heap, so no write barrier.
   122  			b.spine.StoreNoWB(spine)
   123  			b.spineCap = newCap
   124  			// We can't immediately free the old spine
   125  			// since a concurrent push with a lower index
   126  			// could still be reading from it. We let it
   127  			// leak because even a 1TB heap would waste
   128  			// less than 2MB of memory on old spines. If
   129  			// this is a problem, we could free old spines
   130  			// during STW.
   131  		}
   132  
   133  		// Allocate a new block from the pool.
   134  		block = spanSetBlockPool.alloc()
   135  
   136  		// Add it to the spine.
   137  		// Blocks are allocated off-heap, so no write barrier.
   138  		spine.lookup(top).StoreNoWB(block)
   139  		b.spineLen.Store(spineLen + 1)
   140  		unlock(&b.spineLock)
   141  	}
   142  
   143  	// We have a block. Insert the span atomically, since there may be
   144  	// concurrent readers via the block API.
   145  	block.spans[bottom].StoreNoWB(s)
   146  }
   147  
   148  // pop removes and returns a span from buffer b, or nil if b is empty.
   149  // pop is safe to call concurrently with other pop and push operations.
   150  func (b *spanSet) pop() *mspan {
   151  	var head, tail uint32
   152  claimLoop:
   153  	for {
   154  		headtail := b.index.load()
   155  		head, tail = headtail.split()
   156  		if head >= tail {
   157  			// The buf is empty, as far as we can tell.
   158  			return nil
   159  		}
   160  		// Check if the head position we want to claim is actually
   161  		// backed by a block.
   162  		spineLen := b.spineLen.Load()
   163  		if spineLen <= uintptr(head)/spanSetBlockEntries {
   164  			// We're racing with a spine growth and the allocation of
   165  			// a new block (and maybe a new spine!), and trying to grab
   166  			// the span at the index which is currently being pushed.
   167  			// Instead of spinning, let's just notify the caller that
   168  			// there's nothing currently here. Spinning on this is
   169  			// almost definitely not worth it.
   170  			return nil
   171  		}
   172  		// Try to claim the current head by CASing in an updated head.
   173  		// This may fail transiently due to a push which modifies the
   174  		// tail, so keep trying while the head isn't changing.
   175  		want := head
   176  		for want == head {
   177  			if b.index.cas(headtail, makeHeadTailIndex(want+1, tail)) {
   178  				break claimLoop
   179  			}
   180  			headtail = b.index.load()
   181  			head, tail = headtail.split()
   182  		}
   183  		// We failed to claim the spot we were after and the head changed,
   184  		// meaning a popper got ahead of us. Try again from the top because
   185  		// the buf may not be empty.
   186  	}
   187  	top, bottom := head/spanSetBlockEntries, head%spanSetBlockEntries
   188  
   189  	// We may be reading a stale spine pointer, but because the length
   190  	// grows monotonically and we've already verified it, we'll definitely
   191  	// be reading from a valid block.
   192  	blockp := b.spine.Load().lookup(uintptr(top))
   193  
   194  	// Given that the spine length is correct, we know we will never
   195  	// see a nil block here, since the length is always updated after
   196  	// the block is set.
   197  	block := blockp.Load()
   198  	s := block.spans[bottom].Load()
   199  	for s == nil {
   200  		// We raced with the span actually being set, but given that we
   201  		// know a block for this span exists, the race window here is
   202  		// extremely small. Try again.
   203  		s = block.spans[bottom].Load()
   204  	}
   205  	// Clear the pointer. This isn't strictly necessary, but defensively
   206  	// avoids accidentally re-using blocks which could lead to memory
   207  	// corruption. This way, we'll get a nil pointer access instead.
   208  	block.spans[bottom].StoreNoWB(nil)
   209  
   210  	// Increase the popped count. If we are the last possible popper
   211  	// in the block (note that bottom need not equal spanSetBlockEntries-1
   212  	// due to races) then it's our responsibility to free the block.
   213  	//
   214  	// If we increment popped to spanSetBlockEntries, we can be sure that
   215  	// we're the last popper for this block, and it's thus safe to free it.
   216  	// Every other popper must have crossed this barrier (and thus finished
   217  	// popping its corresponding mspan) by the time we get here. Because
   218  	// we're the last popper, we also don't have to worry about concurrent
   219  	// pushers (there can't be any). Note that we may not be the popper
   220  	// which claimed the last slot in the block, we're just the last one
   221  	// to finish popping.
   222  	if block.popped.Add(1) == spanSetBlockEntries {
   223  		// Clear the block's pointer.
   224  		blockp.StoreNoWB(nil)
   225  
   226  		// Return the block to the block pool.
   227  		spanSetBlockPool.free(block)
   228  	}
   229  	return s
   230  }
   231  
   232  // reset resets a spanSet which is empty. It will also clean up
   233  // any left over blocks.
   234  //
   235  // Throws if the buf is not empty.
   236  //
   237  // reset may not be called concurrently with any other operations
   238  // on the span set.
   239  func (b *spanSet) reset() {
   240  	head, tail := b.index.load().split()
   241  	if head < tail {
   242  		print("head = ", head, ", tail = ", tail, "\n")
   243  		throw("attempt to clear non-empty span set")
   244  	}
   245  	top := head / spanSetBlockEntries
   246  	if uintptr(top) < b.spineLen.Load() {
   247  		// If the head catches up to the tail and the set is empty,
   248  		// we may not clean up the block containing the head and tail
   249  		// since it may be pushed into again. In order to avoid leaking
   250  		// memory since we're going to reset the head and tail, clean
   251  		// up such a block now, if it exists.
   252  		blockp := b.spine.Load().lookup(uintptr(top))
   253  		block := blockp.Load()
   254  		if block != nil {
   255  			// Check the popped value.
   256  			if block.popped.Load() == 0 {
   257  				// popped should never be zero because that means we have
   258  				// pushed at least one value but not yet popped if this
   259  				// block pointer is not nil.
   260  				throw("span set block with unpopped elements found in reset")
   261  			}
   262  			if block.popped.Load() == spanSetBlockEntries {
   263  				// popped should also never be equal to spanSetBlockEntries
   264  				// because the last popper should have made the block pointer
   265  				// in this slot nil.
   266  				throw("fully empty unfreed span set block found in reset")
   267  			}
   268  
   269  			// Clear the pointer to the block.
   270  			blockp.StoreNoWB(nil)
   271  
   272  			// Return the block to the block pool.
   273  			spanSetBlockPool.free(block)
   274  		}
   275  	}
   276  	b.index.reset()
   277  	b.spineLen.Store(0)
   278  }
   279  
   280  // atomicSpanSetSpinePointer is an atomically-accessed spanSetSpinePointer.
   281  //
   282  // It has the same semantics as atomic.UnsafePointer.
   283  type atomicSpanSetSpinePointer struct {
   284  	a atomic.UnsafePointer
   285  }
   286  
   287  // Loads the spanSetSpinePointer and returns it.
   288  //
   289  // It has the same semantics as atomic.UnsafePointer.
   290  func (s *atomicSpanSetSpinePointer) Load() spanSetSpinePointer {
   291  	return spanSetSpinePointer{s.a.Load()}
   292  }
   293  
   294  // Stores the spanSetSpinePointer.
   295  //
   296  // It has the same semantics as [atomic.UnsafePointer].
   297  func (s *atomicSpanSetSpinePointer) StoreNoWB(p spanSetSpinePointer) {
   298  	s.a.StoreNoWB(p.p)
   299  }
   300  
   301  // spanSetSpinePointer represents a pointer to a contiguous block of atomic.Pointer[spanSetBlock].
   302  type spanSetSpinePointer struct {
   303  	p unsafe.Pointer
   304  }
   305  
   306  // lookup returns &s[idx].
   307  func (s spanSetSpinePointer) lookup(idx uintptr) *atomic.Pointer[spanSetBlock] {
   308  	return (*atomic.Pointer[spanSetBlock])(add(s.p, goarch.PtrSize*idx))
   309  }
   310  
   311  // spanSetBlockPool is a global pool of spanSetBlocks.
   312  var spanSetBlockPool spanSetBlockAlloc
   313  
   314  // spanSetBlockAlloc represents a concurrent pool of spanSetBlocks.
   315  type spanSetBlockAlloc struct {
   316  	stack lfstack
   317  }
   318  
   319  // alloc tries to grab a spanSetBlock out of the pool, and if it fails
   320  // persistentallocs a new one and returns it.
   321  func (p *spanSetBlockAlloc) alloc() *spanSetBlock {
   322  	if s := (*spanSetBlock)(p.stack.pop()); s != nil {
   323  		return s
   324  	}
   325  	return (*spanSetBlock)(persistentalloc(unsafe.Sizeof(spanSetBlock{}), max(cpu.CacheLineSize, tagAlign), &memstats.gcMiscSys))
   326  }
   327  
   328  // free returns a spanSetBlock back to the pool.
   329  func (p *spanSetBlockAlloc) free(block *spanSetBlock) {
   330  	block.popped.Store(0)
   331  	p.stack.push(&block.lfnode)
   332  }
   333  
   334  // headTailIndex represents a combined 32-bit head and 32-bit tail
   335  // of a queue into a single 64-bit value.
   336  type headTailIndex uint64
   337  
   338  // makeHeadTailIndex creates a headTailIndex value from a separate
   339  // head and tail.
   340  func makeHeadTailIndex(head, tail uint32) headTailIndex {
   341  	return headTailIndex(uint64(head)<<32 | uint64(tail))
   342  }
   343  
   344  // head returns the head of a headTailIndex value.
   345  func (h headTailIndex) head() uint32 {
   346  	return uint32(h >> 32)
   347  }
   348  
   349  // tail returns the tail of a headTailIndex value.
   350  func (h headTailIndex) tail() uint32 {
   351  	return uint32(h)
   352  }
   353  
   354  // split splits the headTailIndex value into its parts.
   355  func (h headTailIndex) split() (head uint32, tail uint32) {
   356  	return h.head(), h.tail()
   357  }
   358  
   359  // atomicHeadTailIndex is an atomically-accessed headTailIndex.
   360  type atomicHeadTailIndex struct {
   361  	u atomic.Uint64
   362  }
   363  
   364  // load atomically reads a headTailIndex value.
   365  func (h *atomicHeadTailIndex) load() headTailIndex {
   366  	return headTailIndex(h.u.Load())
   367  }
   368  
   369  // cas atomically compares-and-swaps a headTailIndex value.
   370  func (h *atomicHeadTailIndex) cas(old, new headTailIndex) bool {
   371  	return h.u.CompareAndSwap(uint64(old), uint64(new))
   372  }
   373  
   374  // incHead atomically increments the head of a headTailIndex.
   375  func (h *atomicHeadTailIndex) incHead() headTailIndex {
   376  	return headTailIndex(h.u.Add(1 << 32))
   377  }
   378  
   379  // decHead atomically decrements the head of a headTailIndex.
   380  func (h *atomicHeadTailIndex) decHead() headTailIndex {
   381  	return headTailIndex(h.u.Add(-(1 << 32)))
   382  }
   383  
   384  // incTail atomically increments the tail of a headTailIndex.
   385  func (h *atomicHeadTailIndex) incTail() headTailIndex {
   386  	ht := headTailIndex(h.u.Add(1))
   387  	// Check for overflow.
   388  	if ht.tail() == 0 {
   389  		print("runtime: head = ", ht.head(), ", tail = ", ht.tail(), "\n")
   390  		throw("headTailIndex overflow")
   391  	}
   392  	return ht
   393  }
   394  
   395  // reset clears the headTailIndex to (0, 0).
   396  func (h *atomicHeadTailIndex) reset() {
   397  	h.u.Store(0)
   398  }
   399  
   400  // atomicMSpanPointer is an atomic.Pointer[mspan]. Can't use generics because it's NotInHeap.
   401  type atomicMSpanPointer struct {
   402  	p atomic.UnsafePointer
   403  }
   404  
   405  // Load returns the *mspan.
   406  func (p *atomicMSpanPointer) Load() *mspan {
   407  	return (*mspan)(p.p.Load())
   408  }
   409  
   410  // Store stores an *mspan.
   411  func (p *atomicMSpanPointer) StoreNoWB(s *mspan) {
   412  	p.p.StoreNoWB(unsafe.Pointer(s))
   413  }
   414  

View as plain text