// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build race #include "go_asm.h" #include "funcdata.h" #include "textflag.h" // The following thunks allow calling the gcc-compiled race runtime directly // from Go code without going all the way through cgo. // First, it's much faster (up to 50% speedup for real Go programs). // Second, it eliminates race-related special cases from cgocall and scheduler. // Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go. // A brief recap of the s390x C calling convention. // Arguments are passed in R2...R6, the rest is on stack. // Callee-saved registers are: R6...R13, R15. // Temporary registers are: R0...R5, R14. // When calling racecalladdr, R1 is the call target address. // The race ctx, ThreadState *thr below, is passed in R2 and loaded in racecalladdr. // func runtime·raceread(addr uintptr) // Called from instrumented code. TEXT runtime·raceread(SB), NOSPLIT, $0-8 // void __tsan_read(ThreadState *thr, void *addr, void *pc); MOVD $__tsan_read(SB), R1 MOVD addr+0(FP), R3 MOVD R14, R4 JMP racecalladdr<>(SB) // func runtime·RaceRead(addr uintptr) TEXT runtime·RaceRead(SB), NOSPLIT, $0-8 // This needs to be a tail call, because raceread reads caller pc. JMP runtime·raceread(SB) // func runtime·racereadpc(void *addr, void *callpc, void *pc) TEXT runtime·racereadpc(SB), NOSPLIT, $0-24 // void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVD $__tsan_read_pc(SB), R1 LMG addr+0(FP), R3, R5 JMP racecalladdr<>(SB) // func runtime·racewrite(addr uintptr) // Called from instrumented code. TEXT runtime·racewrite(SB), NOSPLIT, $0-8 // void __tsan_write(ThreadState *thr, void *addr, void *pc); MOVD $__tsan_write(SB), R1 MOVD addr+0(FP), R3 MOVD R14, R4 JMP racecalladdr<>(SB) // func runtime·RaceWrite(addr uintptr) TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8 // This needs to be a tail call, because racewrite reads caller pc. JMP runtime·racewrite(SB) // func runtime·racewritepc(void *addr, void *callpc, void *pc) TEXT runtime·racewritepc(SB), NOSPLIT, $0-24 // void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVD $__tsan_write_pc(SB), R1 LMG addr+0(FP), R3, R5 JMP racecalladdr<>(SB) // func runtime·racereadrange(addr, size uintptr) // Called from instrumented code. TEXT runtime·racereadrange(SB), NOSPLIT, $0-16 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVD $__tsan_read_range(SB), R1 LMG addr+0(FP), R3, R4 MOVD R14, R5 JMP racecalladdr<>(SB) // func runtime·RaceReadRange(addr, size uintptr) TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racereadrange reads caller pc. JMP runtime·racereadrange(SB) // func runtime·racereadrangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVD $__tsan_read_range(SB), R1 LMG addr+0(FP), R3, R5 // pc is an interceptor address, but TSan expects it to point to the // middle of an interceptor (see LLVM's SCOPED_INTERCEPTOR_RAW). ADD $2, R5 JMP racecalladdr<>(SB) // func runtime·racewriterange(addr, size uintptr) // Called from instrumented code. TEXT runtime·racewriterange(SB), NOSPLIT, $0-16 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVD $__tsan_write_range(SB), R1 LMG addr+0(FP), R3, R4 MOVD R14, R5 JMP racecalladdr<>(SB) // func runtime·RaceWriteRange(addr, size uintptr) TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racewriterange reads caller pc. JMP runtime·racewriterange(SB) // func runtime·racewriterangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVD $__tsan_write_range(SB), R1 LMG addr+0(FP), R3, R5 // pc is an interceptor address, but TSan expects it to point to the // middle of an interceptor (see LLVM's SCOPED_INTERCEPTOR_RAW). ADD $2, R5 JMP racecalladdr<>(SB) // If R3 is out of range, do nothing. Otherwise, setup goroutine context and // invoke racecall. Other arguments are already set. TEXT racecalladdr<>(SB), NOSPLIT, $0-0 MOVD runtime·racearenastart(SB), R0 CMPUBLT R3, R0, data // Before racearena start? MOVD runtime·racearenaend(SB), R0 CMPUBLT R3, R0, call // Before racearena end? data: MOVD runtime·racedatastart(SB), R0 CMPUBLT R3, R0, ret // Before racedata start? MOVD runtime·racedataend(SB), R0 CMPUBGE R3, R0, ret // At or after racedata end? call: MOVD g_racectx(g), R2 JMP racecall<>(SB) ret: RET // func runtime·racefuncenter(pc uintptr) // Called from instrumented code. TEXT runtime·racefuncenter(SB), NOSPLIT, $0-8 MOVD callpc+0(FP), R3 JMP racefuncenter<>(SB) // Common code for racefuncenter // R3 = caller's return address TEXT racefuncenter<>(SB), NOSPLIT, $0-0 // void __tsan_func_enter(ThreadState *thr, void *pc); MOVD $__tsan_func_enter(SB), R1 MOVD g_racectx(g), R2 BL racecall<>(SB) RET // func runtime·racefuncexit() // Called from instrumented code. TEXT runtime·racefuncexit(SB), NOSPLIT, $0-0 // void __tsan_func_exit(ThreadState *thr); MOVD $__tsan_func_exit(SB), R1 MOVD g_racectx(g), R2 JMP racecall<>(SB) // Atomic operations for sync/atomic package. // Load TEXT sync∕atomic·LoadInt32(SB), NOSPLIT, $0-12 GO_ARGS MOVD $__tsan_go_atomic32_load(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·LoadInt64(SB), NOSPLIT, $0-16 GO_ARGS MOVD $__tsan_go_atomic64_load(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·LoadUint32(SB), NOSPLIT, $0-12 GO_ARGS JMP sync∕atomic·LoadInt32(SB) TEXT sync∕atomic·LoadUint64(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) TEXT sync∕atomic·LoadUintptr(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) TEXT sync∕atomic·LoadPointer(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) // Store TEXT sync∕atomic·StoreInt32(SB), NOSPLIT, $0-12 GO_ARGS MOVD $__tsan_go_atomic32_store(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·StoreInt64(SB), NOSPLIT, $0-16 GO_ARGS MOVD $__tsan_go_atomic64_store(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·StoreUint32(SB), NOSPLIT, $0-12 GO_ARGS JMP sync∕atomic·StoreInt32(SB) TEXT sync∕atomic·StoreUint64(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·StoreInt64(SB) TEXT sync∕atomic·StoreUintptr(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·StoreInt64(SB) // Swap TEXT sync∕atomic·SwapInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVD $__tsan_go_atomic32_exchange(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·SwapInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVD $__tsan_go_atomic64_exchange(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·SwapUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·SwapInt32(SB) TEXT sync∕atomic·SwapUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·SwapInt64(SB) TEXT sync∕atomic·SwapUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·SwapInt64(SB) // Add TEXT sync∕atomic·AddInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVD $__tsan_go_atomic32_fetch_add(SB), R1 BL racecallatomic<>(SB) // TSan performed fetch_add, but Go needs add_fetch. MOVW add+8(FP), R0 MOVW ret+16(FP), R1 ADD R0, R1, R0 MOVW R0, ret+16(FP) RET TEXT sync∕atomic·AddInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVD $__tsan_go_atomic64_fetch_add(SB), R1 BL racecallatomic<>(SB) // TSan performed fetch_add, but Go needs add_fetch. MOVD add+8(FP), R0 MOVD ret+16(FP), R1 ADD R0, R1, R0 MOVD R0, ret+16(FP) RET TEXT sync∕atomic·AddUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·AddInt32(SB) TEXT sync∕atomic·AddUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AddInt64(SB) TEXT sync∕atomic·AddUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AddInt64(SB) // CompareAndSwap TEXT sync∕atomic·CompareAndSwapInt32(SB), NOSPLIT, $0-17 GO_ARGS MOVD $__tsan_go_atomic32_compare_exchange(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·CompareAndSwapInt64(SB), NOSPLIT, $0-25 GO_ARGS MOVD $__tsan_go_atomic64_compare_exchange(SB), R1 BL racecallatomic<>(SB) RET TEXT sync∕atomic·CompareAndSwapUint32(SB), NOSPLIT, $0-17 GO_ARGS JMP sync∕atomic·CompareAndSwapInt32(SB) TEXT sync∕atomic·CompareAndSwapUint64(SB), NOSPLIT, $0-25 GO_ARGS JMP sync∕atomic·CompareAndSwapInt64(SB) TEXT sync∕atomic·CompareAndSwapUintptr(SB), NOSPLIT, $0-25 GO_ARGS JMP sync∕atomic·CompareAndSwapInt64(SB) // Common code for atomic operations. Calls R1. TEXT racecallatomic<>(SB), NOSPLIT, $0 MOVD 24(R15), R5 // Address (arg1, after 2xBL). // If we pass an invalid pointer to the TSan runtime, it will cause a // "fatal error: unknown caller pc". So trigger a SEGV here instead. MOVB (R5), R0 MOVD runtime·racearenastart(SB), R0 CMPUBLT R5, R0, racecallatomic_data // Before racearena start? MOVD runtime·racearenaend(SB), R0 CMPUBLT R5, R0, racecallatomic_ok // Before racearena end? racecallatomic_data: MOVD runtime·racedatastart(SB), R0 CMPUBLT R5, R0, racecallatomic_ignore // Before racedata start? MOVD runtime·racedataend(SB), R0 CMPUBGE R5, R0, racecallatomic_ignore // At or after racearena end? racecallatomic_ok: MOVD g_racectx(g), R2 // ThreadState *. MOVD 8(R15), R3 // Caller PC. MOVD R14, R4 // PC. ADD $24, R15, R5 // Arguments. // Tail call fails to restore R15, so use a normal one. BL racecall<>(SB) RET racecallatomic_ignore: // Call __tsan_go_ignore_sync_begin to ignore synchronization during // the atomic op. An attempt to synchronize on the address would cause // a crash. MOVD R1, R6 // Save target function. MOVD R14, R7 // Save PC. MOVD $__tsan_go_ignore_sync_begin(SB), R1 MOVD g_racectx(g), R2 // ThreadState *. BL racecall<>(SB) MOVD R6, R1 // Restore target function. MOVD g_racectx(g), R2 // ThreadState *. MOVD 8(R15), R3 // Caller PC. MOVD R7, R4 // PC. ADD $24, R15, R5 // Arguments. BL racecall<>(SB) MOVD $__tsan_go_ignore_sync_end(SB), R1 MOVD g_racectx(g), R2 // ThreadState *. BL racecall<>(SB) RET // func runtime·racecall(void(*f)(...), ...) // Calls C function f from race runtime and passes up to 4 arguments to it. // The arguments are never heap-object-preserving pointers, so we pretend there // are no arguments. TEXT runtime·racecall(SB), NOSPLIT, $0-0 MOVD fn+0(FP), R1 MOVD arg0+8(FP), R2 MOVD arg1+16(FP), R3 MOVD arg2+24(FP), R4 MOVD arg3+32(FP), R5 JMP racecall<>(SB) // Switches SP to g0 stack and calls R1. Arguments are already set. TEXT racecall<>(SB), NOSPLIT, $0-0 BL runtime·save_g(SB) // Save g for callbacks. MOVD R15, R7 // Save SP. MOVD g_m(g), R8 // R8 = thread. MOVD m_g0(R8), R8 // R8 = g0. CMPBEQ R8, g, call // Already on g0? MOVD (g_sched+gobuf_sp)(R8), R15 // Switch SP to g0. call: SUB $160, R15 // Allocate C frame. BL R1 // Call C code. MOVD R7, R15 // Restore SP. RET // Return to Go. // C->Go callback thunk that allows to call runtime·racesymbolize from C // code. racecall has only switched SP, finish g->g0 switch by setting correct // g. R2 contains command code, R3 contains command-specific context. See // racecallback for command codes. TEXT runtime·racecallbackthunk(SB), NOSPLIT|NOFRAME, $0 STMG R6, R15, 48(R15) // Save non-volatile regs. BL runtime·load_g(SB) // Saved by racecall. CMPBNE R2, $0, rest // raceGetProcCmd? MOVD g_m(g), R2 // R2 = thread. MOVD m_p(R2), R2 // R2 = processor. MVC $8, p_raceprocctx(R2), (R3) // *R3 = ThreadState *. LMG 48(R15), R6, R15 // Restore non-volatile regs. BR R14 // Return to C. rest: MOVD g_m(g), R4 // R4 = current thread. MOVD m_g0(R4), g // Switch to g0. SUB $24, R15 // Allocate Go argument slots. STMG R2, R3, 8(R15) // Fill Go frame. BL runtime·racecallback(SB) // Call Go code. LMG 72(R15), R6, R15 // Restore non-volatile regs. BR R14 // Return to C.