Source file src/runtime/traceback.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"internal/abi"
     9  	"internal/bytealg"
    10  	"internal/goarch"
    11  	"internal/runtime/pprof/label"
    12  	"internal/runtime/sys"
    13  	"internal/stringslite"
    14  	"unsafe"
    15  )
    16  
    17  // The code in this file implements stack trace walking for all architectures.
    18  // The most important fact about a given architecture is whether it uses a link register.
    19  // On systems with link registers, the prologue for a non-leaf function stores the
    20  // incoming value of LR at the bottom of the newly allocated stack frame.
    21  // On systems without link registers (x86), the architecture pushes a return PC during
    22  // the call instruction, so the return PC ends up above the stack frame.
    23  // In this file, the return PC is always called LR, no matter how it was found.
    24  
    25  const usesLR = sys.MinFrameSize > 0
    26  
    27  const (
    28  	// tracebackInnerFrames is the number of innermost frames to print in a
    29  	// stack trace. The total maximum frames is tracebackInnerFrames +
    30  	// tracebackOuterFrames.
    31  	tracebackInnerFrames = 50
    32  
    33  	// tracebackOuterFrames is the number of outermost frames to print in a
    34  	// stack trace.
    35  	tracebackOuterFrames = 50
    36  )
    37  
    38  // unwindFlags control the behavior of various unwinders.
    39  type unwindFlags uint8
    40  
    41  const (
    42  	// unwindPrintErrors indicates that if unwinding encounters an error, it
    43  	// should print a message and stop without throwing. This is used for things
    44  	// like stack printing, where it's better to get incomplete information than
    45  	// to crash. This is also used in situations where everything may not be
    46  	// stopped nicely and the stack walk may not be able to complete, such as
    47  	// during profiling signals or during a crash.
    48  	//
    49  	// If neither unwindPrintErrors or unwindSilentErrors are set, unwinding
    50  	// performs extra consistency checks and throws on any error.
    51  	//
    52  	// Note that there are a small number of fatal situations that will throw
    53  	// regardless of unwindPrintErrors or unwindSilentErrors.
    54  	unwindPrintErrors unwindFlags = 1 << iota
    55  
    56  	// unwindSilentErrors silently ignores errors during unwinding.
    57  	unwindSilentErrors
    58  
    59  	// unwindTrap indicates that the initial PC and SP are from a trap, not a
    60  	// return PC from a call.
    61  	//
    62  	// The unwindTrap flag is updated during unwinding. If set, frame.pc is the
    63  	// address of a faulting instruction instead of the return address of a
    64  	// call. It also means the liveness at pc may not be known.
    65  	//
    66  	// TODO: Distinguish frame.continpc, which is really the stack map PC, from
    67  	// the actual continuation PC, which is computed differently depending on
    68  	// this flag and a few other things.
    69  	unwindTrap
    70  
    71  	// unwindJumpStack indicates that, if the traceback is on a system stack, it
    72  	// should resume tracing at the user stack when the system stack is
    73  	// exhausted.
    74  	unwindJumpStack
    75  )
    76  
    77  // An unwinder iterates the physical stack frames of a Go sack.
    78  //
    79  // Typical use of an unwinder looks like:
    80  //
    81  //	var u unwinder
    82  //	for u.init(gp, 0); u.valid(); u.next() {
    83  //		// ... use frame info in u ...
    84  //	}
    85  //
    86  // Implementation note: This is carefully structured to be pointer-free because
    87  // tracebacks happen in places that disallow write barriers (e.g., signals).
    88  // Even if this is stack-allocated, its pointer-receiver methods don't know that
    89  // their receiver is on the stack, so they still emit write barriers. Here we
    90  // address that by carefully avoiding any pointers in this type. Another
    91  // approach would be to split this into a mutable part that's passed by pointer
    92  // but contains no pointers itself and an immutable part that's passed and
    93  // returned by value and can contain pointers. We could potentially hide that
    94  // we're doing that in trivial methods that are inlined into the caller that has
    95  // the stack allocation, but that's fragile.
    96  type unwinder struct {
    97  	// frame is the current physical stack frame, or all 0s if
    98  	// there is no frame.
    99  	frame stkframe
   100  
   101  	// g is the G who's stack is being unwound. If the
   102  	// unwindJumpStack flag is set and the unwinder jumps stacks,
   103  	// this will be different from the initial G.
   104  	g guintptr
   105  
   106  	// cgoCtxt is the index into g.cgoCtxt of the next frame on the cgo stack.
   107  	// The cgo stack is unwound in tandem with the Go stack as we find marker frames.
   108  	cgoCtxt int
   109  
   110  	// calleeFuncID is the function ID of the caller of the current
   111  	// frame.
   112  	calleeFuncID abi.FuncID
   113  
   114  	// flags are the flags to this unwind. Some of these are updated as we
   115  	// unwind (see the flags documentation).
   116  	flags unwindFlags
   117  }
   118  
   119  // init initializes u to start unwinding gp's stack and positions the
   120  // iterator on gp's innermost frame. gp must not be the current G.
   121  //
   122  // A single unwinder can be reused for multiple unwinds.
   123  func (u *unwinder) init(gp *g, flags unwindFlags) {
   124  	// Implementation note: This starts the iterator on the first frame and we
   125  	// provide a "valid" method. Alternatively, this could start in a "before
   126  	// the first frame" state and "next" could return whether it was able to
   127  	// move to the next frame, but that's both more awkward to use in a "for"
   128  	// loop and is harder to implement because we have to do things differently
   129  	// for the first frame.
   130  	u.initAt(^uintptr(0), ^uintptr(0), ^uintptr(0), gp, flags)
   131  }
   132  
   133  func (u *unwinder) initAt(pc0, sp0, lr0 uintptr, gp *g, flags unwindFlags) {
   134  	// Don't call this "g"; it's too easy get "g" and "gp" confused.
   135  	if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
   136  		// The starting sp has been passed in as a uintptr, and the caller may
   137  		// have other uintptr-typed stack references as well.
   138  		// If during one of the calls that got us here or during one of the
   139  		// callbacks below the stack must be grown, all these uintptr references
   140  		// to the stack will not be updated, and traceback will continue
   141  		// to inspect the old stack memory, which may no longer be valid.
   142  		// Even if all the variables were updated correctly, it is not clear that
   143  		// we want to expose a traceback that begins on one stack and ends
   144  		// on another stack. That could confuse callers quite a bit.
   145  		// Instead, we require that initAt and any other function that
   146  		// accepts an sp for the current goroutine (typically obtained by
   147  		// calling GetCallerSP) must not run on that goroutine's stack but
   148  		// instead on the g0 stack.
   149  		throw("cannot trace user goroutine on its own stack")
   150  	}
   151  
   152  	if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
   153  		if gp.syscallsp != 0 {
   154  			pc0 = gp.syscallpc
   155  			sp0 = gp.syscallsp
   156  			if usesLR {
   157  				lr0 = 0
   158  			}
   159  		} else {
   160  			pc0 = gp.sched.pc
   161  			sp0 = gp.sched.sp
   162  			if usesLR {
   163  				lr0 = gp.sched.lr
   164  			}
   165  		}
   166  	}
   167  
   168  	var frame stkframe
   169  	frame.pc = pc0
   170  	frame.sp = sp0
   171  	if usesLR {
   172  		frame.lr = lr0
   173  	}
   174  
   175  	// If the PC is zero, it's likely a nil function call.
   176  	// Start in the caller's frame.
   177  	if frame.pc == 0 {
   178  		if usesLR {
   179  			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
   180  			frame.lr = 0
   181  		} else {
   182  			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
   183  			frame.sp += goarch.PtrSize
   184  		}
   185  	}
   186  
   187  	// internal/runtime/atomic functions call into kernel helpers on
   188  	// arm < 7. See internal/runtime/atomic/sys_linux_arm.s.
   189  	//
   190  	// Start in the caller's frame.
   191  	if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 {
   192  		// Note that the calls are simple BL without pushing the return
   193  		// address, so we use LR directly.
   194  		//
   195  		// The kernel helpers are frameless leaf functions, so SP and
   196  		// LR are not touched.
   197  		frame.pc = frame.lr
   198  		frame.lr = 0
   199  	}
   200  
   201  	f := findfunc(frame.pc)
   202  	if !f.valid() {
   203  		if flags&unwindSilentErrors == 0 {
   204  			print("runtime: g ", gp.goid, " gp=", gp, ": unknown pc ", hex(frame.pc), "\n")
   205  			tracebackHexdump(gp.stack, &frame, 0)
   206  		}
   207  		if flags&(unwindPrintErrors|unwindSilentErrors) == 0 {
   208  			throw("unknown pc")
   209  		}
   210  		*u = unwinder{}
   211  		return
   212  	}
   213  	frame.fn = f
   214  
   215  	// Populate the unwinder.
   216  	*u = unwinder{
   217  		frame:        frame,
   218  		g:            gp.guintptr(),
   219  		cgoCtxt:      len(gp.cgoCtxt) - 1,
   220  		calleeFuncID: abi.FuncIDNormal,
   221  		flags:        flags,
   222  	}
   223  
   224  	isSyscall := frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp
   225  	u.resolveInternal(true, isSyscall)
   226  }
   227  
   228  func (u *unwinder) valid() bool {
   229  	return u.frame.pc != 0
   230  }
   231  
   232  // resolveInternal fills in u.frame based on u.frame.fn, pc, and sp.
   233  //
   234  // innermost indicates that this is the first resolve on this stack. If
   235  // innermost is set, isSyscall indicates that the PC/SP was retrieved from
   236  // gp.syscall*; this is otherwise ignored.
   237  //
   238  // On entry, u.frame contains:
   239  //   - fn is the running function.
   240  //   - pc is the PC in the running function.
   241  //   - sp is the stack pointer at that program counter.
   242  //   - For the innermost frame on LR machines, lr is the program counter that called fn.
   243  //
   244  // On return, u.frame contains:
   245  //   - fp is the stack pointer of the caller.
   246  //   - lr is the program counter that called fn.
   247  //   - varp, argp, and continpc are populated for the current frame.
   248  //
   249  // If fn is a stack-jumping function, resolveInternal can change the entire
   250  // frame state to follow that stack jump.
   251  //
   252  // This is internal to unwinder.
   253  func (u *unwinder) resolveInternal(innermost, isSyscall bool) {
   254  	frame := &u.frame
   255  	gp := u.g.ptr()
   256  
   257  	f := frame.fn
   258  	if f.pcsp == 0 {
   259  		// No frame information, must be external function, like race support.
   260  		// See golang.org/issue/13568.
   261  		u.finishInternal()
   262  		return
   263  	}
   264  
   265  	// Compute function info flags.
   266  	flag := f.flag
   267  	if f.funcID == abi.FuncID_cgocallback {
   268  		// cgocallback does write SP to switch from the g0 to the curg stack,
   269  		// but it carefully arranges that during the transition BOTH stacks
   270  		// have cgocallback frame valid for unwinding through.
   271  		// So we don't need to exclude it with the other SP-writing functions.
   272  		flag &^= abi.FuncFlagSPWrite
   273  	}
   274  	if isSyscall {
   275  		// Some Syscall functions write to SP, but they do so only after
   276  		// saving the entry PC/SP using entersyscall.
   277  		// Since we are using the entry PC/SP, the later SP write doesn't matter.
   278  		flag &^= abi.FuncFlagSPWrite
   279  	}
   280  
   281  	// Found an actual function.
   282  	// Derive frame pointer.
   283  	if frame.fp == 0 {
   284  		// Jump over system stack transitions. If we're on g0 and there's a user
   285  		// goroutine, try to jump. Otherwise this is a regular call.
   286  		// We also defensively check that this won't switch M's on us,
   287  		// which could happen at critical points in the scheduler.
   288  		// This ensures gp.m doesn't change from a stack jump.
   289  		if u.flags&unwindJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil && gp.m.curg.m == gp.m {
   290  			switch f.funcID {
   291  			case abi.FuncID_morestack:
   292  				// morestack does not return normally -- newstack()
   293  				// gogo's to curg.sched. Match that.
   294  				// This keeps morestack() from showing up in the backtrace,
   295  				// but that makes some sense since it'll never be returned
   296  				// to.
   297  				gp = gp.m.curg
   298  				u.g.set(gp)
   299  				frame.pc = gp.sched.pc
   300  				frame.fn = findfunc(frame.pc)
   301  				f = frame.fn
   302  				flag = f.flag
   303  				frame.lr = gp.sched.lr
   304  				frame.sp = gp.sched.sp
   305  				u.cgoCtxt = len(gp.cgoCtxt) - 1
   306  			case abi.FuncID_systemstack:
   307  				// systemstack returns normally, so just follow the
   308  				// stack transition.
   309  				if usesLR && funcspdelta(f, frame.pc) == 0 {
   310  					// We're at the function prologue and the stack
   311  					// switch hasn't happened, or epilogue where we're
   312  					// about to return. Just unwind normally.
   313  					// Do this only on LR machines because on x86
   314  					// systemstack doesn't have an SP delta (the CALL
   315  					// instruction opens the frame), therefore no way
   316  					// to check.
   317  					flag &^= abi.FuncFlagSPWrite
   318  					break
   319  				}
   320  				gp = gp.m.curg
   321  				u.g.set(gp)
   322  				frame.sp = gp.sched.sp
   323  				u.cgoCtxt = len(gp.cgoCtxt) - 1
   324  				flag &^= abi.FuncFlagSPWrite
   325  			}
   326  		}
   327  		frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc))
   328  		if !usesLR {
   329  			// On x86, call instruction pushes return PC before entering new function.
   330  			frame.fp += goarch.PtrSize
   331  		}
   332  	}
   333  
   334  	// Derive link register.
   335  	if flag&abi.FuncFlagTopFrame != 0 {
   336  		// This function marks the top of the stack. Stop the traceback.
   337  		frame.lr = 0
   338  	} else if flag&abi.FuncFlagSPWrite != 0 && (!innermost || u.flags&(unwindPrintErrors|unwindSilentErrors) != 0) {
   339  		// The function we are in does a write to SP that we don't know
   340  		// how to encode in the spdelta table. Examples include context
   341  		// switch routines like runtime.gogo but also any code that switches
   342  		// to the g0 stack to run host C code.
   343  		// We can't reliably unwind the SP (we might not even be on
   344  		// the stack we think we are), so stop the traceback here.
   345  		//
   346  		// The one exception (encoded in the complex condition above) is that
   347  		// we assume if we're doing a precise traceback, and this is the
   348  		// innermost frame, that the SPWRITE function voluntarily preempted itself on entry
   349  		// during the stack growth check. In that case, the function has
   350  		// not yet had a chance to do any writes to SP and is safe to unwind.
   351  		// isAsyncSafePoint does not allow assembly functions to be async preempted,
   352  		// and preemptPark double-checks that SPWRITE functions are not async preempted.
   353  		// So for GC stack traversal, we can safely ignore SPWRITE for the innermost frame,
   354  		// but farther up the stack we'd better not find any.
   355  		// This is somewhat imprecise because we're just guessing that we're in the stack
   356  		// growth check. It would be better if SPWRITE were encoded in the spdelta
   357  		// table so we would know for sure that we were still in safe code.
   358  		//
   359  		// uSE uPE inn | action
   360  		//  T   _   _  | frame.lr = 0
   361  		//  F   T   _  | frame.lr = 0
   362  		//  F   F   F  | print; panic
   363  		//  F   F   T  | ignore SPWrite
   364  		if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && !innermost {
   365  			println("traceback: unexpected SPWRITE function", funcname(f))
   366  			throw("traceback")
   367  		}
   368  		frame.lr = 0
   369  	} else {
   370  		var lrPtr uintptr
   371  		if usesLR {
   372  			if innermost && frame.sp < frame.fp || frame.lr == 0 {
   373  				lrPtr = frame.sp
   374  				frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
   375  			}
   376  		} else {
   377  			if frame.lr == 0 {
   378  				lrPtr = frame.fp - goarch.PtrSize
   379  				frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
   380  			}
   381  		}
   382  	}
   383  
   384  	frame.varp = frame.fp
   385  	if !usesLR {
   386  		// On x86, call instruction pushes return PC before entering new function.
   387  		frame.varp -= goarch.PtrSize
   388  	}
   389  
   390  	// For architectures with frame pointers, if there's
   391  	// a frame, then there's a saved frame pointer here.
   392  	//
   393  	// NOTE: This code is not as general as it looks.
   394  	// On x86, the ABI is to save the frame pointer word at the
   395  	// top of the stack frame, so we have to back down over it.
   396  	// On arm64, the frame pointer should be at the bottom of
   397  	// the stack (with R29 (aka FP) = RSP), in which case we would
   398  	// not want to do the subtraction here. But we started out without
   399  	// any frame pointer, and when we wanted to add it, we didn't
   400  	// want to break all the assembly doing direct writes to 8(RSP)
   401  	// to set the first parameter to a called function.
   402  	// So we decided to write the FP link *below* the stack pointer
   403  	// (with R29 = RSP - 8 in Go functions).
   404  	// This is technically ABI-compatible but not standard.
   405  	// And it happens to end up mimicking the x86 layout.
   406  	// Other architectures may make different decisions.
   407  	if frame.varp > frame.sp && framepointer_enabled {
   408  		frame.varp -= goarch.PtrSize
   409  	}
   410  
   411  	frame.argp = frame.fp + sys.MinFrameSize
   412  
   413  	// Determine frame's 'continuation PC', where it can continue.
   414  	// Normally this is the return address on the stack, but if sigpanic
   415  	// is immediately below this function on the stack, then the frame
   416  	// stopped executing due to a trap, and frame.pc is probably not
   417  	// a safe point for looking up liveness information. In this panicking case,
   418  	// the function either doesn't return at all (if it has no defers or if the
   419  	// defers do not recover) or it returns from one of the calls to
   420  	// deferproc a second time (if the corresponding deferred func recovers).
   421  	// In the latter case, use a deferreturn call site as the continuation pc.
   422  	frame.continpc = frame.pc
   423  	if u.calleeFuncID == abi.FuncID_sigpanic {
   424  		if frame.fn.deferreturn != 0 {
   425  			frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1
   426  			// Note: this may perhaps keep return variables alive longer than
   427  			// strictly necessary, as we are using "function has a defer statement"
   428  			// as a proxy for "function actually deferred something". It seems
   429  			// to be a minor drawback. (We used to actually look through the
   430  			// gp._defer for a defer corresponding to this function, but that
   431  			// is hard to do with defer records on the stack during a stack copy.)
   432  			// Note: the +1 is to offset the -1 that
   433  			// (*stkframe).getStackMap does to back up a return
   434  			// address make sure the pc is in the CALL instruction.
   435  		} else {
   436  			frame.continpc = 0
   437  		}
   438  	}
   439  }
   440  
   441  func (u *unwinder) next() {
   442  	frame := &u.frame
   443  	f := frame.fn
   444  	gp := u.g.ptr()
   445  
   446  	// Do not unwind past the bottom of the stack.
   447  	if frame.lr == 0 {
   448  		u.finishInternal()
   449  		return
   450  	}
   451  	flr := findfunc(frame.lr)
   452  	if !flr.valid() {
   453  		// This happens if you get a profiling interrupt at just the wrong time.
   454  		// In that context it is okay to stop early.
   455  		// But if no error flags are set, we're doing a garbage collection and must
   456  		// get everything, so crash loudly.
   457  		fail := u.flags&(unwindPrintErrors|unwindSilentErrors) == 0
   458  		doPrint := u.flags&unwindSilentErrors == 0
   459  		if doPrint && gp.m.incgo && f.funcID == abi.FuncID_sigpanic {
   460  			// We can inject sigpanic
   461  			// calls directly into C code,
   462  			// in which case we'll see a C
   463  			// return PC. Don't complain.
   464  			doPrint = false
   465  		}
   466  		if fail || doPrint {
   467  			print("runtime: g ", gp.goid, ": unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
   468  			tracebackHexdump(gp.stack, frame, 0)
   469  		}
   470  		if fail {
   471  			throw("unknown caller pc")
   472  		}
   473  		frame.lr = 0
   474  		u.finishInternal()
   475  		return
   476  	}
   477  
   478  	if frame.pc == frame.lr && frame.sp == frame.fp {
   479  		// If the next frame is identical to the current frame, we cannot make progress.
   480  		print("runtime: traceback stuck. pc=", hex(frame.pc), " sp=", hex(frame.sp), "\n")
   481  		tracebackHexdump(gp.stack, frame, frame.sp)
   482  		throw("traceback stuck")
   483  	}
   484  
   485  	injectedCall := f.funcID == abi.FuncID_sigpanic || f.funcID == abi.FuncID_asyncPreempt || f.funcID == abi.FuncID_debugCallV2
   486  	if injectedCall {
   487  		u.flags |= unwindTrap
   488  	} else {
   489  		u.flags &^= unwindTrap
   490  	}
   491  
   492  	// Unwind to next frame.
   493  	u.calleeFuncID = f.funcID
   494  	frame.fn = flr
   495  	frame.pc = frame.lr
   496  	frame.lr = 0
   497  	frame.sp = frame.fp
   498  	frame.fp = 0
   499  
   500  	// On link register architectures, sighandler saves the LR on stack
   501  	// before faking a call.
   502  	if usesLR && injectedCall {
   503  		x := *(*uintptr)(unsafe.Pointer(frame.sp))
   504  		frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign)
   505  		f = findfunc(frame.pc)
   506  		frame.fn = f
   507  		if !f.valid() {
   508  			frame.pc = x
   509  		} else if funcspdelta(f, frame.pc) == 0 {
   510  			frame.lr = x
   511  		}
   512  	}
   513  
   514  	u.resolveInternal(false, false)
   515  }
   516  
   517  // finishInternal is an unwinder-internal helper called after the stack has been
   518  // exhausted. It sets the unwinder to an invalid state and checks that it
   519  // successfully unwound the entire stack.
   520  func (u *unwinder) finishInternal() {
   521  	u.frame.pc = 0
   522  
   523  	// Note that panic != nil is okay here: there can be leftover panics,
   524  	// because the defers on the panic stack do not nest in frame order as
   525  	// they do on the defer stack. If you have:
   526  	//
   527  	//	frame 1 defers d1
   528  	//	frame 2 defers d2
   529  	//	frame 3 defers d3
   530  	//	frame 4 panics
   531  	//	frame 4's panic starts running defers
   532  	//	frame 5, running d3, defers d4
   533  	//	frame 5 panics
   534  	//	frame 5's panic starts running defers
   535  	//	frame 6, running d4, garbage collects
   536  	//	frame 6, running d2, garbage collects
   537  	//
   538  	// During the execution of d4, the panic stack is d4 -> d3, which
   539  	// is nested properly, and we'll treat frame 3 as resumable, because we
   540  	// can find d3. (And in fact frame 3 is resumable. If d4 recovers
   541  	// and frame 5 continues running, d3, d3 can recover and we'll
   542  	// resume execution in (returning from) frame 3.)
   543  	//
   544  	// During the execution of d2, however, the panic stack is d2 -> d3,
   545  	// which is inverted. The scan will match d2 to frame 2 but having
   546  	// d2 on the stack until then means it will not match d3 to frame 3.
   547  	// This is okay: if we're running d2, then all the defers after d2 have
   548  	// completed and their corresponding frames are dead. Not finding d3
   549  	// for frame 3 means we'll set frame 3's continpc == 0, which is correct
   550  	// (frame 3 is dead). At the end of the walk the panic stack can thus
   551  	// contain defers (d3 in this case) for dead frames. The inversion here
   552  	// always indicates a dead frame, and the effect of the inversion on the
   553  	// scan is to hide those dead frames, so the scan is still okay:
   554  	// what's left on the panic stack are exactly (and only) the dead frames.
   555  	//
   556  	// We require callback != nil here because only when callback != nil
   557  	// do we know that gentraceback is being called in a "must be correct"
   558  	// context as opposed to a "best effort" context. The tracebacks with
   559  	// callbacks only happen when everything is stopped nicely.
   560  	// At other times, such as when gathering a stack for a profiling signal
   561  	// or when printing a traceback during a crash, everything may not be
   562  	// stopped nicely, and the stack walk may not be able to complete.
   563  	gp := u.g.ptr()
   564  	if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && u.frame.sp != gp.stktopsp {
   565  		print("runtime: g", gp.goid, ": frame.sp=", hex(u.frame.sp), " top=", hex(gp.stktopsp), "\n")
   566  		print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "\n")
   567  		throw("traceback did not unwind completely")
   568  	}
   569  }
   570  
   571  // symPC returns the PC that should be used for symbolizing the current frame.
   572  // Specifically, this is the PC of the last instruction executed in this frame.
   573  //
   574  // If this frame did a normal call, then frame.pc is a return PC, so this will
   575  // return frame.pc-1, which points into the CALL instruction. If the frame was
   576  // interrupted by a signal (e.g., profiler, segv, etc) then frame.pc is for the
   577  // trapped instruction, so this returns frame.pc. See issue #34123. Finally,
   578  // frame.pc can be at function entry when the frame is initialized without
   579  // actually running code, like in runtime.mstart, in which case this returns
   580  // frame.pc because that's the best we can do.
   581  func (u *unwinder) symPC() uintptr {
   582  	if u.flags&unwindTrap == 0 && u.frame.pc > u.frame.fn.entry() {
   583  		// Regular call.
   584  		return u.frame.pc - 1
   585  	}
   586  	// Trapping instruction or we're at the function entry point.
   587  	return u.frame.pc
   588  }
   589  
   590  // cgoCallers populates pcBuf with the cgo callers of the current frame using
   591  // the registered cgo unwinder. It returns the number of PCs written to pcBuf.
   592  // If the current frame is not a cgo frame or if there's no registered cgo
   593  // unwinder, it returns 0.
   594  func (u *unwinder) cgoCallers(pcBuf []uintptr) int {
   595  	if !cgoTracebackAvailable() || u.frame.fn.funcID != abi.FuncID_cgocallback || u.cgoCtxt < 0 {
   596  		// We don't have a cgo unwinder (typical case), or we do but we're not
   597  		// in a cgo frame or we're out of cgo context.
   598  		return 0
   599  	}
   600  
   601  	ctxt := u.g.ptr().cgoCtxt[u.cgoCtxt]
   602  	u.cgoCtxt--
   603  	cgoContextPCs(ctxt, pcBuf)
   604  	for i, pc := range pcBuf {
   605  		if pc == 0 {
   606  			return i
   607  		}
   608  	}
   609  	return len(pcBuf)
   610  }
   611  
   612  // tracebackPCs populates pcBuf with the return addresses for each frame from u
   613  // and returns the number of PCs written to pcBuf. The returned PCs correspond
   614  // to "logical frames" rather than "physical frames"; that is if A is inlined
   615  // into B, this will still return a PCs for both A and B. This also includes PCs
   616  // generated by the cgo unwinder, if one is registered.
   617  //
   618  // If skip != 0, this skips this many logical frames.
   619  //
   620  // Callers should set the unwindSilentErrors flag on u.
   621  func tracebackPCs(u *unwinder, skip int, pcBuf []uintptr) int {
   622  	var cgoBuf [32]uintptr
   623  	n := 0
   624  	for ; n < len(pcBuf) && u.valid(); u.next() {
   625  		f := u.frame.fn
   626  		cgoN := u.cgoCallers(cgoBuf[:])
   627  
   628  		// TODO: Why does &u.cache cause u to escape? (Same in traceback2)
   629  		for iu, uf := newInlineUnwinder(f, u.symPC()); n < len(pcBuf) && uf.valid(); uf = iu.next(uf) {
   630  			sf := iu.srcFunc(uf)
   631  			if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(u.calleeFuncID) {
   632  				// ignore wrappers
   633  			} else if skip > 0 {
   634  				skip--
   635  			} else {
   636  				// Callers expect the pc buffer to contain return addresses
   637  				// and do the -1 themselves, so we add 1 to the call pc to
   638  				// create a "return pc". Since there is no actual call, here
   639  				// "return pc" just means a pc you subtract 1 from to get
   640  				// the pc of the "call". The actual no-op we insert may or
   641  				// may not be 1 byte.
   642  				pcBuf[n] = uf.pc + 1
   643  				n++
   644  			}
   645  			u.calleeFuncID = sf.funcID
   646  		}
   647  		// Add cgo frames (if we're done skipping over the requested number of
   648  		// Go frames).
   649  		if skip == 0 {
   650  			n += copy(pcBuf[n:], cgoBuf[:cgoN])
   651  		}
   652  	}
   653  	return n
   654  }
   655  
   656  // printArgs prints function arguments in traceback.
   657  func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) {
   658  	p := (*[abi.TraceArgsMaxLen]uint8)(funcdata(f, abi.FUNCDATA_ArgInfo))
   659  	if p == nil {
   660  		return
   661  	}
   662  
   663  	liveInfo := funcdata(f, abi.FUNCDATA_ArgLiveInfo)
   664  	liveIdx := pcdatavalue(f, abi.PCDATA_ArgLiveIndex, pc)
   665  	startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live)
   666  	if liveInfo != nil {
   667  		startOffset = *(*uint8)(liveInfo)
   668  	}
   669  
   670  	isLive := func(off, slotIdx uint8) bool {
   671  		if liveInfo == nil || liveIdx <= 0 {
   672  			return true // no liveness info, always live
   673  		}
   674  		if off < startOffset {
   675  			return true
   676  		}
   677  		bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8)))
   678  		return bits&(1<<(slotIdx%8)) != 0
   679  	}
   680  
   681  	print1 := func(off, sz, slotIdx uint8) {
   682  		x := readUnaligned64(add(argp, uintptr(off)))
   683  		// mask out irrelevant bits
   684  		if sz < 8 {
   685  			shift := 64 - sz*8
   686  			if goarch.BigEndian {
   687  				x = x >> shift
   688  			} else {
   689  				x = x << shift >> shift
   690  			}
   691  		}
   692  		print(hex(x))
   693  		if !isLive(off, slotIdx) {
   694  			print("?")
   695  		}
   696  	}
   697  
   698  	start := true
   699  	printcomma := func() {
   700  		if !start {
   701  			print(", ")
   702  		}
   703  	}
   704  	pi := 0
   705  	slotIdx := uint8(0) // register arg spill slot index
   706  printloop:
   707  	for {
   708  		o := p[pi]
   709  		pi++
   710  		switch o {
   711  		case abi.TraceArgsEndSeq:
   712  			break printloop
   713  		case abi.TraceArgsStartAgg:
   714  			printcomma()
   715  			print("{")
   716  			start = true
   717  			continue
   718  		case abi.TraceArgsEndAgg:
   719  			print("}")
   720  		case abi.TraceArgsDotdotdot:
   721  			printcomma()
   722  			print("...")
   723  		case abi.TraceArgsOffsetTooLarge:
   724  			printcomma()
   725  			print("_")
   726  		default:
   727  			printcomma()
   728  			sz := p[pi]
   729  			pi++
   730  			print1(o, sz, slotIdx)
   731  			if o >= startOffset {
   732  				slotIdx++
   733  			}
   734  		}
   735  		start = false
   736  	}
   737  }
   738  
   739  // funcNamePiecesForPrint returns the function name for printing to the user.
   740  // It returns three pieces so it doesn't need an allocation for string
   741  // concatenation.
   742  func funcNamePiecesForPrint(name string) (string, string, string) {
   743  	// Replace the shape name in generic function with "...".
   744  	i := bytealg.IndexByteString(name, '[')
   745  	if i < 0 {
   746  		return name, "", ""
   747  	}
   748  	j := len(name) - 1
   749  	for name[j] != ']' {
   750  		j--
   751  	}
   752  	if j <= i {
   753  		return name, "", ""
   754  	}
   755  	return name[:i], "[...]", name[j+1:]
   756  }
   757  
   758  // funcNameForPrint returns the function name for printing to the user.
   759  func funcNameForPrint(name string) string {
   760  	a, b, c := funcNamePiecesForPrint(name)
   761  	return a + b + c
   762  }
   763  
   764  // printFuncName prints a function name. name is the function name in
   765  // the binary's func data table.
   766  func printFuncName(name string) {
   767  	if name == "runtime.gopanic" {
   768  		print("panic")
   769  		return
   770  	}
   771  	a, b, c := funcNamePiecesForPrint(name)
   772  	print(a, b, c)
   773  }
   774  
   775  func printcreatedby(gp *g) {
   776  	// Show what created goroutine, except main goroutine (goid 1).
   777  	pc := gp.gopc
   778  	f := findfunc(pc)
   779  	if f.valid() && showframe(f.srcFunc(), gp, false, abi.FuncIDNormal) && gp.goid != 1 {
   780  		printcreatedby1(f, pc, gp.parentGoid)
   781  	}
   782  }
   783  
   784  func printcreatedby1(f funcInfo, pc uintptr, goid uint64) {
   785  	print("created by ")
   786  	printFuncName(funcname(f))
   787  	if goid != 0 {
   788  		print(" in goroutine ", goid)
   789  	}
   790  	print("\n")
   791  	tracepc := pc // back up to CALL instruction for funcline.
   792  	if pc > f.entry() {
   793  		tracepc -= sys.PCQuantum
   794  	}
   795  	file, line := funcline(f, tracepc)
   796  	print("\t", file, ":", line)
   797  	if pc > f.entry() {
   798  		print(" +", hex(pc-f.entry()))
   799  	}
   800  	print("\n")
   801  }
   802  
   803  func traceback(pc, sp, lr uintptr, gp *g) {
   804  	traceback1(pc, sp, lr, gp, 0)
   805  }
   806  
   807  // tracebacktrap is like traceback but expects that the PC and SP were obtained
   808  // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or GetCallerPC/GetCallerSP.
   809  // Because they are from a trap instead of from a saved pair,
   810  // the initial PC must not be rewound to the previous instruction.
   811  // (All the saved pairs record a PC that is a return address, so we
   812  // rewind it into the CALL instruction.)
   813  // If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
   814  // the pc/sp/lr passed in.
   815  func tracebacktrap(pc, sp, lr uintptr, gp *g) {
   816  	if gp.m.libcallsp != 0 {
   817  		// We're in C code somewhere, traceback from the saved position.
   818  		traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
   819  		return
   820  	}
   821  	traceback1(pc, sp, lr, gp, unwindTrap)
   822  }
   823  
   824  func traceback1(pc, sp, lr uintptr, gp *g, flags unwindFlags) {
   825  	// If the goroutine is in cgo, and we have a cgo traceback, print that.
   826  	if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
   827  		// Lock cgoCallers so that a signal handler won't
   828  		// change it, copy the array, reset it, unlock it.
   829  		// We are locked to the thread and are not running
   830  		// concurrently with a signal handler.
   831  		// We just have to stop a signal handler from interrupting
   832  		// in the middle of our copy.
   833  		gp.m.cgoCallersUse.Store(1)
   834  		cgoCallers := *gp.m.cgoCallers
   835  		gp.m.cgoCallers[0] = 0
   836  		gp.m.cgoCallersUse.Store(0)
   837  
   838  		printCgoTraceback(&cgoCallers)
   839  	}
   840  
   841  	if readgstatus(gp)&^_Gscan == _Gsyscall {
   842  		// Override registers if blocked in system call.
   843  		pc = gp.syscallpc
   844  		sp = gp.syscallsp
   845  		flags &^= unwindTrap
   846  	}
   847  	if gp.m != nil && gp.m.vdsoSP != 0 {
   848  		// Override registers if running in VDSO. This comes after the
   849  		// _Gsyscall check to cover VDSO calls after entersyscall.
   850  		pc = gp.m.vdsoPC
   851  		sp = gp.m.vdsoSP
   852  		flags &^= unwindTrap
   853  	}
   854  
   855  	// Print traceback.
   856  	//
   857  	// We print the first tracebackInnerFrames frames, and the last
   858  	// tracebackOuterFrames frames. There are many possible approaches to this.
   859  	// There are various complications to this:
   860  	//
   861  	// - We'd prefer to walk the stack once because in really bad situations
   862  	//   traceback may crash (and we want as much output as possible) or the stack
   863  	//   may be changing.
   864  	//
   865  	// - Each physical frame can represent several logical frames, so we might
   866  	//   have to pause in the middle of a physical frame and pick up in the middle
   867  	//   of a physical frame.
   868  	//
   869  	// - The cgo symbolizer can expand a cgo PC to more than one logical frame,
   870  	//   and involves juggling state on the C side that we don't manage. Since its
   871  	//   expansion state is managed on the C side, we can't capture the expansion
   872  	//   state part way through, and because the output strings are managed on the
   873  	//   C side, we can't capture the output. Thus, our only choice is to replay a
   874  	//   whole expansion, potentially discarding some of it.
   875  	//
   876  	// Rejected approaches:
   877  	//
   878  	// - Do two passes where the first pass just counts and the second pass does
   879  	//   all the printing. This is undesirable if the stack is corrupted or changing
   880  	//   because we won't see a partial stack if we panic.
   881  	//
   882  	// - Keep a ring buffer of the last N logical frames and use this to print
   883  	//   the bottom frames once we reach the end of the stack. This works, but
   884  	//   requires keeping a surprising amount of state on the stack, and we have
   885  	//   to run the cgo symbolizer twice—once to count frames, and a second to
   886  	//   print them—since we can't retain the strings it returns.
   887  	//
   888  	// Instead, we print the outer frames, and if we reach that limit, we clone
   889  	// the unwinder, count the remaining frames, and then skip forward and
   890  	// finish printing from the clone. This makes two passes over the outer part
   891  	// of the stack, but the single pass over the inner part ensures that's
   892  	// printed immediately and not revisited. It keeps minimal state on the
   893  	// stack. And through a combination of skip counts and limits, we can do all
   894  	// of the steps we need with a single traceback printer implementation.
   895  	//
   896  	// We could be more lax about exactly how many frames we print, for example
   897  	// always stopping and resuming on physical frame boundaries, or at least
   898  	// cgo expansion boundaries. It's not clear that's much simpler.
   899  	flags |= unwindPrintErrors
   900  	var u unwinder
   901  	tracebackWithRuntime := func(showRuntime bool) int {
   902  		const maxInt int = 0x7fffffff
   903  		u.initAt(pc, sp, lr, gp, flags)
   904  		n, lastN := traceback2(&u, showRuntime, 0, tracebackInnerFrames)
   905  		if n < tracebackInnerFrames {
   906  			// We printed the whole stack.
   907  			return n
   908  		}
   909  		// Clone the unwinder and figure out how many frames are left. This
   910  		// count will include any logical frames already printed for u's current
   911  		// physical frame.
   912  		u2 := u
   913  		remaining, _ := traceback2(&u, showRuntime, maxInt, 0)
   914  		elide := remaining - lastN - tracebackOuterFrames
   915  		if elide > 0 {
   916  			print("...", elide, " frames elided...\n")
   917  			traceback2(&u2, showRuntime, lastN+elide, tracebackOuterFrames)
   918  		} else if elide <= 0 {
   919  			// There are tracebackOuterFrames or fewer frames left to print.
   920  			// Just print the rest of the stack.
   921  			traceback2(&u2, showRuntime, lastN, tracebackOuterFrames)
   922  		}
   923  		return n
   924  	}
   925  	// By default, omits runtime frames. If that means we print nothing at all,
   926  	// repeat forcing all frames printed.
   927  	if tracebackWithRuntime(false) == 0 {
   928  		tracebackWithRuntime(true)
   929  	}
   930  	printcreatedby(gp)
   931  
   932  	if gp.ancestors == nil {
   933  		return
   934  	}
   935  	for _, ancestor := range *gp.ancestors {
   936  		printAncestorTraceback(ancestor)
   937  	}
   938  }
   939  
   940  // traceback2 prints a stack trace starting at u. It skips the first "skip"
   941  // logical frames, after which it prints at most "max" logical frames. It
   942  // returns n, which is the number of logical frames skipped and printed, and
   943  // lastN, which is the number of logical frames skipped or printed just in the
   944  // physical frame that u references.
   945  func traceback2(u *unwinder, showRuntime bool, skip, max int) (n, lastN int) {
   946  	// commitFrame commits to a logical frame and returns whether this frame
   947  	// should be printed and whether iteration should stop.
   948  	commitFrame := func() (pr, stop bool) {
   949  		if skip == 0 && max == 0 {
   950  			// Stop
   951  			return false, true
   952  		}
   953  		n++
   954  		lastN++
   955  		if skip > 0 {
   956  			// Skip
   957  			skip--
   958  			return false, false
   959  		}
   960  		// Print
   961  		max--
   962  		return true, false
   963  	}
   964  
   965  	gp := u.g.ptr()
   966  	level, _, _ := gotraceback()
   967  	var cgoBuf [32]uintptr
   968  	for ; u.valid(); u.next() {
   969  		lastN = 0
   970  		f := u.frame.fn
   971  		for iu, uf := newInlineUnwinder(f, u.symPC()); uf.valid(); uf = iu.next(uf) {
   972  			sf := iu.srcFunc(uf)
   973  			callee := u.calleeFuncID
   974  			u.calleeFuncID = sf.funcID
   975  			if !(showRuntime || showframe(sf, gp, n == 0, callee)) {
   976  				continue
   977  			}
   978  
   979  			if pr, stop := commitFrame(); stop {
   980  				return
   981  			} else if !pr {
   982  				continue
   983  			}
   984  
   985  			name := sf.name()
   986  			file, line := iu.fileLine(uf)
   987  			// Print during crash.
   988  			//	main(0x1, 0x2, 0x3)
   989  			//		/home/rsc/go/src/runtime/x.go:23 +0xf
   990  			//
   991  			printFuncName(name)
   992  			print("(")
   993  			if iu.isInlined(uf) {
   994  				print("...")
   995  			} else {
   996  				argp := unsafe.Pointer(u.frame.argp)
   997  				printArgs(f, argp, u.symPC())
   998  			}
   999  			print(")\n")
  1000  			print("\t", file, ":", line)
  1001  			if !iu.isInlined(uf) {
  1002  				if u.frame.pc > f.entry() {
  1003  					print(" +", hex(u.frame.pc-f.entry()))
  1004  				}
  1005  				if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
  1006  					print(" fp=", hex(u.frame.fp), " sp=", hex(u.frame.sp), " pc=", hex(u.frame.pc))
  1007  				}
  1008  			}
  1009  			print("\n")
  1010  		}
  1011  
  1012  		// Print cgo frames.
  1013  		if cgoN := u.cgoCallers(cgoBuf[:]); cgoN > 0 {
  1014  			var arg cgoSymbolizerArg
  1015  			anySymbolized := false
  1016  			stop := false
  1017  			for _, pc := range cgoBuf[:cgoN] {
  1018  				if !cgoSymbolizerAvailable() {
  1019  					if pr, stop := commitFrame(); stop {
  1020  						break
  1021  					} else if pr {
  1022  						print("non-Go function at pc=", hex(pc), "\n")
  1023  					}
  1024  				} else {
  1025  					stop = printOneCgoTraceback(pc, commitFrame, &arg)
  1026  					anySymbolized = true
  1027  					if stop {
  1028  						break
  1029  					}
  1030  				}
  1031  			}
  1032  			if anySymbolized {
  1033  				// Free symbolization state.
  1034  				arg.pc = 0
  1035  				callCgoSymbolizer(&arg)
  1036  			}
  1037  			if stop {
  1038  				return
  1039  			}
  1040  		}
  1041  	}
  1042  	return n, 0
  1043  }
  1044  
  1045  // printAncestorTraceback prints the traceback of the given ancestor.
  1046  // TODO: Unify this with gentraceback and CallersFrames.
  1047  func printAncestorTraceback(ancestor ancestorInfo) {
  1048  	print("[originating from goroutine ", ancestor.goid, "]:\n")
  1049  	for fidx, pc := range ancestor.pcs {
  1050  		f := findfunc(pc) // f previously validated
  1051  		if showfuncinfo(f.srcFunc(), fidx == 0, abi.FuncIDNormal) {
  1052  			printAncestorTracebackFuncInfo(f, pc)
  1053  		}
  1054  	}
  1055  	if len(ancestor.pcs) == tracebackInnerFrames {
  1056  		print("...additional frames elided...\n")
  1057  	}
  1058  	// Show what created goroutine, except main goroutine (goid 1).
  1059  	f := findfunc(ancestor.gopc)
  1060  	if f.valid() && showfuncinfo(f.srcFunc(), false, abi.FuncIDNormal) && ancestor.goid != 1 {
  1061  		// In ancestor mode, we'll already print the goroutine ancestor.
  1062  		// Pass 0 for the goid parameter so we don't print it again.
  1063  		printcreatedby1(f, ancestor.gopc, 0)
  1064  	}
  1065  }
  1066  
  1067  // printAncestorTracebackFuncInfo prints the given function info at a given pc
  1068  // within an ancestor traceback. The precision of this info is reduced
  1069  // due to only have access to the pcs at the time of the caller
  1070  // goroutine being created.
  1071  func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
  1072  	u, uf := newInlineUnwinder(f, pc)
  1073  	file, line := u.fileLine(uf)
  1074  	printFuncName(u.srcFunc(uf).name())
  1075  	print("(...)\n")
  1076  	print("\t", file, ":", line)
  1077  	if pc > f.entry() {
  1078  		print(" +", hex(pc-f.entry()))
  1079  	}
  1080  	print("\n")
  1081  }
  1082  
  1083  // callers should be an internal detail,
  1084  // (and is almost identical to Callers),
  1085  // but widely used packages access it using linkname.
  1086  // Notable members of the hall of shame include:
  1087  //   - github.com/phuslu/log
  1088  //
  1089  // Do not remove or change the type signature.
  1090  // See go.dev/issue/67401.
  1091  //
  1092  //go:linkname callers
  1093  func callers(skip int, pcbuf []uintptr) int {
  1094  	sp := sys.GetCallerSP()
  1095  	pc := sys.GetCallerPC()
  1096  	gp := getg()
  1097  	var n int
  1098  	systemstack(func() {
  1099  		var u unwinder
  1100  		u.initAt(pc, sp, 0, gp, unwindSilentErrors)
  1101  		n = tracebackPCs(&u, skip, pcbuf)
  1102  	})
  1103  	return n
  1104  }
  1105  
  1106  func gcallers(gp *g, skip int, pcbuf []uintptr) int {
  1107  	var u unwinder
  1108  	u.init(gp, unwindSilentErrors)
  1109  	return tracebackPCs(&u, skip, pcbuf)
  1110  }
  1111  
  1112  // showframe reports whether the frame with the given characteristics should
  1113  // be printed during a traceback.
  1114  func showframe(sf srcFunc, gp *g, firstFrame bool, calleeID abi.FuncID) bool {
  1115  	mp := getg().m
  1116  	if mp.throwing >= throwTypeRuntime && gp != nil && (gp == mp.curg || gp == mp.caughtsig.ptr()) {
  1117  		return true
  1118  	}
  1119  	return showfuncinfo(sf, firstFrame, calleeID)
  1120  }
  1121  
  1122  // showfuncinfo reports whether a function with the given characteristics should
  1123  // be printed during a traceback.
  1124  func showfuncinfo(sf srcFunc, firstFrame bool, calleeID abi.FuncID) bool {
  1125  	level, _, _ := gotraceback()
  1126  	if level > 1 {
  1127  		// Show all frames.
  1128  		return true
  1129  	}
  1130  
  1131  	if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(calleeID) {
  1132  		return false
  1133  	}
  1134  
  1135  	// Always show runtime.runFinalizers and runtime.runCleanups as
  1136  	// context that this goroutine is running finalizers or cleanups,
  1137  	// otherwise there is no obvious indicator.
  1138  	//
  1139  	// TODO(prattmic): A more general approach would be to always show the
  1140  	// outermost frame (besides runtime.goexit), even if it is a runtime.
  1141  	// Hiding the outermost frame allows the apparent outermost frame to
  1142  	// change across different traces, which seems impossible.
  1143  	//
  1144  	// Unfortunately, implementing this requires looking ahead at the next
  1145  	// frame, which goes against traceback's incremental approach (see big
  1146  	// comment in traceback1).
  1147  	if sf.funcID == abi.FuncID_runFinalizers || sf.funcID == abi.FuncID_runCleanups {
  1148  		return true
  1149  	}
  1150  
  1151  	name := sf.name()
  1152  
  1153  	// Special case: always show runtime.gopanic frame
  1154  	// in the middle of a stack trace, so that we can
  1155  	// see the boundary between ordinary code and
  1156  	// panic-induced deferred code.
  1157  	// See golang.org/issue/5832.
  1158  	if name == "runtime.gopanic" && !firstFrame {
  1159  		return true
  1160  	}
  1161  
  1162  	return bytealg.IndexByteString(name, '.') >= 0 && (!stringslite.HasPrefix(name, "runtime.") || isExportedRuntime(name))
  1163  }
  1164  
  1165  // isExportedRuntime reports whether name is an exported runtime function.
  1166  // It is only for runtime functions, so ASCII A-Z is fine.
  1167  func isExportedRuntime(name string) bool {
  1168  	// Check and remove package qualifier.
  1169  	name, found := stringslite.CutPrefix(name, "runtime.")
  1170  	if !found {
  1171  		return false
  1172  	}
  1173  	rcvr := ""
  1174  
  1175  	// Extract receiver type, if any.
  1176  	// For example, runtime.(*Func).Entry
  1177  	i := len(name) - 1
  1178  	for i >= 0 && name[i] != '.' {
  1179  		i--
  1180  	}
  1181  	if i >= 0 {
  1182  		rcvr = name[:i]
  1183  		name = name[i+1:]
  1184  		// Remove parentheses and star for pointer receivers.
  1185  		if len(rcvr) >= 3 && rcvr[0] == '(' && rcvr[1] == '*' && rcvr[len(rcvr)-1] == ')' {
  1186  			rcvr = rcvr[2 : len(rcvr)-1]
  1187  		}
  1188  	}
  1189  
  1190  	// Exported functions and exported methods on exported types.
  1191  	return len(name) > 0 && 'A' <= name[0] && name[0] <= 'Z' && (len(rcvr) == 0 || 'A' <= rcvr[0] && rcvr[0] <= 'Z')
  1192  }
  1193  
  1194  // elideWrapperCalling reports whether a wrapper function that called
  1195  // function id should be elided from stack traces.
  1196  func elideWrapperCalling(id abi.FuncID) bool {
  1197  	// If the wrapper called a panic function instead of the
  1198  	// wrapped function, we want to include it in stacks.
  1199  	return !(id == abi.FuncID_gopanic || id == abi.FuncID_sigpanic || id == abi.FuncID_panicwrap)
  1200  }
  1201  
  1202  var gStatusStrings = [...]string{
  1203  	_Gidle:      "idle",
  1204  	_Grunnable:  "runnable",
  1205  	_Grunning:   "running",
  1206  	_Gsyscall:   "syscall",
  1207  	_Gwaiting:   "waiting",
  1208  	_Gdead:      "dead",
  1209  	_Gcopystack: "copystack",
  1210  	_Gleaked:    "leaked",
  1211  	_Gpreempted: "preempted",
  1212  	_Gdeadextra: "waiting for cgo callback",
  1213  }
  1214  
  1215  func goroutineheader(gp *g) {
  1216  	level, _, _ := gotraceback()
  1217  
  1218  	gpstatus := readgstatus(gp)
  1219  
  1220  	isScan := gpstatus&_Gscan != 0
  1221  	gpstatus &^= _Gscan // drop the scan bit
  1222  
  1223  	// Basic string status
  1224  	var status string
  1225  	if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
  1226  		status = gStatusStrings[gpstatus]
  1227  	} else {
  1228  		status = "???"
  1229  	}
  1230  
  1231  	// Override.
  1232  	if (gpstatus == _Gwaiting || gpstatus == _Gleaked) && gp.waitreason != waitReasonZero {
  1233  		status = gp.waitreason.String()
  1234  	}
  1235  
  1236  	// approx time the G is blocked, in minutes
  1237  	var waitfor int64
  1238  	if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
  1239  		waitfor = (nanotime() - gp.waitsince) / 60e9
  1240  	}
  1241  	print("goroutine ", gp.goid)
  1242  	if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
  1243  		print(" gp=", gp)
  1244  		if gp.m != nil {
  1245  			print(" m=", gp.m.id, " mp=", gp.m)
  1246  		} else {
  1247  			print(" m=nil")
  1248  		}
  1249  	}
  1250  	print(" [", status)
  1251  	if gpstatus == _Gleaked {
  1252  		print(" (leaked)")
  1253  	}
  1254  	if isScan {
  1255  		print(" (scan)")
  1256  	}
  1257  	if bubble := gp.bubble; bubble != nil &&
  1258  		gpstatus == _Gwaiting &&
  1259  		gp.waitreason.isIdleInSynctest() &&
  1260  		!stringslite.HasSuffix(status, "(durable)") {
  1261  		// If this isn't a status where the name includes a (durable)
  1262  		// suffix to distinguish it from the non-durable form, add it here.
  1263  		print(" (durable)")
  1264  	}
  1265  	if waitfor >= 1 {
  1266  		print(", ", waitfor, " minutes")
  1267  	}
  1268  	if gp.lockedm != 0 {
  1269  		print(", locked to thread")
  1270  	}
  1271  	if bubble := gp.bubble; bubble != nil {
  1272  		print(", synctest bubble ", bubble.id)
  1273  	}
  1274  	if gp.labels != nil && debug.tracebacklabels.Load() == 1 {
  1275  		labels := (*label.Set)(gp.labels).List
  1276  		if len(labels) > 0 {
  1277  			print(" labels:{")
  1278  			for i, kv := range labels {
  1279  				print(quoted(kv.Key), ": ", quoted(kv.Value))
  1280  				if i < len(labels)-1 {
  1281  					print(", ")
  1282  				}
  1283  			}
  1284  			print("}")
  1285  		}
  1286  	}
  1287  	print("]:\n")
  1288  }
  1289  
  1290  func tracebackothers(me *g) {
  1291  	tracebacksomeothers(me, func(*g) bool { return true })
  1292  }
  1293  
  1294  func tracebacksomeothers(me *g, showf func(*g) bool) {
  1295  	level, _, _ := gotraceback()
  1296  
  1297  	// Show the current goroutine first, if we haven't already.
  1298  	curgp := getg().m.curg
  1299  	if curgp != nil && curgp != me {
  1300  		print("\n")
  1301  		goroutineheader(curgp)
  1302  		traceback(^uintptr(0), ^uintptr(0), 0, curgp)
  1303  	}
  1304  
  1305  	// We can't call locking forEachG here because this may be during fatal
  1306  	// throw/panic, where locking could be out-of-order or a direct
  1307  	// deadlock.
  1308  	//
  1309  	// Instead, use forEachGRace, which requires no locking. We don't lock
  1310  	// against concurrent creation of new Gs, but even with allglock we may
  1311  	// miss Gs created after this loop.
  1312  	forEachGRace(func(gp *g) {
  1313  		if gp == me || gp == curgp {
  1314  			return
  1315  		}
  1316  		if status := readgstatus(gp); status == _Gdead || status == _Gdeadextra {
  1317  			return
  1318  		}
  1319  		if !showf(gp) {
  1320  			return
  1321  		}
  1322  		if isSystemGoroutine(gp, false) && level < 2 {
  1323  			return
  1324  		}
  1325  		print("\n")
  1326  		goroutineheader(gp)
  1327  		// Note: gp.m == getg().m occurs when tracebackothers is called
  1328  		// from a signal handler initiated during a systemstack call.
  1329  		// The original G is still in the running state, and we want to
  1330  		// print its stack.
  1331  		//
  1332  		// There's a small window of time in exitsyscall where a goroutine could be
  1333  		// in _Grunning as it's exiting a syscall. This could be the case even if the
  1334  		// world is stopped or frozen.
  1335  		//
  1336  		// This is OK because the goroutine will not exit the syscall while the world
  1337  		// is stopped or frozen. This is also why it's safe to check syscallsp here,
  1338  		// and safe to take the goroutine's stack trace. The syscall path mutates
  1339  		// syscallsp only just before exiting the syscall.
  1340  		if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning && gp.syscallsp == 0 {
  1341  			print("\tgoroutine running on other thread; stack unavailable\n")
  1342  			printcreatedby(gp)
  1343  		} else {
  1344  			traceback(^uintptr(0), ^uintptr(0), 0, gp)
  1345  		}
  1346  	})
  1347  }
  1348  
  1349  // tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
  1350  // for debugging purposes. If the address bad is included in the
  1351  // hexdumped range, it will mark it as well.
  1352  func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
  1353  	const expand = 32 * goarch.PtrSize
  1354  	const maxExpand = 256 * goarch.PtrSize
  1355  	// Start around frame.sp.
  1356  	lo, hi := frame.sp, frame.sp
  1357  	// Expand to include frame.fp.
  1358  	if frame.fp != 0 && frame.fp < lo {
  1359  		lo = frame.fp
  1360  	}
  1361  	if frame.fp != 0 && frame.fp > hi {
  1362  		hi = frame.fp
  1363  	}
  1364  	// Expand a bit more.
  1365  	lo, hi = lo-expand, hi+expand
  1366  	// But don't go too far from frame.sp.
  1367  	if lo < frame.sp-maxExpand {
  1368  		lo = frame.sp - maxExpand
  1369  	}
  1370  	if hi > frame.sp+maxExpand {
  1371  		hi = frame.sp + maxExpand
  1372  	}
  1373  	// And don't go outside the stack bounds.
  1374  	if lo < stk.lo {
  1375  		lo = stk.lo
  1376  	}
  1377  	if hi > stk.hi {
  1378  		hi = stk.hi
  1379  	}
  1380  
  1381  	// Print the hex dump.
  1382  	print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
  1383  	hexdumpWords(lo, hi-lo, func(p uintptr, m hexdumpMarker) {
  1384  		if p == frame.fp {
  1385  			m.start()
  1386  			println("FP")
  1387  		}
  1388  		if p == frame.sp {
  1389  			m.start()
  1390  			println("SP")
  1391  		}
  1392  		if p == bad {
  1393  			m.start()
  1394  			println("bad")
  1395  		}
  1396  	})
  1397  }
  1398  
  1399  // isSystemGoroutine reports whether the goroutine g must be omitted
  1400  // in stack dumps and deadlock detector. This is any goroutine that
  1401  // starts at a runtime.* entry point, except for runtime.main,
  1402  // runtime.handleAsyncEvent (wasm only) and sometimes
  1403  // runtime.runFinalizers/runtime.runCleanups.
  1404  //
  1405  // If fixed is true, any goroutine that can vary between user and
  1406  // system (that is, the finalizer goroutine) is considered a user
  1407  // goroutine.
  1408  func isSystemGoroutine(gp *g, fixed bool) bool {
  1409  	// Keep this in sync with internal/trace.IsSystemGoroutine.
  1410  	f := findfunc(gp.startpc)
  1411  	if !f.valid() {
  1412  		return false
  1413  	}
  1414  	if f.funcID == abi.FuncID_runtime_main || f.funcID == abi.FuncID_corostart || f.funcID == abi.FuncID_handleAsyncEvent {
  1415  		return false
  1416  	}
  1417  	if f.funcID == abi.FuncID_runFinalizers {
  1418  		// We include the finalizer goroutine if it's calling
  1419  		// back into user code.
  1420  		if fixed {
  1421  			// This goroutine can vary. In fixed mode,
  1422  			// always consider it a user goroutine.
  1423  			return false
  1424  		}
  1425  		return fingStatus.Load()&fingRunningFinalizer == 0
  1426  	}
  1427  	if f.funcID == abi.FuncID_runCleanups {
  1428  		// We include the cleanup goroutines if they're calling
  1429  		// back into user code.
  1430  		if fixed {
  1431  			// This goroutine can vary. In fixed mode,
  1432  			// always consider it a user goroutine.
  1433  			return false
  1434  		}
  1435  		return !gp.runningCleanups.Load()
  1436  	}
  1437  	return stringslite.HasPrefix(funcname(f), "runtime.")
  1438  }
  1439  
  1440  // SetCgoTraceback records three C functions to use to gather
  1441  // traceback information from C code and to convert that traceback
  1442  // information into symbolic information. These are used when printing
  1443  // stack traces for a program that uses cgo.
  1444  //
  1445  // The traceback and context functions may be called from a signal
  1446  // handler, and must therefore use only async-signal safe functions.
  1447  // The symbolizer function may be called while the program is
  1448  // crashing, and so must be cautious about using memory.  None of the
  1449  // functions may call back into Go.
  1450  //
  1451  // The context function will be called with a single argument, a
  1452  // pointer to a struct:
  1453  //
  1454  //	struct {
  1455  //		Context uintptr
  1456  //	}
  1457  //
  1458  // In C syntax, this struct will be
  1459  //
  1460  //	struct {
  1461  //		uintptr_t Context;
  1462  //	};
  1463  //
  1464  // If the Context field is 0, the context function is being called to
  1465  // record the current traceback context. It should record in the
  1466  // Context field whatever information is needed about the current
  1467  // point of execution to later produce a stack trace, probably the
  1468  // stack pointer and PC. In this case the context function will be
  1469  // called from C code.
  1470  //
  1471  // If the Context field is not 0, then it is a value returned by a
  1472  // previous call to the context function. This case is called when the
  1473  // context is no longer needed; that is, when the Go code is returning
  1474  // to its C code caller. This permits the context function to release
  1475  // any associated resources.
  1476  //
  1477  // While it would be correct for the context function to record a
  1478  // complete a stack trace whenever it is called, and simply copy that
  1479  // out in the traceback function, in a typical program the context
  1480  // function will be called many times without ever recording a
  1481  // traceback for that context. Recording a complete stack trace in a
  1482  // call to the context function is likely to be inefficient.
  1483  //
  1484  // The traceback function will be called with a single argument, a
  1485  // pointer to a struct:
  1486  //
  1487  //	struct {
  1488  //		Context    uintptr
  1489  //		SigContext uintptr
  1490  //		Buf        *uintptr
  1491  //		Max        uintptr
  1492  //	}
  1493  //
  1494  // In C syntax, this struct will be
  1495  //
  1496  //	struct {
  1497  //		uintptr_t  Context;
  1498  //		uintptr_t  SigContext;
  1499  //		uintptr_t* Buf;
  1500  //		uintptr_t  Max;
  1501  //	};
  1502  //
  1503  // The Context field will be zero to gather a traceback from the
  1504  // current program execution point. In this case, the traceback
  1505  // function will be called from C code.
  1506  //
  1507  // Otherwise Context will be a value previously returned by a call to
  1508  // the context function. The traceback function should gather a stack
  1509  // trace from that saved point in the program execution. The traceback
  1510  // function may be called from an execution thread other than the one
  1511  // that recorded the context, but only when the context is known to be
  1512  // valid and unchanging. The traceback function may also be called
  1513  // deeper in the call stack on the same thread that recorded the
  1514  // context. The traceback function may be called multiple times with
  1515  // the same Context value; it will usually be appropriate to cache the
  1516  // result, if possible, the first time this is called for a specific
  1517  // context value.
  1518  //
  1519  // If the traceback function is called from a signal handler on a Unix
  1520  // system, SigContext will be the signal context argument passed to
  1521  // the signal handler (a C ucontext_t* cast to uintptr_t). This may be
  1522  // used to start tracing at the point where the signal occurred. If
  1523  // the traceback function is not called from a signal handler,
  1524  // SigContext will be zero.
  1525  //
  1526  // Buf is where the traceback information should be stored. It should
  1527  // be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
  1528  // the PC of that function's caller, and so on.  Max is the maximum
  1529  // number of entries to store.  The function should store a zero to
  1530  // indicate the top of the stack, or that the caller is on a different
  1531  // stack, presumably a Go stack.
  1532  //
  1533  // Unlike runtime.Callers, the PC values returned should, when passed
  1534  // to the symbolizer function, return the file/line of the call
  1535  // instruction.  No additional subtraction is required or appropriate.
  1536  //
  1537  // On all platforms, the traceback function is invoked when a call from
  1538  // Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
  1539  // linux/arm64, and freebsd/amd64, the traceback function is also invoked
  1540  // when a signal is received by a thread that is executing a cgo call.
  1541  // The traceback function should not make assumptions about when it is
  1542  // called, as future versions of Go may make additional calls.
  1543  //
  1544  // The symbolizer function will be called with a single argument, a
  1545  // pointer to a struct:
  1546  //
  1547  //	struct {
  1548  //		PC      uintptr // program counter to fetch information for
  1549  //		File    *byte   // file name (NUL terminated)
  1550  //		Lineno  uintptr // line number
  1551  //		Func    *byte   // function name (NUL terminated)
  1552  //		Entry   uintptr // function entry point
  1553  //		More    uintptr // set non-zero if more info for this PC
  1554  //		Data    uintptr // unused by runtime, available for function
  1555  //	}
  1556  //
  1557  // In C syntax, this struct will be
  1558  //
  1559  //	struct {
  1560  //		uintptr_t PC;
  1561  //		char*     File;
  1562  //		uintptr_t Lineno;
  1563  //		char*     Func;
  1564  //		uintptr_t Entry;
  1565  //		uintptr_t More;
  1566  //		uintptr_t Data;
  1567  //	};
  1568  //
  1569  // The PC field will be a value returned by a call to the traceback
  1570  // function.
  1571  //
  1572  // The first time the function is called for a particular traceback,
  1573  // all the fields except PC will be 0. The function should fill in the
  1574  // other fields if possible, setting them to 0/nil if the information
  1575  // is not available. The Data field may be used to store any useful
  1576  // information across calls. The More field should be set to non-zero
  1577  // if there is more information for this PC, zero otherwise. If More
  1578  // is set non-zero, the function will be called again with the same
  1579  // PC, and may return different information (this is intended for use
  1580  // with inlined functions). If More is zero, the function will be
  1581  // called with the next PC value in the traceback. When the traceback
  1582  // is complete, the function will be called once more with PC set to
  1583  // zero; this may be used to free any information. Each call will
  1584  // leave the fields of the struct set to the same values they had upon
  1585  // return, except for the PC field when the More field is zero. The
  1586  // function must not keep a copy of the struct pointer between calls.
  1587  //
  1588  // When calling SetCgoTraceback, the version argument is the version
  1589  // number of the structs that the functions expect to receive.
  1590  // Currently this must be zero.
  1591  //
  1592  // The symbolizer function may be nil, in which case the results of
  1593  // the traceback function will be displayed as numbers. If the
  1594  // traceback function is nil, the symbolizer function will never be
  1595  // called. The context function may be nil, in which case the
  1596  // traceback function will only be called with the context field set
  1597  // to zero.  If the context function is nil, then calls from Go to C
  1598  // to Go will not show a traceback for the C portion of the call stack.
  1599  //
  1600  // SetCgoTraceback should be called only once, ideally from an init function.
  1601  func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
  1602  	if version != 0 {
  1603  		panic("unsupported version")
  1604  	}
  1605  
  1606  	if cgoTraceback != nil && cgoTraceback != traceback ||
  1607  		cgoContext != nil && cgoContext != context ||
  1608  		cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
  1609  		panic("call SetCgoTraceback only once")
  1610  	}
  1611  
  1612  	cgoTraceback = traceback
  1613  	cgoContext = context
  1614  	cgoSymbolizer = symbolizer
  1615  
  1616  	if _cgo_set_traceback_functions != nil {
  1617  		type cgoSetTracebackFunctionsArg struct {
  1618  			traceback  unsafe.Pointer
  1619  			context    unsafe.Pointer
  1620  			symbolizer unsafe.Pointer
  1621  		}
  1622  		arg := cgoSetTracebackFunctionsArg{
  1623  			traceback:  traceback,
  1624  			context:    context,
  1625  			symbolizer: symbolizer,
  1626  		}
  1627  		cgocall(_cgo_set_traceback_functions, noescape(unsafe.Pointer(&arg)))
  1628  	}
  1629  }
  1630  
  1631  var cgoTraceback unsafe.Pointer
  1632  var cgoContext unsafe.Pointer
  1633  var cgoSymbolizer unsafe.Pointer
  1634  
  1635  func cgoTracebackAvailable() bool {
  1636  	// - The traceback function must be registered via SetCgoTraceback.
  1637  	// - This must be a cgo binary (providing _cgo_call_traceback_function).
  1638  	return cgoTraceback != nil && _cgo_call_traceback_function != nil
  1639  }
  1640  
  1641  func cgoSymbolizerAvailable() bool {
  1642  	// - The symbolizer function must be registered via SetCgoTraceback.
  1643  	// - This must be a cgo binary (providing _cgo_call_symbolizer_function).
  1644  	return cgoSymbolizer != nil && _cgo_call_symbolizer_function != nil
  1645  }
  1646  
  1647  // cgoTracebackArg is the type passed to cgoTraceback.
  1648  type cgoTracebackArg struct {
  1649  	context    uintptr
  1650  	sigContext uintptr
  1651  	buf        *uintptr
  1652  	max        uintptr
  1653  }
  1654  
  1655  // cgoContextArg is the type passed to the context function.
  1656  type cgoContextArg struct {
  1657  	context uintptr
  1658  }
  1659  
  1660  // cgoSymbolizerArg is the type passed to cgoSymbolizer.
  1661  type cgoSymbolizerArg struct {
  1662  	pc       uintptr
  1663  	file     *byte
  1664  	lineno   uintptr
  1665  	funcName *byte
  1666  	entry    uintptr
  1667  	more     uintptr
  1668  	data     uintptr
  1669  }
  1670  
  1671  // printCgoTraceback prints a traceback of callers.
  1672  func printCgoTraceback(callers *cgoCallers) {
  1673  	if !cgoSymbolizerAvailable() {
  1674  		for _, c := range callers {
  1675  			if c == 0 {
  1676  				break
  1677  			}
  1678  			print("non-Go function at pc=", hex(c), "\n")
  1679  		}
  1680  		return
  1681  	}
  1682  
  1683  	commitFrame := func() (pr, stop bool) { return true, false }
  1684  	var arg cgoSymbolizerArg
  1685  	for _, c := range callers {
  1686  		if c == 0 {
  1687  			break
  1688  		}
  1689  		printOneCgoTraceback(c, commitFrame, &arg)
  1690  	}
  1691  	arg.pc = 0
  1692  	callCgoSymbolizer(&arg)
  1693  }
  1694  
  1695  // printOneCgoTraceback prints the traceback of a single cgo caller.
  1696  // This can print more than one line because of inlining.
  1697  // It returns the "stop" result of commitFrame.
  1698  //
  1699  // Preconditions: cgoSymbolizerAvailable returns true.
  1700  func printOneCgoTraceback(pc uintptr, commitFrame func() (pr, stop bool), arg *cgoSymbolizerArg) bool {
  1701  	arg.pc = pc
  1702  	for {
  1703  		if pr, stop := commitFrame(); stop {
  1704  			return true
  1705  		} else if !pr {
  1706  			continue
  1707  		}
  1708  
  1709  		callCgoSymbolizer(arg)
  1710  		if arg.funcName != nil {
  1711  			// Note that we don't print any argument
  1712  			// information here, not even parentheses.
  1713  			// The symbolizer must add that if appropriate.
  1714  			println(gostringnocopy(arg.funcName))
  1715  		} else {
  1716  			println("non-Go function")
  1717  		}
  1718  		print("\t")
  1719  		if arg.file != nil {
  1720  			print(gostringnocopy(arg.file), ":", arg.lineno, " ")
  1721  		}
  1722  		print("pc=", hex(pc), "\n")
  1723  		if arg.more == 0 {
  1724  			return false
  1725  		}
  1726  	}
  1727  }
  1728  
  1729  // callCgoSymbolizer calls the cgoSymbolizer function.
  1730  //
  1731  // Preconditions: cgoSymbolizerAvailable returns true.
  1732  func callCgoSymbolizer(arg *cgoSymbolizerArg) {
  1733  	call := cgocall
  1734  	if panicking.Load() > 0 || getg().m.curg != getg() {
  1735  		// We do not want to call into the scheduler when panicking
  1736  		// or when on the system stack.
  1737  		call = asmcgocall
  1738  	}
  1739  	if msanenabled {
  1740  		msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
  1741  	}
  1742  	if asanenabled {
  1743  		asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
  1744  	}
  1745  	call(_cgo_call_symbolizer_function, noescape(unsafe.Pointer(arg)))
  1746  }
  1747  
  1748  // cgoContextPCs gets the PC values from a cgo traceback.
  1749  //
  1750  // Preconditions: cgoTracebackAvailable returns true.
  1751  func cgoContextPCs(ctxt uintptr, buf []uintptr) {
  1752  	call := cgocall
  1753  	if panicking.Load() > 0 || getg().m.curg != getg() {
  1754  		// We do not want to call into the scheduler when panicking
  1755  		// or when on the system stack.
  1756  		call = asmcgocall
  1757  	}
  1758  	arg := cgoTracebackArg{
  1759  		context: ctxt,
  1760  		buf:     (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
  1761  		max:     uintptr(len(buf)),
  1762  	}
  1763  	if msanenabled {
  1764  		msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
  1765  	}
  1766  	if asanenabled {
  1767  		asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
  1768  	}
  1769  	call(_cgo_call_traceback_function, noescape(unsafe.Pointer(&arg)))
  1770  }
  1771  

View as plain text