// Copyright 2025 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package unify implements unification of structured values. // // A [Value] represents a possibly infinite set of concrete values, where a // value is either a string ([String]), a tuple of values ([Tuple]), or a // string-keyed map of values called a "def" ([Def]). These sets can be further // constrained by variables ([Var]). A [Value] combined with bindings of // variables is a [Closure]. // // [Unify] finds a [Closure] that satisfies two or more other [Closure]s. This // can be thought of as intersecting the sets represented by these Closures' // values, or as the greatest lower bound/infimum of these Closures. If no such // Closure exists, the result of unification is "bottom", or the empty set. // // # Examples // // The regular expression "a*" is the infinite set of strings of zero or more // "a"s. "a*" can be unified with "a" or "aa" or "aaa", and the result is just // "a", "aa", or "aaa", respectively. However, unifying "a*" with "b" fails // because there are no values that satisfy both. // // Sums express sets directly. For example, !sum [a, b] is the set consisting of // "a" and "b". Unifying this with !sum [b, c] results in just "b". This also // makes it easy to demonstrate that unification isn't necessarily a single // concrete value. For example, unifying !sum [a, b, c] with !sum [b, c, d] // results in two concrete values: "b" and "c". // // The special value _ or "top" represents all possible values. Unifying _ with // any value x results in x. // // Unifying composite values—tuples and defs—unifies their elements. // // The value [a*, aa] is an infinite set of tuples. If we unify that with the // value [aaa, a*], the only possible value that satisfies both is [aaa, aa]. // Likewise, this is the intersection of the sets described by these two values. // // Defs are similar to tuples, but they are indexed by strings and don't have a // fixed length. For example, {x: a, y: b} is a def with two fields. Any field // not mentioned in a def is implicitly top. Thus, unifying this with {y: b, z: // c} results in {x: a, y: b, z: c}. // // Variables constrain values. For example, the value [$x, $x] represents all // tuples whose first and second values are the same, but doesn't otherwise // constrain that value. Thus, this set includes [a, a] as well as [[b, c, d], // [b, c, d]], but it doesn't include [a, b]. // // Sums are internally implemented as fresh variables that are simultaneously // bound to all values of the sum. That is !sum [a, b] is actually $var (where // var is some fresh name), closed under the environment $var=a | $var=b. package unify import ( "errors" "fmt" "slices" ) // Unify computes a Closure that satisfies each input Closure. If no such // Closure exists, it returns bottom. func Unify(closures ...Closure) (Closure, error) { if len(closures) == 0 { return Closure{topValue, topEnv}, nil } var trace *tracer if Debug.UnifyLog != nil || Debug.HTML != nil { trace = &tracer{ logw: Debug.UnifyLog, saveTree: Debug.HTML != nil, } } unified := closures[0] for _, c := range closures[1:] { var err error uf := newUnifier() uf.tracer = trace e := crossEnvs(unified.env, c.env) unified.val, unified.env, err = unified.val.unify(c.val, e, false, uf) if Debug.HTML != nil { uf.writeHTML(Debug.HTML) } if err != nil { return Closure{}, err } } return unified, nil } type unifier struct { *tracer } func newUnifier() *unifier { return &unifier{} } // errDomains is a sentinel error used between unify and unify1 to indicate that // unify1 could not unify the domains of the two values. var errDomains = errors.New("cannot unify domains") func (v *Value) unify(w *Value, e envSet, swap bool, uf *unifier) (*Value, envSet, error) { if swap { // Put the values in order. This just happens to be a handy choke-point // to do this at. v, w = w, v } uf.traceUnify(v, w, e) d, e2, err := v.unify1(w, e, false, uf) if err == errDomains { // Try the other order. d, e2, err = w.unify1(v, e, true, uf) if err == errDomains { // Okay, we really can't unify these. err = fmt.Errorf("cannot unify %T (%s) and %T (%s): kind mismatch", v.Domain, v.PosString(), w.Domain, w.PosString()) } } if err != nil { uf.traceDone(nil, envSet{}, err) return nil, envSet{}, err } res := unified(d, v, w) uf.traceDone(res, e2, nil) if d == nil { // Double check that a bottom Value also has a bottom env. if !e2.isEmpty() { panic("bottom Value has non-bottom environment") } } return res, e2, nil } func (v *Value) unify1(w *Value, e envSet, swap bool, uf *unifier) (Domain, envSet, error) { // TODO: If there's an error, attach position information to it. vd, wd := v.Domain, w.Domain // Bottom returns bottom, and eliminates all possible environments. if vd == nil || wd == nil { return nil, bottomEnv, nil } // Top always returns the other. if _, ok := vd.(Top); ok { return wd, e, nil } // Variables if vd, ok := vd.(Var); ok { return vd.unify(w, e, swap, uf) } // Composite values if vd, ok := vd.(Def); ok { if wd, ok := wd.(Def); ok { return vd.unify(wd, e, swap, uf) } } if vd, ok := vd.(Tuple); ok { if wd, ok := wd.(Tuple); ok { return vd.unify(wd, e, swap, uf) } } // Scalar values if vd, ok := vd.(String); ok { if wd, ok := wd.(String); ok { res := vd.unify(wd) if res == nil { e = bottomEnv } return res, e, nil } } return nil, envSet{}, errDomains } func (d Def) unify(o Def, e envSet, swap bool, uf *unifier) (Domain, envSet, error) { out := Def{fields: make(map[string]*Value)} // Check keys of d against o. for key, dv := range d.All() { ov, ok := o.fields[key] if !ok { // ov is implicitly Top. Bypass unification. out.fields[key] = dv continue } exit := uf.enter("%s", key) res, e2, err := dv.unify(ov, e, swap, uf) exit.exit() if err != nil { return nil, envSet{}, err } else if res.Domain == nil { // No match. return nil, bottomEnv, nil } out.fields[key] = res e = e2 } // Check keys of o that we didn't already check. These all implicitly match // because we know the corresponding fields in d are all Top. for key, dv := range o.All() { if _, ok := d.fields[key]; !ok { out.fields[key] = dv } } return out, e, nil } func (v Tuple) unify(w Tuple, e envSet, swap bool, uf *unifier) (Domain, envSet, error) { if v.repeat != nil && w.repeat != nil { // Since we generate the content of these lazily, there's not much we // can do but just stick them on a list to unify later. return Tuple{repeat: concat(v.repeat, w.repeat)}, e, nil } // Expand any repeated tuples. tuples := make([]Tuple, 0, 2) if v.repeat == nil { tuples = append(tuples, v) } else { v2, e2 := v.doRepeat(e, len(w.vs)) tuples = append(tuples, v2...) e = e2 } if w.repeat == nil { tuples = append(tuples, w) } else { w2, e2 := w.doRepeat(e, len(v.vs)) tuples = append(tuples, w2...) e = e2 } // Now unify all of the tuples (usually this will be just 2 tuples) out := tuples[0] for _, t := range tuples[1:] { if len(out.vs) != len(t.vs) { uf.logf("tuple length mismatch") return nil, bottomEnv, nil } zs := make([]*Value, len(out.vs)) for i, v1 := range out.vs { exit := uf.enter("%d", i) z, e2, err := v1.unify(t.vs[i], e, swap, uf) exit.exit() if err != nil { return nil, envSet{}, err } else if z.Domain == nil { return nil, bottomEnv, nil } zs[i] = z e = e2 } out = Tuple{vs: zs} } return out, e, nil } // doRepeat creates a fixed-length tuple from a repeated tuple. The caller is // expected to unify the returned tuples. func (v Tuple) doRepeat(e envSet, n int) ([]Tuple, envSet) { res := make([]Tuple, len(v.repeat)) for i, gen := range v.repeat { res[i].vs = make([]*Value, n) for j := range n { res[i].vs[j], e = gen(e) } } return res, e } // unify intersects the domains of two [String]s. If it can prove that this // domain is empty, it returns nil (bottom). // // TODO: Consider splitting literals and regexps into two domains. func (v String) unify(w String) Domain { // Unification is symmetric, so put them in order of string kind so we only // have to deal with half the cases. if v.kind > w.kind { v, w = w, v } switch v.kind { case stringRegex: switch w.kind { case stringRegex: // Construct a match against all of the regexps return String{kind: stringRegex, re: slices.Concat(v.re, w.re)} case stringExact: for _, re := range v.re { if !re.MatchString(w.exact) { return nil } } return w } case stringExact: if v.exact != w.exact { return nil } return v } panic("bad string kind") } func concat[T any](s1, s2 []T) []T { // Reuse s1 or s2 if possible. if len(s1) == 0 { return s2 } return append(s1[:len(s1):len(s1)], s2...) }