Source file src/slices/slices.go

     1  // Copyright 2021 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package slices defines various functions useful with slices of any type.
     6  package slices
     7  
     8  import (
     9  	"cmp"
    10  	"math/bits"
    11  	"unsafe"
    12  )
    13  
    14  // Equal reports whether two slices are equal: the same length and all
    15  // elements equal. If the lengths are different, Equal returns false.
    16  // Otherwise, the elements are compared in increasing index order, and the
    17  // comparison stops at the first unequal pair.
    18  // Floating point NaNs are not considered equal.
    19  func Equal[S ~[]E, E comparable](s1, s2 S) bool {
    20  	if len(s1) != len(s2) {
    21  		return false
    22  	}
    23  	for i := range s1 {
    24  		if s1[i] != s2[i] {
    25  			return false
    26  		}
    27  	}
    28  	return true
    29  }
    30  
    31  // EqualFunc reports whether two slices are equal using an equality
    32  // function on each pair of elements. If the lengths are different,
    33  // EqualFunc returns false. Otherwise, the elements are compared in
    34  // increasing index order, and the comparison stops at the first index
    35  // for which eq returns false.
    36  func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
    37  	if len(s1) != len(s2) {
    38  		return false
    39  	}
    40  	for i, v1 := range s1 {
    41  		v2 := s2[i]
    42  		if !eq(v1, v2) {
    43  			return false
    44  		}
    45  	}
    46  	return true
    47  }
    48  
    49  // Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
    50  // of elements. The elements are compared sequentially, starting at index 0,
    51  // until one element is not equal to the other.
    52  // The result of comparing the first non-matching elements is returned.
    53  // If both slices are equal until one of them ends, the shorter slice is
    54  // considered less than the longer one.
    55  // The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
    56  func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int {
    57  	for i, v1 := range s1 {
    58  		if i >= len(s2) {
    59  			return +1
    60  		}
    61  		v2 := s2[i]
    62  		if c := cmp.Compare(v1, v2); c != 0 {
    63  			return c
    64  		}
    65  	}
    66  	if len(s1) < len(s2) {
    67  		return -1
    68  	}
    69  	return 0
    70  }
    71  
    72  // CompareFunc is like [Compare] but uses a custom comparison function on each
    73  // pair of elements.
    74  // The result is the first non-zero result of cmp; if cmp always
    75  // returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
    76  // and +1 if len(s1) > len(s2).
    77  func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
    78  	for i, v1 := range s1 {
    79  		if i >= len(s2) {
    80  			return +1
    81  		}
    82  		v2 := s2[i]
    83  		if c := cmp(v1, v2); c != 0 {
    84  			return c
    85  		}
    86  	}
    87  	if len(s1) < len(s2) {
    88  		return -1
    89  	}
    90  	return 0
    91  }
    92  
    93  // Index returns the index of the first occurrence of v in s,
    94  // or -1 if not present.
    95  func Index[S ~[]E, E comparable](s S, v E) int {
    96  	for i := range s {
    97  		if v == s[i] {
    98  			return i
    99  		}
   100  	}
   101  	return -1
   102  }
   103  
   104  // IndexFunc returns the first index i satisfying f(s[i]),
   105  // or -1 if none do.
   106  func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
   107  	for i := range s {
   108  		if f(s[i]) {
   109  			return i
   110  		}
   111  	}
   112  	return -1
   113  }
   114  
   115  // Contains reports whether v is present in s.
   116  func Contains[S ~[]E, E comparable](s S, v E) bool {
   117  	return Index(s, v) >= 0
   118  }
   119  
   120  // ContainsFunc reports whether at least one
   121  // element e of s satisfies f(e).
   122  func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
   123  	return IndexFunc(s, f) >= 0
   124  }
   125  
   126  // Insert inserts the values v... into s at index i,
   127  // returning the modified slice.
   128  // The elements at s[i:] are shifted up to make room.
   129  // In the returned slice r, r[i] == v[0],
   130  // and r[i+len(v)] == value originally at r[i].
   131  // Insert panics if i is out of range.
   132  // This function is O(len(s) + len(v)).
   133  func Insert[S ~[]E, E any](s S, i int, v ...E) S {
   134  	_ = s[i:] // bounds check
   135  
   136  	m := len(v)
   137  	if m == 0 {
   138  		return s
   139  	}
   140  	n := len(s)
   141  	if i == n {
   142  		return append(s, v...)
   143  	}
   144  	if n+m > cap(s) {
   145  		// Use append rather than make so that we bump the size of
   146  		// the slice up to the next storage class.
   147  		// This is what Grow does but we don't call Grow because
   148  		// that might copy the values twice.
   149  		s2 := append(s[:i], make(S, n+m-i)...)
   150  		copy(s2[i:], v)
   151  		copy(s2[i+m:], s[i:])
   152  		return s2
   153  	}
   154  	s = s[:n+m]
   155  
   156  	// before:
   157  	// s: aaaaaaaabbbbccccccccdddd
   158  	//            ^   ^       ^   ^
   159  	//            i  i+m      n  n+m
   160  	// after:
   161  	// s: aaaaaaaavvvvbbbbcccccccc
   162  	//            ^   ^       ^   ^
   163  	//            i  i+m      n  n+m
   164  	//
   165  	// a are the values that don't move in s.
   166  	// v are the values copied in from v.
   167  	// b and c are the values from s that are shifted up in index.
   168  	// d are the values that get overwritten, never to be seen again.
   169  
   170  	if !overlaps(v, s[i+m:]) {
   171  		// Easy case - v does not overlap either the c or d regions.
   172  		// (It might be in some of a or b, or elsewhere entirely.)
   173  		// The data we copy up doesn't write to v at all, so just do it.
   174  
   175  		copy(s[i+m:], s[i:])
   176  
   177  		// Now we have
   178  		// s: aaaaaaaabbbbbbbbcccccccc
   179  		//            ^   ^       ^   ^
   180  		//            i  i+m      n  n+m
   181  		// Note the b values are duplicated.
   182  
   183  		copy(s[i:], v)
   184  
   185  		// Now we have
   186  		// s: aaaaaaaavvvvbbbbcccccccc
   187  		//            ^   ^       ^   ^
   188  		//            i  i+m      n  n+m
   189  		// That's the result we want.
   190  		return s
   191  	}
   192  
   193  	// The hard case - v overlaps c or d. We can't just shift up
   194  	// the data because we'd move or clobber the values we're trying
   195  	// to insert.
   196  	// So instead, write v on top of d, then rotate.
   197  	copy(s[n:], v)
   198  
   199  	// Now we have
   200  	// s: aaaaaaaabbbbccccccccvvvv
   201  	//            ^   ^       ^   ^
   202  	//            i  i+m      n  n+m
   203  
   204  	rotateRight(s[i:], m)
   205  
   206  	// Now we have
   207  	// s: aaaaaaaavvvvbbbbcccccccc
   208  	//            ^   ^       ^   ^
   209  	//            i  i+m      n  n+m
   210  	// That's the result we want.
   211  	return s
   212  }
   213  
   214  // Delete removes the elements s[i:j] from s, returning the modified slice.
   215  // Delete panics if j > len(s) or s[i:j] is not a valid slice of s.
   216  // Delete is O(len(s)-i), so if many items must be deleted, it is better to
   217  // make a single call deleting them all together than to delete one at a time.
   218  // Delete zeroes the elements s[len(s)-(j-i):len(s)].
   219  func Delete[S ~[]E, E any](s S, i, j int) S {
   220  	_ = s[i:j:len(s)] // bounds check
   221  
   222  	if i == j {
   223  		return s
   224  	}
   225  
   226  	oldlen := len(s)
   227  	s = append(s[:i], s[j:]...)
   228  	clear(s[len(s):oldlen]) // zero/nil out the obsolete elements, for GC
   229  	return s
   230  }
   231  
   232  // DeleteFunc removes any elements from s for which del returns true,
   233  // returning the modified slice.
   234  // DeleteFunc zeroes the elements between the new length and the original length.
   235  func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
   236  	i := IndexFunc(s, del)
   237  	if i == -1 {
   238  		return s
   239  	}
   240  	// Don't start copying elements until we find one to delete.
   241  	for j := i + 1; j < len(s); j++ {
   242  		if v := s[j]; !del(v) {
   243  			s[i] = v
   244  			i++
   245  		}
   246  	}
   247  	clear(s[i:]) // zero/nil out the obsolete elements, for GC
   248  	return s[:i]
   249  }
   250  
   251  // Replace replaces the elements s[i:j] by the given v, and returns the
   252  // modified slice.
   253  // Replace panics if j > len(s) or s[i:j] is not a valid slice of s.
   254  // When len(v) < (j-i), Replace zeroes the elements between the new length and the original length.
   255  func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
   256  	_ = s[i:j] // bounds check
   257  
   258  	if i == j {
   259  		return Insert(s, i, v...)
   260  	}
   261  	if j == len(s) {
   262  		s2 := append(s[:i], v...)
   263  		if len(s2) < len(s) {
   264  			clear(s[len(s2):]) // zero/nil out the obsolete elements, for GC
   265  		}
   266  		return s2
   267  	}
   268  
   269  	tot := len(s[:i]) + len(v) + len(s[j:])
   270  	if tot > cap(s) {
   271  		// Too big to fit, allocate and copy over.
   272  		s2 := append(s[:i], make(S, tot-i)...) // See Insert
   273  		copy(s2[i:], v)
   274  		copy(s2[i+len(v):], s[j:])
   275  		return s2
   276  	}
   277  
   278  	r := s[:tot]
   279  
   280  	if i+len(v) <= j {
   281  		// Easy, as v fits in the deleted portion.
   282  		copy(r[i:], v)
   283  		copy(r[i+len(v):], s[j:])
   284  		clear(s[tot:]) // zero/nil out the obsolete elements, for GC
   285  		return r
   286  	}
   287  
   288  	// We are expanding (v is bigger than j-i).
   289  	// The situation is something like this:
   290  	// (example has i=4,j=8,len(s)=16,len(v)=6)
   291  	// s: aaaaxxxxbbbbbbbbyy
   292  	//        ^   ^       ^ ^
   293  	//        i   j  len(s) tot
   294  	// a: prefix of s
   295  	// x: deleted range
   296  	// b: more of s
   297  	// y: area to expand into
   298  
   299  	if !overlaps(r[i+len(v):], v) {
   300  		// Easy, as v is not clobbered by the first copy.
   301  		copy(r[i+len(v):], s[j:])
   302  		copy(r[i:], v)
   303  		return r
   304  	}
   305  
   306  	// This is a situation where we don't have a single place to which
   307  	// we can copy v. Parts of it need to go to two different places.
   308  	// We want to copy the prefix of v into y and the suffix into x, then
   309  	// rotate |y| spots to the right.
   310  	//
   311  	//        v[2:]      v[:2]
   312  	//         |           |
   313  	// s: aaaavvvvbbbbbbbbvv
   314  	//        ^   ^       ^ ^
   315  	//        i   j  len(s) tot
   316  	//
   317  	// If either of those two destinations don't alias v, then we're good.
   318  	y := len(v) - (j - i) // length of y portion
   319  
   320  	if !overlaps(r[i:j], v) {
   321  		copy(r[i:j], v[y:])
   322  		copy(r[len(s):], v[:y])
   323  		rotateRight(r[i:], y)
   324  		return r
   325  	}
   326  	if !overlaps(r[len(s):], v) {
   327  		copy(r[len(s):], v[:y])
   328  		copy(r[i:j], v[y:])
   329  		rotateRight(r[i:], y)
   330  		return r
   331  	}
   332  
   333  	// Now we know that v overlaps both x and y.
   334  	// That means that the entirety of b is *inside* v.
   335  	// So we don't need to preserve b at all; instead we
   336  	// can copy v first, then copy the b part of v out of
   337  	// v to the right destination.
   338  	k := startIdx(v, s[j:])
   339  	copy(r[i:], v)
   340  	copy(r[i+len(v):], r[i+k:])
   341  	return r
   342  }
   343  
   344  // Clone returns a copy of the slice.
   345  // The elements are copied using assignment, so this is a shallow clone.
   346  // The result may have additional unused capacity.
   347  func Clone[S ~[]E, E any](s S) S {
   348  	// The s[:0:0] preserves nil in case it matters.
   349  	return append(s[:0:0], s...)
   350  }
   351  
   352  // Compact replaces consecutive runs of equal elements with a single copy.
   353  // This is like the uniq command found on Unix.
   354  // Compact modifies the contents of the slice s and returns the modified slice,
   355  // which may have a smaller length.
   356  // Compact zeroes the elements between the new length and the original length.
   357  func Compact[S ~[]E, E comparable](s S) S {
   358  	if len(s) < 2 {
   359  		return s
   360  	}
   361  	for k := 1; k < len(s); k++ {
   362  		if s[k] == s[k-1] {
   363  			s2 := s[k:]
   364  			for k2 := 1; k2 < len(s2); k2++ {
   365  				if s2[k2] != s2[k2-1] {
   366  					s[k] = s2[k2]
   367  					k++
   368  				}
   369  			}
   370  
   371  			clear(s[k:]) // zero/nil out the obsolete elements, for GC
   372  			return s[:k]
   373  		}
   374  	}
   375  	return s
   376  }
   377  
   378  // CompactFunc is like [Compact] but uses an equality function to compare elements.
   379  // For runs of elements that compare equal, CompactFunc keeps the first one.
   380  // CompactFunc zeroes the elements between the new length and the original length.
   381  func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
   382  	if len(s) < 2 {
   383  		return s
   384  	}
   385  	for k := 1; k < len(s); k++ {
   386  		if eq(s[k], s[k-1]) {
   387  			s2 := s[k:]
   388  			for k2 := 1; k2 < len(s2); k2++ {
   389  				if !eq(s2[k2], s2[k2-1]) {
   390  					s[k] = s2[k2]
   391  					k++
   392  				}
   393  			}
   394  
   395  			clear(s[k:]) // zero/nil out the obsolete elements, for GC
   396  			return s[:k]
   397  		}
   398  	}
   399  	return s
   400  }
   401  
   402  // Grow increases the slice's capacity, if necessary, to guarantee space for
   403  // another n elements. After Grow(n), at least n elements can be appended
   404  // to the slice without another allocation. If n is negative or too large to
   405  // allocate the memory, Grow panics.
   406  func Grow[S ~[]E, E any](s S, n int) S {
   407  	if n < 0 {
   408  		panic("cannot be negative")
   409  	}
   410  	if n -= cap(s) - len(s); n > 0 {
   411  		s = append(s[:cap(s)], make([]E, n)...)[:len(s)]
   412  	}
   413  	return s
   414  }
   415  
   416  // Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
   417  func Clip[S ~[]E, E any](s S) S {
   418  	return s[:len(s):len(s)]
   419  }
   420  
   421  // TODO: There are other rotate algorithms.
   422  // This algorithm has the desirable property that it moves each element at most twice.
   423  // The follow-cycles algorithm can be 1-write but it is not very cache friendly.
   424  
   425  // rotateLeft rotates s left by r spaces.
   426  // s_final[i] = s_orig[i+r], wrapping around.
   427  func rotateLeft[E any](s []E, r int) {
   428  	Reverse(s[:r])
   429  	Reverse(s[r:])
   430  	Reverse(s)
   431  }
   432  func rotateRight[E any](s []E, r int) {
   433  	rotateLeft(s, len(s)-r)
   434  }
   435  
   436  // overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap.
   437  func overlaps[E any](a, b []E) bool {
   438  	if len(a) == 0 || len(b) == 0 {
   439  		return false
   440  	}
   441  	elemSize := unsafe.Sizeof(a[0])
   442  	if elemSize == 0 {
   443  		return false
   444  	}
   445  	// TODO: use a runtime/unsafe facility once one becomes available. See issue 12445.
   446  	// Also see crypto/internal/alias/alias.go:AnyOverlap
   447  	return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) &&
   448  		uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1)
   449  }
   450  
   451  // startIdx returns the index in haystack where the needle starts.
   452  // prerequisite: the needle must be aliased entirely inside the haystack.
   453  func startIdx[E any](haystack, needle []E) int {
   454  	p := &needle[0]
   455  	for i := range haystack {
   456  		if p == &haystack[i] {
   457  			return i
   458  		}
   459  	}
   460  	// TODO: what if the overlap is by a non-integral number of Es?
   461  	panic("needle not found")
   462  }
   463  
   464  // Reverse reverses the elements of the slice in place.
   465  func Reverse[S ~[]E, E any](s S) {
   466  	for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
   467  		s[i], s[j] = s[j], s[i]
   468  	}
   469  }
   470  
   471  // Concat returns a new slice concatenating the passed in slices.
   472  func Concat[S ~[]E, E any](slices ...S) S {
   473  	size := 0
   474  	for _, s := range slices {
   475  		size += len(s)
   476  		if size < 0 {
   477  			panic("len out of range")
   478  		}
   479  	}
   480  	newslice := Grow[S](nil, size)
   481  	for _, s := range slices {
   482  		newslice = append(newslice, s...)
   483  	}
   484  	return newslice
   485  }
   486  
   487  // Repeat returns a new slice that repeats the provided slice the given number of times.
   488  // The result has length and capacity (len(x) * count).
   489  // The result is never nil.
   490  // Repeat panics if count is negative or if the result of (len(x) * count)
   491  // overflows.
   492  func Repeat[S ~[]E, E any](x S, count int) S {
   493  	if count < 0 {
   494  		panic("cannot be negative")
   495  	}
   496  
   497  	const maxInt = ^uint(0) >> 1
   498  	if hi, lo := bits.Mul(uint(len(x)), uint(count)); hi > 0 || lo > maxInt {
   499  		panic("the result of (len(x) * count) overflows")
   500  	}
   501  
   502  	newslice := make(S, len(x)*count)
   503  	n := copy(newslice, x)
   504  	for n < len(newslice) {
   505  		n += copy(newslice[n:], newslice[:n])
   506  	}
   507  	return newslice
   508  }
   509  

View as plain text