// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package strconv import ( "math/bits" ) // binary to decimal conversion using the Ryū algorithm. // // See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369) // // Fixed precision formatting is a variant of the original paper's // algorithm, where a single multiplication by 10^k is required, // sharing the same rounding guarantees. // ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits. func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) { if prec < 0 { panic("ryuFtoaFixed32 called with negative prec") } if prec > 9 { panic("ryuFtoaFixed32 called with prec > 9") } // Zero input. if mant == 0 { d.nd, d.dp = 0, 0 return } // Renormalize to a 25-bit mantissa. e2 := exp if b := bits.Len32(mant); b < 25 { mant <<= uint(25 - b) e2 += b - 25 } // Choose an exponent such that rounded mant*(2^e2)*(10^q) has // at least prec decimal digits, i.e // mant*(2^e2)*(10^q) >= 10^(prec-1) // Because mant >= 2^24, it is enough to choose: // 2^(e2+24) >= 10^(-q+prec-1) // or q = -mulByLog2Log10(e2+24) + prec - 1 q := -mulByLog2Log10(e2+24) + prec - 1 // Now compute mant*(2^e2)*(10^q). // Is it an exact computation? // Only small positive powers of 10 are exact (5^28 has 66 bits). exact := q <= 27 && q >= 0 di, dexp2, d0 := mult64bitPow10(mant, e2, q) if dexp2 >= 0 { panic("not enough significant bits after mult64bitPow10") } // As a special case, computation might still be exact, if exponent // was negative and if it amounts to computing an exact division. // In that case, we ignore all lower bits. // Note that division by 10^11 cannot be exact as 5^11 has 26 bits. if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) { exact = true d0 = true } // Remove extra lower bits and keep rounding info. extra := uint(-dexp2) extraMask := uint32(1<>extra, di&extraMask roundUp := false if exact { // If we computed an exact product, d + 1/2 // should round to d+1 if 'd' is odd. roundUp = dfrac > 1<<(extra-1) || (dfrac == 1<<(extra-1) && !d0) || (dfrac == 1<<(extra-1) && d0 && di&1 == 1) } else { // otherwise, d+1/2 always rounds up because // we truncated below. roundUp = dfrac>>(extra-1) == 1 } if dfrac != 0 { d0 = false } // Proceed to the requested number of digits formatDecimal(d, uint64(di), !d0, roundUp, prec) // Adjust exponent d.dp -= q } // ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits. func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) { if prec > 18 { panic("ryuFtoaFixed64 called with prec > 18") } // Zero input. if mant == 0 { d.nd, d.dp = 0, 0 return } // Renormalize to a 55-bit mantissa. e2 := exp if b := bits.Len64(mant); b < 55 { mant = mant << uint(55-b) e2 += b - 55 } // Choose an exponent such that rounded mant*(2^e2)*(10^q) has // at least prec decimal digits, i.e // mant*(2^e2)*(10^q) >= 10^(prec-1) // Because mant >= 2^54, it is enough to choose: // 2^(e2+54) >= 10^(-q+prec-1) // or q = -mulByLog2Log10(e2+54) + prec - 1 // // The minimal required exponent is -mulByLog2Log10(1025)+18 = -291 // The maximal required exponent is mulByLog2Log10(1074)+18 = 342 q := -mulByLog2Log10(e2+54) + prec - 1 // Now compute mant*(2^e2)*(10^q). // Is it an exact computation? // Only small positive powers of 10 are exact (5^55 has 128 bits). exact := q <= 55 && q >= 0 di, dexp2, d0 := mult128bitPow10(mant, e2, q) if dexp2 >= 0 { panic("not enough significant bits after mult128bitPow10") } // As a special case, computation might still be exact, if exponent // was negative and if it amounts to computing an exact division. // In that case, we ignore all lower bits. // Note that division by 10^23 cannot be exact as 5^23 has 54 bits. if q < 0 && q >= -22 && divisibleByPower5(mant, -q) { exact = true d0 = true } // Remove extra lower bits and keep rounding info. extra := uint(-dexp2) extraMask := uint64(1<>extra, di&extraMask roundUp := false if exact { // If we computed an exact product, d + 1/2 // should round to d+1 if 'd' is odd. roundUp = dfrac > 1<<(extra-1) || (dfrac == 1<<(extra-1) && !d0) || (dfrac == 1<<(extra-1) && d0 && di&1 == 1) } else { // otherwise, d+1/2 always rounds up because // we truncated below. roundUp = dfrac>>(extra-1) == 1 } if dfrac != 0 { d0 = false } // Proceed to the requested number of digits formatDecimal(d, di, !d0, roundUp, prec) // Adjust exponent d.dp -= q } var uint64pow10 = [...]uint64{ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, } // formatDecimal fills d with at most prec decimal digits // of mantissa m. The boolean trunc indicates whether m // is truncated compared to the original number being formatted. func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) { max := uint64pow10[prec] trimmed := 0 for m >= max { a, b := m/10, m%10 m = a trimmed++ if b > 5 { roundUp = true } else if b < 5 { roundUp = false } else { // b == 5 // round up if there are trailing digits, // or if the new value of m is odd (round-to-even convention) roundUp = trunc || m&1 == 1 } if b != 0 { trunc = true } } if roundUp { m++ } if m >= max { // Happens if di was originally 99999....xx m /= 10 trimmed++ } // render digits (similar to formatBits) n := uint(prec) d.nd = prec v := m for v >= 100 { var v1, v2 uint64 if v>>32 == 0 { v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100) } else { v1, v2 = v/100, v%100 } n -= 2 d.d[n+1] = smallsString[2*v2+1] d.d[n+0] = smallsString[2*v2+0] v = v1 } if v > 0 { n-- d.d[n] = smallsString[2*v+1] } if v >= 10 { n-- d.d[n] = smallsString[2*v] } for d.d[d.nd-1] == '0' { d.nd-- trimmed++ } d.dp = d.nd + trimmed } // ryuFtoaShortest formats mant*2^exp with prec decimal digits. func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) { if mant == 0 { d.nd, d.dp = 0, 0 return } // If input is an exact integer with fewer bits than the mantissa, // the previous and next integer are not admissible representations. if exp <= 0 && bits.TrailingZeros64(mant) >= -exp { mant >>= uint(-exp) ryuDigits(d, mant, mant, mant, true, false) return } ml, mc, mu, e2 := computeBounds(mant, exp, flt) if e2 == 0 { ryuDigits(d, ml, mc, mu, true, false) return } // Find 10^q *larger* than 2^-e2 q := mulByLog2Log10(-e2) + 1 // We are going to multiply by 10^q using 128-bit arithmetic. // The exponent is the same for all 3 numbers. var dl, dc, du uint64 var dl0, dc0, du0 bool if flt == &float32info { var dl32, dc32, du32 uint32 dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q) dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q) du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q) dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32) } else { dl, _, dl0 = mult128bitPow10(ml, e2, q) dc, _, dc0 = mult128bitPow10(mc, e2, q) du, e2, du0 = mult128bitPow10(mu, e2, q) } if e2 >= 0 { panic("not enough significant bits after mult128bitPow10") } // Is it an exact computation? if q > 55 { // Large positive powers of ten are not exact dl0, dc0, du0 = false, false, false } if q < 0 && q >= -24 { // Division by a power of ten may be exact. // (note that 5^25 is a 59-bit number so division by 5^25 is never exact). if divisibleByPower5(ml, -q) { dl0 = true } if divisibleByPower5(mc, -q) { dc0 = true } if divisibleByPower5(mu, -q) { du0 = true } } // Express the results (dl, dc, du)*2^e2 as integers. // Extra bits must be removed and rounding hints computed. extra := uint(-e2) extraMask := uint64(1<>extra, dl&extraMask dc, fracc := dc>>extra, dc&extraMask du, fracu := du>>extra, du&extraMask // Is it allowed to use 'du' as a result? // It is always allowed when it is truncated, but also // if it is exact and the original binary mantissa is even // When disallowed, we can subtract 1. uok := !du0 || fracu > 0 if du0 && fracu == 0 { uok = mant&1 == 0 } if !uok { du-- } // Is 'dc' the correctly rounded base 10 mantissa? // The correct rounding might be dc+1 cup := false // don't round up. if dc0 { // If we computed an exact product, the half integer // should round to next (even) integer if 'dc' is odd. cup = fracc > 1<<(extra-1) || (fracc == 1<<(extra-1) && dc&1 == 1) } else { // otherwise, the result is a lower truncation of the ideal // result. cup = fracc>>(extra-1) == 1 } // Is 'dl' an allowed representation? // Only if it is an exact value, and if the original binary mantissa // was even. lok := dl0 && fracl == 0 && (mant&1 == 0) if !lok { dl++ } // We need to remember whether the trimmed digits of 'dc' are zero. c0 := dc0 && fracc == 0 // render digits ryuDigits(d, dl, dc, du, c0, cup) d.dp -= q } // mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in // the range -1600 <= x && x <= +1600. // // The range restriction lets us work in faster integer arithmetic instead of // slower floating point arithmetic. Correctness is verified by unit tests. func mulByLog2Log10(x int) int { // log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18 return (x * 78913) >> 18 } // mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in // the range -500 <= x && x <= +500. // // The range restriction lets us work in faster integer arithmetic instead of // slower floating point arithmetic. Correctness is verified by unit tests. func mulByLog10Log2(x int) int { // log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15 return (x * 108853) >> 15 } // computeBounds returns a floating-point vector (l, c, u)×2^e2 // where the mantissas are 55-bit (or 26-bit) integers, describing the interval // represented by the input float64 or float32. func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) { if mant != 1< 5e8) || (clo == 5e8 && cup) ryuDigits32(d, lhi, chi, uhi, c0, cup, 8) d.dp += 9 } else { d.nd = 0 // emit high part n := uint(9) for v := chi; v > 0; { v1, v2 := v/10, v%10 v = v1 n-- d.d[n] = byte(v2 + '0') } d.d = d.d[n:] d.nd = int(9 - n) // emit low part ryuDigits32(d, llo, clo, ulo, c0, cup, d.nd+8) } // trim trailing zeros for d.nd > 0 && d.d[d.nd-1] == '0' { d.nd-- } // trim initial zeros for d.nd > 0 && d.d[0] == '0' { d.nd-- d.dp-- d.d = d.d[1:] } } // ryuDigits32 emits decimal digits for a number less than 1e9. func ryuDigits32(d *decimalSlice, lower, central, upper uint32, c0, cup bool, endindex int) { if upper == 0 { d.dp = endindex + 1 return } trimmed := 0 // Remember last trimmed digit to check for round-up. // c0 will be used to remember zeroness of following digits. cNextDigit := 0 for upper > 0 { // Repeatedly compute: // l = Ceil(lower / 10^k) // c = Round(central / 10^k) // u = Floor(upper / 10^k) // and stop when c goes out of the (l, u) interval. l := (lower + 9) / 10 c, cdigit := central/10, central%10 u := upper / 10 if l > u { // don't trim the last digit as it is forbidden to go below l // other, trim and exit now. break } // Check that we didn't cross the lower boundary. // The case where l < u but c == l-1 is essentially impossible, // but may happen if: // lower = ..11 // central = ..19 // upper = ..31 // and means that 'central' is very close but less than // an integer ending with many zeros, and usually // the "round-up" logic hides the problem. if l == c+1 && c < u { c++ cdigit = 0 cup = false } trimmed++ // Remember trimmed digits of c c0 = c0 && cNextDigit == 0 cNextDigit = int(cdigit) lower, central, upper = l, c, u } // should we round up? if trimmed > 0 { cup = cNextDigit > 5 || (cNextDigit == 5 && !c0) || (cNextDigit == 5 && c0 && central&1 == 1) } if central < upper && cup { central++ } // We know where the number ends, fill directly endindex -= trimmed v := central n := endindex for n > d.nd { v1, v2 := v/100, v%100 d.d[n] = smallsString[2*v2+1] d.d[n-1] = smallsString[2*v2+0] n -= 2 v = v1 } if n == d.nd { d.d[n] = byte(v + '0') } d.nd = endindex + 1 d.dp = d.nd + trimmed } // mult64bitPow10 takes a floating-point input with a 25-bit // mantissa and multiplies it with 10^q. The resulting mantissa // is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables. // It is typically 31 or 32-bit wide. // The returned boolean is true if all trimmed bits were zero. // // That is: // // m*2^e2 * round(10^q) = resM * 2^resE + ε // exact = ε == 0 func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) { if q == 0 { // P == 1<<63 return m << 6, e2 - 6, true } if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { // This never happens due to the range of float32/float64 exponent panic("mult64bitPow10: power of 10 is out of range") } pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1] if q < 0 { // Inverse powers of ten must be rounded up. pow += 1 } hi, lo := bits.Mul64(uint64(m), pow) e2 += mulByLog10Log2(q) - 63 + 57 return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0 } // mult128bitPow10 takes a floating-point input with a 55-bit // mantissa and multiplies it with 10^q. The resulting mantissa // is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables. // It is typically 63 or 64-bit wide. // The returned boolean is true is all trimmed bits were zero. // // That is: // // m*2^e2 * round(10^q) = resM * 2^resE + ε // exact = ε == 0 func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) { if q == 0 { // P == 1<<127 return m << 8, e2 - 8, true } if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { // This never happens due to the range of float32/float64 exponent panic("mult128bitPow10: power of 10 is out of range") } pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10] if q < 0 { // Inverse powers of ten must be rounded up. pow[0] += 1 } e2 += mulByLog10Log2(q) - 127 + 119 // long multiplication l1, l0 := bits.Mul64(m, pow[0]) h1, h0 := bits.Mul64(m, pow[1]) mid, carry := bits.Add64(l1, h0, 0) h1 += carry return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0 } func divisibleByPower5(m uint64, k int) bool { if m == 0 { return true } for i := 0; i < k; i++ { if m%5 != 0 { return false } m /= 5 } return true } // divmod1e9 computes quotient and remainder of division by 1e9, // avoiding runtime uint64 division on 32-bit platforms. func divmod1e9(x uint64) (uint32, uint32) { if !host32bit { return uint32(x / 1e9), uint32(x % 1e9) } // Use the same sequence of operations as the amd64 compiler. hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9 q := hi >> 28 return uint32(q), uint32(x - q*1e9) }