Source file src/time/time.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  //
    10  // # Monotonic Clocks
    11  //
    12  // Operating systems provide both a “wall clock,” which is subject to
    13  // changes for clock synchronization, and a “monotonic clock,” which is
    14  // not. The general rule is that the wall clock is for telling time and
    15  // the monotonic clock is for measuring time. Rather than split the API,
    16  // in this package the Time returned by [time.Now] contains both a wall
    17  // clock reading and a monotonic clock reading; later time-telling
    18  // operations use the wall clock reading, but later time-measuring
    19  // operations, specifically comparisons and subtractions, use the
    20  // monotonic clock reading.
    21  //
    22  // For example, this code always computes a positive elapsed time of
    23  // approximately 20 milliseconds, even if the wall clock is changed during
    24  // the operation being timed:
    25  //
    26  //	start := time.Now()
    27  //	... operation that takes 20 milliseconds ...
    28  //	t := time.Now()
    29  //	elapsed := t.Sub(start)
    30  //
    31  // Other idioms, such as [time.Since](start), [time.Until](deadline), and
    32  // time.Now().Before(deadline), are similarly robust against wall clock
    33  // resets.
    34  //
    35  // The rest of this section gives the precise details of how operations
    36  // use monotonic clocks, but understanding those details is not required
    37  // to use this package.
    38  //
    39  // The Time returned by time.Now contains a monotonic clock reading.
    40  // If Time t has a monotonic clock reading, t.Add adds the same duration to
    41  // both the wall clock and monotonic clock readings to compute the result.
    42  // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
    43  // computations, they always strip any monotonic clock reading from their results.
    44  // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
    45  // of the wall time, they also strip any monotonic clock reading from their results.
    46  // The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
    47  //
    48  // If Times t and u both contain monotonic clock readings, the operations
    49  // t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out
    50  // using the monotonic clock readings alone, ignoring the wall clock
    51  // readings. If either t or u contains no monotonic clock reading, these
    52  // operations fall back to using the wall clock readings.
    53  //
    54  // On some systems the monotonic clock will stop if the computer goes to sleep.
    55  // On such a system, t.Sub(u) may not accurately reflect the actual
    56  // time that passed between t and u.
    57  //
    58  // Because the monotonic clock reading has no meaning outside
    59  // the current process, the serialized forms generated by t.GobEncode,
    60  // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    61  // clock reading, and t.Format provides no format for it. Similarly, the
    62  // constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix],
    63  // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    64  // t.UnmarshalJSON, and t.UnmarshalText always create times with
    65  // no monotonic clock reading.
    66  //
    67  // The monotonic clock reading exists only in [Time] values. It is not
    68  // a part of [Duration] values or the Unix times returned by t.Unix and
    69  // friends.
    70  //
    71  // Note that the Go == operator compares not just the time instant but
    72  // also the [Location] and the monotonic clock reading. See the
    73  // documentation for the Time type for a discussion of equality
    74  // testing for Time values.
    75  //
    76  // For debugging, the result of t.String does include the monotonic
    77  // clock reading if present. If t != u because of different monotonic clock readings,
    78  // that difference will be visible when printing t.String() and u.String().
    79  //
    80  // # Timer Resolution
    81  //
    82  // [Timer] resolution varies depending on the Go runtime, the operating system
    83  // and the underlying hardware.
    84  // On Unix, the resolution is ~1ms.
    85  // On Windows version 1803 and newer, the resolution is ~0.5ms.
    86  // On older Windows versions, the default resolution is ~16ms, but
    87  // a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod].
    88  package time
    89  
    90  import (
    91  	"errors"
    92  	_ "unsafe" // for go:linkname
    93  )
    94  
    95  // A Time represents an instant in time with nanosecond precision.
    96  //
    97  // Programs using times should typically store and pass them as values,
    98  // not pointers. That is, time variables and struct fields should be of
    99  // type [time.Time], not *time.Time.
   100  //
   101  // A Time value can be used by multiple goroutines simultaneously except
   102  // that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and
   103  // [Time.UnmarshalText] are not concurrency-safe.
   104  //
   105  // Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods.
   106  // The [Time.Sub] method subtracts two instants, producing a [Duration].
   107  // The [Time.Add] method adds a Time and a Duration, producing a Time.
   108  //
   109  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
   110  // As this time is unlikely to come up in practice, the [Time.IsZero] method gives
   111  // a simple way of detecting a time that has not been initialized explicitly.
   112  //
   113  // Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a
   114  // Time with a specific Location. Changing the Location of a Time value with
   115  // these methods does not change the actual instant it represents, only the time
   116  // zone in which to interpret it.
   117  //
   118  // Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary],
   119  // [Time.MarshalJSON], and [Time.MarshalText] methods store the [Time.Location]'s offset, but not
   120  // the location name. They therefore lose information about Daylight Saving Time.
   121  //
   122  // In addition to the required “wall clock” reading, a Time may contain an optional
   123  // reading of the current process's monotonic clock, to provide additional precision
   124  // for comparison or subtraction.
   125  // See the “Monotonic Clocks” section in the package documentation for details.
   126  //
   127  // Note that the Go == operator compares not just the time instant but also the
   128  // Location and the monotonic clock reading. Therefore, Time values should not
   129  // be used as map or database keys without first guaranteeing that the
   130  // identical Location has been set for all values, which can be achieved
   131  // through use of the UTC or Local method, and that the monotonic clock reading
   132  // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
   133  // to t == u, since t.Equal uses the most accurate comparison available and
   134  // correctly handles the case when only one of its arguments has a monotonic
   135  // clock reading.
   136  type Time struct {
   137  	// wall and ext encode the wall time seconds, wall time nanoseconds,
   138  	// and optional monotonic clock reading in nanoseconds.
   139  	//
   140  	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   141  	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   142  	// The nanoseconds field is in the range [0, 999999999].
   143  	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   144  	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   145  	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   146  	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   147  	// signed 64-bit monotonic clock reading, nanoseconds since process start.
   148  	wall uint64
   149  	ext  int64
   150  
   151  	// loc specifies the Location that should be used to
   152  	// determine the minute, hour, month, day, and year
   153  	// that correspond to this Time.
   154  	// The nil location means UTC.
   155  	// All UTC times are represented with loc==nil, never loc==&utcLoc.
   156  	loc *Location
   157  }
   158  
   159  const (
   160  	hasMonotonic = 1 << 63
   161  	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   162  	minWall      = wallToInternal               // year 1885
   163  	nsecMask     = 1<<30 - 1
   164  	nsecShift    = 30
   165  )
   166  
   167  // These helpers for manipulating the wall and monotonic clock readings
   168  // take pointer receivers, even when they don't modify the time,
   169  // to make them cheaper to call.
   170  
   171  // nsec returns the time's nanoseconds.
   172  func (t *Time) nsec() int32 {
   173  	return int32(t.wall & nsecMask)
   174  }
   175  
   176  // sec returns the time's seconds since Jan 1 year 1.
   177  func (t *Time) sec() int64 {
   178  	if t.wall&hasMonotonic != 0 {
   179  		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   180  	}
   181  	return t.ext
   182  }
   183  
   184  // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   185  func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   186  
   187  // addSec adds d seconds to the time.
   188  func (t *Time) addSec(d int64) {
   189  	if t.wall&hasMonotonic != 0 {
   190  		sec := int64(t.wall << 1 >> (nsecShift + 1))
   191  		dsec := sec + d
   192  		if 0 <= dsec && dsec <= 1<<33-1 {
   193  			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   194  			return
   195  		}
   196  		// Wall second now out of range for packed field.
   197  		// Move to ext.
   198  		t.stripMono()
   199  	}
   200  
   201  	// Check if the sum of t.ext and d overflows and handle it properly.
   202  	sum := t.ext + d
   203  	if (sum > t.ext) == (d > 0) {
   204  		t.ext = sum
   205  	} else if d > 0 {
   206  		t.ext = 1<<63 - 1
   207  	} else {
   208  		t.ext = -(1<<63 - 1)
   209  	}
   210  }
   211  
   212  // setLoc sets the location associated with the time.
   213  func (t *Time) setLoc(loc *Location) {
   214  	if loc == &utcLoc {
   215  		loc = nil
   216  	}
   217  	t.stripMono()
   218  	t.loc = loc
   219  }
   220  
   221  // stripMono strips the monotonic clock reading in t.
   222  func (t *Time) stripMono() {
   223  	if t.wall&hasMonotonic != 0 {
   224  		t.ext = t.sec()
   225  		t.wall &= nsecMask
   226  	}
   227  }
   228  
   229  // setMono sets the monotonic clock reading in t.
   230  // If t cannot hold a monotonic clock reading,
   231  // because its wall time is too large,
   232  // setMono is a no-op.
   233  func (t *Time) setMono(m int64) {
   234  	if t.wall&hasMonotonic == 0 {
   235  		sec := t.ext
   236  		if sec < minWall || maxWall < sec {
   237  			return
   238  		}
   239  		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   240  	}
   241  	t.ext = m
   242  }
   243  
   244  // mono returns t's monotonic clock reading.
   245  // It returns 0 for a missing reading.
   246  // This function is used only for testing,
   247  // so it's OK that technically 0 is a valid
   248  // monotonic clock reading as well.
   249  func (t *Time) mono() int64 {
   250  	if t.wall&hasMonotonic == 0 {
   251  		return 0
   252  	}
   253  	return t.ext
   254  }
   255  
   256  // After reports whether the time instant t is after u.
   257  func (t Time) After(u Time) bool {
   258  	if t.wall&u.wall&hasMonotonic != 0 {
   259  		return t.ext > u.ext
   260  	}
   261  	ts := t.sec()
   262  	us := u.sec()
   263  	return ts > us || ts == us && t.nsec() > u.nsec()
   264  }
   265  
   266  // Before reports whether the time instant t is before u.
   267  func (t Time) Before(u Time) bool {
   268  	if t.wall&u.wall&hasMonotonic != 0 {
   269  		return t.ext < u.ext
   270  	}
   271  	ts := t.sec()
   272  	us := u.sec()
   273  	return ts < us || ts == us && t.nsec() < u.nsec()
   274  }
   275  
   276  // Compare compares the time instant t with u. If t is before u, it returns -1;
   277  // if t is after u, it returns +1; if they're the same, it returns 0.
   278  func (t Time) Compare(u Time) int {
   279  	var tc, uc int64
   280  	if t.wall&u.wall&hasMonotonic != 0 {
   281  		tc, uc = t.ext, u.ext
   282  	} else {
   283  		tc, uc = t.sec(), u.sec()
   284  		if tc == uc {
   285  			tc, uc = int64(t.nsec()), int64(u.nsec())
   286  		}
   287  	}
   288  	switch {
   289  	case tc < uc:
   290  		return -1
   291  	case tc > uc:
   292  		return +1
   293  	}
   294  	return 0
   295  }
   296  
   297  // Equal reports whether t and u represent the same time instant.
   298  // Two times can be equal even if they are in different locations.
   299  // For example, 6:00 +0200 and 4:00 UTC are Equal.
   300  // See the documentation on the Time type for the pitfalls of using == with
   301  // Time values; most code should use Equal instead.
   302  func (t Time) Equal(u Time) bool {
   303  	if t.wall&u.wall&hasMonotonic != 0 {
   304  		return t.ext == u.ext
   305  	}
   306  	return t.sec() == u.sec() && t.nsec() == u.nsec()
   307  }
   308  
   309  // A Month specifies a month of the year (January = 1, ...).
   310  type Month int
   311  
   312  const (
   313  	January Month = 1 + iota
   314  	February
   315  	March
   316  	April
   317  	May
   318  	June
   319  	July
   320  	August
   321  	September
   322  	October
   323  	November
   324  	December
   325  )
   326  
   327  // String returns the English name of the month ("January", "February", ...).
   328  func (m Month) String() string {
   329  	if January <= m && m <= December {
   330  		return longMonthNames[m-1]
   331  	}
   332  	buf := make([]byte, 20)
   333  	n := fmtInt(buf, uint64(m))
   334  	return "%!Month(" + string(buf[n:]) + ")"
   335  }
   336  
   337  // A Weekday specifies a day of the week (Sunday = 0, ...).
   338  type Weekday int
   339  
   340  const (
   341  	Sunday Weekday = iota
   342  	Monday
   343  	Tuesday
   344  	Wednesday
   345  	Thursday
   346  	Friday
   347  	Saturday
   348  )
   349  
   350  // String returns the English name of the day ("Sunday", "Monday", ...).
   351  func (d Weekday) String() string {
   352  	if Sunday <= d && d <= Saturday {
   353  		return longDayNames[d]
   354  	}
   355  	buf := make([]byte, 20)
   356  	n := fmtInt(buf, uint64(d))
   357  	return "%!Weekday(" + string(buf[n:]) + ")"
   358  }
   359  
   360  // Computations on time.
   361  //
   362  // The zero value for a Time is defined to be
   363  //	January 1, year 1, 00:00:00.000000000 UTC
   364  // which (1) looks like a zero, or as close as you can get in a date
   365  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   366  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   367  // non-negative year even in time zones west of UTC, unlike 1-1-0
   368  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   369  //
   370  // The zero Time value does not force a specific epoch for the time
   371  // representation. For example, to use the Unix epoch internally, we
   372  // could define that to distinguish a zero value from Jan 1 1970, that
   373  // time would be represented by sec=-1, nsec=1e9. However, it does
   374  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   375  // epoch, and that's what we do.
   376  //
   377  // The Add and Sub computations are oblivious to the choice of epoch.
   378  //
   379  // The presentation computations - year, month, minute, and so on - all
   380  // rely heavily on division and modulus by positive constants. For
   381  // calendrical calculations we want these divisions to round down, even
   382  // for negative values, so that the remainder is always positive, but
   383  // Go's division (like most hardware division instructions) rounds to
   384  // zero. We can still do those computations and then adjust the result
   385  // for a negative numerator, but it's annoying to write the adjustment
   386  // over and over. Instead, we can change to a different epoch so long
   387  // ago that all the times we care about will be positive, and then round
   388  // to zero and round down coincide. These presentation routines already
   389  // have to add the zone offset, so adding the translation to the
   390  // alternate epoch is cheap. For example, having a non-negative time t
   391  // means that we can write
   392  //
   393  //	sec = t % 60
   394  //
   395  // instead of
   396  //
   397  //	sec = t % 60
   398  //	if sec < 0 {
   399  //		sec += 60
   400  //	}
   401  //
   402  // everywhere.
   403  //
   404  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   405  // printed for 1970-2369 will apply as well to 2370-2769. Even the days
   406  // of the week match up. It simplifies the computations to choose the
   407  // cycle boundaries so that the exceptional years are always delayed as
   408  // long as possible. That means choosing a year equal to 1 mod 400, so
   409  // that the first leap year is the 4th year, the first missed leap year
   410  // is the 100th year, and the missed missed leap year is the 400th year.
   411  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   412  // for 2401-2800.
   413  //
   414  // Finally, it's convenient if the delta between the Unix epoch and
   415  // long-ago epoch is representable by an int64 constant.
   416  //
   417  // These three considerations—choose an epoch as early as possible, that
   418  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   419  // earlier than 1970—bring us to the year -292277022399. We refer to
   420  // this year as the absolute zero year, and to times measured as a uint64
   421  // seconds since this year as absolute times.
   422  //
   423  // Times measured as an int64 seconds since the year 1—the representation
   424  // used for Time's sec field—are called internal times.
   425  //
   426  // Times measured as an int64 seconds since the year 1970 are called Unix
   427  // times.
   428  //
   429  // It is tempting to just use the year 1 as the absolute epoch, defining
   430  // that the routines are only valid for years >= 1. However, the
   431  // routines would then be invalid when displaying the epoch in time zones
   432  // west of UTC, since it is year 0. It doesn't seem tenable to say that
   433  // printing the zero time correctly isn't supported in half the time
   434  // zones. By comparison, it's reasonable to mishandle some times in
   435  // the year -292277022399.
   436  //
   437  // All this is opaque to clients of the API and can be changed if a
   438  // better implementation presents itself.
   439  
   440  const (
   441  	// The unsigned zero year for internal calculations.
   442  	// Must be 1 mod 400, and times before it will not compute correctly,
   443  	// but otherwise can be changed at will.
   444  	absoluteZeroYear = -292277022399
   445  
   446  	// The year of the zero Time.
   447  	// Assumed by the unixToInternal computation below.
   448  	internalYear = 1
   449  
   450  	// Offsets to convert between internal and absolute or Unix times.
   451  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   452  	internalToAbsolute       = -absoluteToInternal
   453  
   454  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   455  	internalToUnix int64 = -unixToInternal
   456  
   457  	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   458  )
   459  
   460  // IsZero reports whether t represents the zero time instant,
   461  // January 1, year 1, 00:00:00 UTC.
   462  func (t Time) IsZero() bool {
   463  	return t.sec() == 0 && t.nsec() == 0
   464  }
   465  
   466  // abs returns the time t as an absolute time, adjusted by the zone offset.
   467  // It is called when computing a presentation property like Month or Hour.
   468  func (t Time) abs() uint64 {
   469  	l := t.loc
   470  	// Avoid function calls when possible.
   471  	if l == nil || l == &localLoc {
   472  		l = l.get()
   473  	}
   474  	sec := t.unixSec()
   475  	if l != &utcLoc {
   476  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   477  			sec += int64(l.cacheZone.offset)
   478  		} else {
   479  			_, offset, _, _, _ := l.lookup(sec)
   480  			sec += int64(offset)
   481  		}
   482  	}
   483  	return uint64(sec + (unixToInternal + internalToAbsolute))
   484  }
   485  
   486  // locabs is a combination of the Zone and abs methods,
   487  // extracting both return values from a single zone lookup.
   488  func (t Time) locabs() (name string, offset int, abs uint64) {
   489  	l := t.loc
   490  	if l == nil || l == &localLoc {
   491  		l = l.get()
   492  	}
   493  	// Avoid function call if we hit the local time cache.
   494  	sec := t.unixSec()
   495  	if l != &utcLoc {
   496  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   497  			name = l.cacheZone.name
   498  			offset = l.cacheZone.offset
   499  		} else {
   500  			name, offset, _, _, _ = l.lookup(sec)
   501  		}
   502  		sec += int64(offset)
   503  	} else {
   504  		name = "UTC"
   505  	}
   506  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   507  	return
   508  }
   509  
   510  // Date returns the year, month, and day in which t occurs.
   511  func (t Time) Date() (year int, month Month, day int) {
   512  	year, month, day, _ = t.date(true)
   513  	return
   514  }
   515  
   516  // Year returns the year in which t occurs.
   517  func (t Time) Year() int {
   518  	year, _, _, _ := t.date(false)
   519  	return year
   520  }
   521  
   522  // Month returns the month of the year specified by t.
   523  func (t Time) Month() Month {
   524  	_, month, _, _ := t.date(true)
   525  	return month
   526  }
   527  
   528  // Day returns the day of the month specified by t.
   529  func (t Time) Day() int {
   530  	_, _, day, _ := t.date(true)
   531  	return day
   532  }
   533  
   534  // Weekday returns the day of the week specified by t.
   535  func (t Time) Weekday() Weekday {
   536  	return absWeekday(t.abs())
   537  }
   538  
   539  // absWeekday is like Weekday but operates on an absolute time.
   540  func absWeekday(abs uint64) Weekday {
   541  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   542  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   543  	return Weekday(int(sec) / secondsPerDay)
   544  }
   545  
   546  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   547  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   548  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   549  // of year n+1.
   550  func (t Time) ISOWeek() (year, week int) {
   551  	// According to the rule that the first calendar week of a calendar year is
   552  	// the week including the first Thursday of that year, and that the last one is
   553  	// the week immediately preceding the first calendar week of the next calendar year.
   554  	// See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details.
   555  
   556  	// weeks start with Monday
   557  	// Monday Tuesday Wednesday Thursday Friday Saturday Sunday
   558  	// 1      2       3         4        5      6        7
   559  	// +3     +2      +1        0        -1     -2       -3
   560  	// the offset to Thursday
   561  	abs := t.abs()
   562  	d := Thursday - absWeekday(abs)
   563  	// handle Sunday
   564  	if d == 4 {
   565  		d = -3
   566  	}
   567  	// find the Thursday of the calendar week
   568  	abs += uint64(d) * secondsPerDay
   569  	year, _, _, yday := absDate(abs, false)
   570  	return year, yday/7 + 1
   571  }
   572  
   573  // Clock returns the hour, minute, and second within the day specified by t.
   574  func (t Time) Clock() (hour, min, sec int) {
   575  	return absClock(t.abs())
   576  }
   577  
   578  // absClock is like clock but operates on an absolute time.
   579  func absClock(abs uint64) (hour, min, sec int) {
   580  	sec = int(abs % secondsPerDay)
   581  	hour = sec / secondsPerHour
   582  	sec -= hour * secondsPerHour
   583  	min = sec / secondsPerMinute
   584  	sec -= min * secondsPerMinute
   585  	return
   586  }
   587  
   588  // Hour returns the hour within the day specified by t, in the range [0, 23].
   589  func (t Time) Hour() int {
   590  	return int(t.abs()%secondsPerDay) / secondsPerHour
   591  }
   592  
   593  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   594  func (t Time) Minute() int {
   595  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   596  }
   597  
   598  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   599  func (t Time) Second() int {
   600  	return int(t.abs() % secondsPerMinute)
   601  }
   602  
   603  // Nanosecond returns the nanosecond offset within the second specified by t,
   604  // in the range [0, 999999999].
   605  func (t Time) Nanosecond() int {
   606  	return int(t.nsec())
   607  }
   608  
   609  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   610  // and [1,366] in leap years.
   611  func (t Time) YearDay() int {
   612  	_, _, _, yday := t.date(false)
   613  	return yday + 1
   614  }
   615  
   616  // A Duration represents the elapsed time between two instants
   617  // as an int64 nanosecond count. The representation limits the
   618  // largest representable duration to approximately 290 years.
   619  type Duration int64
   620  
   621  const (
   622  	minDuration Duration = -1 << 63
   623  	maxDuration Duration = 1<<63 - 1
   624  )
   625  
   626  // Common durations. There is no definition for units of Day or larger
   627  // to avoid confusion across daylight savings time zone transitions.
   628  //
   629  // To count the number of units in a [Duration], divide:
   630  //
   631  //	second := time.Second
   632  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   633  //
   634  // To convert an integer number of units to a Duration, multiply:
   635  //
   636  //	seconds := 10
   637  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   638  const (
   639  	Nanosecond  Duration = 1
   640  	Microsecond          = 1000 * Nanosecond
   641  	Millisecond          = 1000 * Microsecond
   642  	Second               = 1000 * Millisecond
   643  	Minute               = 60 * Second
   644  	Hour                 = 60 * Minute
   645  )
   646  
   647  // String returns a string representing the duration in the form "72h3m0.5s".
   648  // Leading zero units are omitted. As a special case, durations less than one
   649  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   650  // that the leading digit is non-zero. The zero duration formats as 0s.
   651  func (d Duration) String() string {
   652  	// This is inlinable to take advantage of "function outlining".
   653  	// Thus, the caller can decide whether a string must be heap allocated.
   654  	var arr [32]byte
   655  	n := d.format(&arr)
   656  	return string(arr[n:])
   657  }
   658  
   659  // format formats the representation of d into the end of buf and
   660  // returns the offset of the first character.
   661  func (d Duration) format(buf *[32]byte) int {
   662  	// Largest time is 2540400h10m10.000000000s
   663  	w := len(buf)
   664  
   665  	u := uint64(d)
   666  	neg := d < 0
   667  	if neg {
   668  		u = -u
   669  	}
   670  
   671  	if u < uint64(Second) {
   672  		// Special case: if duration is smaller than a second,
   673  		// use smaller units, like 1.2ms
   674  		var prec int
   675  		w--
   676  		buf[w] = 's'
   677  		w--
   678  		switch {
   679  		case u == 0:
   680  			buf[w] = '0'
   681  			return w
   682  		case u < uint64(Microsecond):
   683  			// print nanoseconds
   684  			prec = 0
   685  			buf[w] = 'n'
   686  		case u < uint64(Millisecond):
   687  			// print microseconds
   688  			prec = 3
   689  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   690  			w-- // Need room for two bytes.
   691  			copy(buf[w:], "µ")
   692  		default:
   693  			// print milliseconds
   694  			prec = 6
   695  			buf[w] = 'm'
   696  		}
   697  		w, u = fmtFrac(buf[:w], u, prec)
   698  		w = fmtInt(buf[:w], u)
   699  	} else {
   700  		w--
   701  		buf[w] = 's'
   702  
   703  		w, u = fmtFrac(buf[:w], u, 9)
   704  
   705  		// u is now integer seconds
   706  		w = fmtInt(buf[:w], u%60)
   707  		u /= 60
   708  
   709  		// u is now integer minutes
   710  		if u > 0 {
   711  			w--
   712  			buf[w] = 'm'
   713  			w = fmtInt(buf[:w], u%60)
   714  			u /= 60
   715  
   716  			// u is now integer hours
   717  			// Stop at hours because days can be different lengths.
   718  			if u > 0 {
   719  				w--
   720  				buf[w] = 'h'
   721  				w = fmtInt(buf[:w], u)
   722  			}
   723  		}
   724  	}
   725  
   726  	if neg {
   727  		w--
   728  		buf[w] = '-'
   729  	}
   730  
   731  	return w
   732  }
   733  
   734  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   735  // tail of buf, omitting trailing zeros. It omits the decimal
   736  // point too when the fraction is 0. It returns the index where the
   737  // output bytes begin and the value v/10**prec.
   738  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   739  	// Omit trailing zeros up to and including decimal point.
   740  	w := len(buf)
   741  	print := false
   742  	for i := 0; i < prec; i++ {
   743  		digit := v % 10
   744  		print = print || digit != 0
   745  		if print {
   746  			w--
   747  			buf[w] = byte(digit) + '0'
   748  		}
   749  		v /= 10
   750  	}
   751  	if print {
   752  		w--
   753  		buf[w] = '.'
   754  	}
   755  	return w, v
   756  }
   757  
   758  // fmtInt formats v into the tail of buf.
   759  // It returns the index where the output begins.
   760  func fmtInt(buf []byte, v uint64) int {
   761  	w := len(buf)
   762  	if v == 0 {
   763  		w--
   764  		buf[w] = '0'
   765  	} else {
   766  		for v > 0 {
   767  			w--
   768  			buf[w] = byte(v%10) + '0'
   769  			v /= 10
   770  		}
   771  	}
   772  	return w
   773  }
   774  
   775  // Nanoseconds returns the duration as an integer nanosecond count.
   776  func (d Duration) Nanoseconds() int64 { return int64(d) }
   777  
   778  // Microseconds returns the duration as an integer microsecond count.
   779  func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
   780  
   781  // Milliseconds returns the duration as an integer millisecond count.
   782  func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
   783  
   784  // These methods return float64 because the dominant
   785  // use case is for printing a floating point number like 1.5s, and
   786  // a truncation to integer would make them not useful in those cases.
   787  // Splitting the integer and fraction ourselves guarantees that
   788  // converting the returned float64 to an integer rounds the same
   789  // way that a pure integer conversion would have, even in cases
   790  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   791  // differently.
   792  
   793  // Seconds returns the duration as a floating point number of seconds.
   794  func (d Duration) Seconds() float64 {
   795  	sec := d / Second
   796  	nsec := d % Second
   797  	return float64(sec) + float64(nsec)/1e9
   798  }
   799  
   800  // Minutes returns the duration as a floating point number of minutes.
   801  func (d Duration) Minutes() float64 {
   802  	min := d / Minute
   803  	nsec := d % Minute
   804  	return float64(min) + float64(nsec)/(60*1e9)
   805  }
   806  
   807  // Hours returns the duration as a floating point number of hours.
   808  func (d Duration) Hours() float64 {
   809  	hour := d / Hour
   810  	nsec := d % Hour
   811  	return float64(hour) + float64(nsec)/(60*60*1e9)
   812  }
   813  
   814  // Truncate returns the result of rounding d toward zero to a multiple of m.
   815  // If m <= 0, Truncate returns d unchanged.
   816  func (d Duration) Truncate(m Duration) Duration {
   817  	if m <= 0 {
   818  		return d
   819  	}
   820  	return d - d%m
   821  }
   822  
   823  // lessThanHalf reports whether x+x < y but avoids overflow,
   824  // assuming x and y are both positive (Duration is signed).
   825  func lessThanHalf(x, y Duration) bool {
   826  	return uint64(x)+uint64(x) < uint64(y)
   827  }
   828  
   829  // Round returns the result of rounding d to the nearest multiple of m.
   830  // The rounding behavior for halfway values is to round away from zero.
   831  // If the result exceeds the maximum (or minimum)
   832  // value that can be stored in a [Duration],
   833  // Round returns the maximum (or minimum) duration.
   834  // If m <= 0, Round returns d unchanged.
   835  func (d Duration) Round(m Duration) Duration {
   836  	if m <= 0 {
   837  		return d
   838  	}
   839  	r := d % m
   840  	if d < 0 {
   841  		r = -r
   842  		if lessThanHalf(r, m) {
   843  			return d + r
   844  		}
   845  		if d1 := d - m + r; d1 < d {
   846  			return d1
   847  		}
   848  		return minDuration // overflow
   849  	}
   850  	if lessThanHalf(r, m) {
   851  		return d - r
   852  	}
   853  	if d1 := d + m - r; d1 > d {
   854  		return d1
   855  	}
   856  	return maxDuration // overflow
   857  }
   858  
   859  // Abs returns the absolute value of d.
   860  // As a special case, [math.MinInt64] is converted to [math.MaxInt64].
   861  func (d Duration) Abs() Duration {
   862  	switch {
   863  	case d >= 0:
   864  		return d
   865  	case d == minDuration:
   866  		return maxDuration
   867  	default:
   868  		return -d
   869  	}
   870  }
   871  
   872  // Add returns the time t+d.
   873  func (t Time) Add(d Duration) Time {
   874  	dsec := int64(d / 1e9)
   875  	nsec := t.nsec() + int32(d%1e9)
   876  	if nsec >= 1e9 {
   877  		dsec++
   878  		nsec -= 1e9
   879  	} else if nsec < 0 {
   880  		dsec--
   881  		nsec += 1e9
   882  	}
   883  	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   884  	t.addSec(dsec)
   885  	if t.wall&hasMonotonic != 0 {
   886  		te := t.ext + int64(d)
   887  		if d < 0 && te > t.ext || d > 0 && te < t.ext {
   888  			// Monotonic clock reading now out of range; degrade to wall-only.
   889  			t.stripMono()
   890  		} else {
   891  			t.ext = te
   892  		}
   893  	}
   894  	return t
   895  }
   896  
   897  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   898  // value that can be stored in a [Duration], the maximum (or minimum) duration
   899  // will be returned.
   900  // To compute t-d for a duration d, use t.Add(-d).
   901  func (t Time) Sub(u Time) Duration {
   902  	if t.wall&u.wall&hasMonotonic != 0 {
   903  		return subMono(t.ext, u.ext)
   904  	}
   905  	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   906  	// Check for overflow or underflow.
   907  	switch {
   908  	case u.Add(d).Equal(t):
   909  		return d // d is correct
   910  	case t.Before(u):
   911  		return minDuration // t - u is negative out of range
   912  	default:
   913  		return maxDuration // t - u is positive out of range
   914  	}
   915  }
   916  
   917  func subMono(t, u int64) Duration {
   918  	d := Duration(t - u)
   919  	if d < 0 && t > u {
   920  		return maxDuration // t - u is positive out of range
   921  	}
   922  	if d > 0 && t < u {
   923  		return minDuration // t - u is negative out of range
   924  	}
   925  	return d
   926  }
   927  
   928  // Since returns the time elapsed since t.
   929  // It is shorthand for time.Now().Sub(t).
   930  func Since(t Time) Duration {
   931  	if t.wall&hasMonotonic != 0 {
   932  		// Common case optimization: if t has monotonic time, then Sub will use only it.
   933  		return subMono(runtimeNano()-startNano, t.ext)
   934  	}
   935  	return Now().Sub(t)
   936  }
   937  
   938  // Until returns the duration until t.
   939  // It is shorthand for t.Sub(time.Now()).
   940  func Until(t Time) Duration {
   941  	if t.wall&hasMonotonic != 0 {
   942  		// Common case optimization: if t has monotonic time, then Sub will use only it.
   943  		return subMono(t.ext, runtimeNano()-startNano)
   944  	}
   945  	return t.Sub(Now())
   946  }
   947  
   948  // AddDate returns the time corresponding to adding the
   949  // given number of years, months, and days to t.
   950  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   951  // returns March 4, 2010.
   952  //
   953  // Note that dates are fundamentally coupled to timezones, and calendrical
   954  // periods like days don't have fixed durations. AddDate uses the Location of
   955  // the Time value to determine these durations. That means that the same
   956  // AddDate arguments can produce a different shift in absolute time depending on
   957  // the base Time value and its Location. For example, AddDate(0, 0, 1) applied
   958  // to 12:00 on March 27 always returns 12:00 on March 28. At some locations and
   959  // in some years this is a 24 hour shift. In others it's a 23 hour shift due to
   960  // daylight savings time transitions.
   961  //
   962  // AddDate normalizes its result in the same way that Date does,
   963  // so, for example, adding one month to October 31 yields
   964  // December 1, the normalized form for November 31.
   965  func (t Time) AddDate(years int, months int, days int) Time {
   966  	year, month, day := t.Date()
   967  	hour, min, sec := t.Clock()
   968  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
   969  }
   970  
   971  const (
   972  	secondsPerMinute = 60
   973  	secondsPerHour   = 60 * secondsPerMinute
   974  	secondsPerDay    = 24 * secondsPerHour
   975  	secondsPerWeek   = 7 * secondsPerDay
   976  	daysPer400Years  = 365*400 + 97
   977  	daysPer100Years  = 365*100 + 24
   978  	daysPer4Years    = 365*4 + 1
   979  )
   980  
   981  // date computes the year, day of year, and when full=true,
   982  // the month and day in which t occurs.
   983  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   984  	return absDate(t.abs(), full)
   985  }
   986  
   987  // absDate is like date but operates on an absolute time.
   988  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   989  	// Split into time and day.
   990  	d := abs / secondsPerDay
   991  
   992  	// Account for 400 year cycles.
   993  	n := d / daysPer400Years
   994  	y := 400 * n
   995  	d -= daysPer400Years * n
   996  
   997  	// Cut off 100-year cycles.
   998  	// The last cycle has one extra leap year, so on the last day
   999  	// of that year, day / daysPer100Years will be 4 instead of 3.
  1000  	// Cut it back down to 3 by subtracting n>>2.
  1001  	n = d / daysPer100Years
  1002  	n -= n >> 2
  1003  	y += 100 * n
  1004  	d -= daysPer100Years * n
  1005  
  1006  	// Cut off 4-year cycles.
  1007  	// The last cycle has a missing leap year, which does not
  1008  	// affect the computation.
  1009  	n = d / daysPer4Years
  1010  	y += 4 * n
  1011  	d -= daysPer4Years * n
  1012  
  1013  	// Cut off years within a 4-year cycle.
  1014  	// The last year is a leap year, so on the last day of that year,
  1015  	// day / 365 will be 4 instead of 3. Cut it back down to 3
  1016  	// by subtracting n>>2.
  1017  	n = d / 365
  1018  	n -= n >> 2
  1019  	y += n
  1020  	d -= 365 * n
  1021  
  1022  	year = int(int64(y) + absoluteZeroYear)
  1023  	yday = int(d)
  1024  
  1025  	if !full {
  1026  		return
  1027  	}
  1028  
  1029  	day = yday
  1030  	if isLeap(year) {
  1031  		// Leap year
  1032  		switch {
  1033  		case day > 31+29-1:
  1034  			// After leap day; pretend it wasn't there.
  1035  			day--
  1036  		case day == 31+29-1:
  1037  			// Leap day.
  1038  			month = February
  1039  			day = 29
  1040  			return
  1041  		}
  1042  	}
  1043  
  1044  	// Estimate month on assumption that every month has 31 days.
  1045  	// The estimate may be too low by at most one month, so adjust.
  1046  	month = Month(day / 31)
  1047  	end := int(daysBefore[month+1])
  1048  	var begin int
  1049  	if day >= end {
  1050  		month++
  1051  		begin = end
  1052  	} else {
  1053  		begin = int(daysBefore[month])
  1054  	}
  1055  
  1056  	month++ // because January is 1
  1057  	day = day - begin + 1
  1058  	return
  1059  }
  1060  
  1061  // daysBefore[m] counts the number of days in a non-leap year
  1062  // before month m begins. There is an entry for m=12, counting
  1063  // the number of days before January of next year (365).
  1064  var daysBefore = [...]int32{
  1065  	0,
  1066  	31,
  1067  	31 + 28,
  1068  	31 + 28 + 31,
  1069  	31 + 28 + 31 + 30,
  1070  	31 + 28 + 31 + 30 + 31,
  1071  	31 + 28 + 31 + 30 + 31 + 30,
  1072  	31 + 28 + 31 + 30 + 31 + 30 + 31,
  1073  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
  1074  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
  1075  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
  1076  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
  1077  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
  1078  }
  1079  
  1080  func daysIn(m Month, year int) int {
  1081  	if m == February && isLeap(year) {
  1082  		return 29
  1083  	}
  1084  	return int(daysBefore[m] - daysBefore[m-1])
  1085  }
  1086  
  1087  // daysSinceEpoch takes a year and returns the number of days from
  1088  // the absolute epoch to the start of that year.
  1089  // This is basically (year - zeroYear) * 365, but accounting for leap days.
  1090  func daysSinceEpoch(year int) uint64 {
  1091  	y := uint64(int64(year) - absoluteZeroYear)
  1092  
  1093  	// Add in days from 400-year cycles.
  1094  	n := y / 400
  1095  	y -= 400 * n
  1096  	d := daysPer400Years * n
  1097  
  1098  	// Add in 100-year cycles.
  1099  	n = y / 100
  1100  	y -= 100 * n
  1101  	d += daysPer100Years * n
  1102  
  1103  	// Add in 4-year cycles.
  1104  	n = y / 4
  1105  	y -= 4 * n
  1106  	d += daysPer4Years * n
  1107  
  1108  	// Add in non-leap years.
  1109  	n = y
  1110  	d += 365 * n
  1111  
  1112  	return d
  1113  }
  1114  
  1115  // Provided by package runtime.
  1116  func now() (sec int64, nsec int32, mono int64)
  1117  
  1118  // runtimeNano returns the current value of the runtime clock in nanoseconds.
  1119  //
  1120  //go:linkname runtimeNano runtime.nanotime
  1121  func runtimeNano() int64
  1122  
  1123  // Monotonic times are reported as offsets from startNano.
  1124  // We initialize startNano to runtimeNano() - 1 so that on systems where
  1125  // monotonic time resolution is fairly low (e.g. Windows 2008
  1126  // which appears to have a default resolution of 15ms),
  1127  // we avoid ever reporting a monotonic time of 0.
  1128  // (Callers may want to use 0 as "time not set".)
  1129  var startNano int64 = runtimeNano() - 1
  1130  
  1131  // Now returns the current local time.
  1132  func Now() Time {
  1133  	sec, nsec, mono := now()
  1134  	mono -= startNano
  1135  	sec += unixToInternal - minWall
  1136  	if uint64(sec)>>33 != 0 {
  1137  		// Seconds field overflowed the 33 bits available when
  1138  		// storing a monotonic time. This will be true after
  1139  		// March 16, 2157.
  1140  		return Time{uint64(nsec), sec + minWall, Local}
  1141  	}
  1142  	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
  1143  }
  1144  
  1145  func unixTime(sec int64, nsec int32) Time {
  1146  	return Time{uint64(nsec), sec + unixToInternal, Local}
  1147  }
  1148  
  1149  // UTC returns t with the location set to UTC.
  1150  func (t Time) UTC() Time {
  1151  	t.setLoc(&utcLoc)
  1152  	return t
  1153  }
  1154  
  1155  // Local returns t with the location set to local time.
  1156  func (t Time) Local() Time {
  1157  	t.setLoc(Local)
  1158  	return t
  1159  }
  1160  
  1161  // In returns a copy of t representing the same time instant, but
  1162  // with the copy's location information set to loc for display
  1163  // purposes.
  1164  //
  1165  // In panics if loc is nil.
  1166  func (t Time) In(loc *Location) Time {
  1167  	if loc == nil {
  1168  		panic("time: missing Location in call to Time.In")
  1169  	}
  1170  	t.setLoc(loc)
  1171  	return t
  1172  }
  1173  
  1174  // Location returns the time zone information associated with t.
  1175  func (t Time) Location() *Location {
  1176  	l := t.loc
  1177  	if l == nil {
  1178  		l = UTC
  1179  	}
  1180  	return l
  1181  }
  1182  
  1183  // Zone computes the time zone in effect at time t, returning the abbreviated
  1184  // name of the zone (such as "CET") and its offset in seconds east of UTC.
  1185  func (t Time) Zone() (name string, offset int) {
  1186  	name, offset, _, _, _ = t.loc.lookup(t.unixSec())
  1187  	return
  1188  }
  1189  
  1190  // ZoneBounds returns the bounds of the time zone in effect at time t.
  1191  // The zone begins at start and the next zone begins at end.
  1192  // If the zone begins at the beginning of time, start will be returned as a zero Time.
  1193  // If the zone goes on forever, end will be returned as a zero Time.
  1194  // The Location of the returned times will be the same as t.
  1195  func (t Time) ZoneBounds() (start, end Time) {
  1196  	_, _, startSec, endSec, _ := t.loc.lookup(t.unixSec())
  1197  	if startSec != alpha {
  1198  		start = unixTime(startSec, 0)
  1199  		start.setLoc(t.loc)
  1200  	}
  1201  	if endSec != omega {
  1202  		end = unixTime(endSec, 0)
  1203  		end.setLoc(t.loc)
  1204  	}
  1205  	return
  1206  }
  1207  
  1208  // Unix returns t as a Unix time, the number of seconds elapsed
  1209  // since January 1, 1970 UTC. The result does not depend on the
  1210  // location associated with t.
  1211  // Unix-like operating systems often record time as a 32-bit
  1212  // count of seconds, but since the method here returns a 64-bit
  1213  // value it is valid for billions of years into the past or future.
  1214  func (t Time) Unix() int64 {
  1215  	return t.unixSec()
  1216  }
  1217  
  1218  // UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
  1219  // January 1, 1970 UTC. The result is undefined if the Unix time in
  1220  // milliseconds cannot be represented by an int64 (a date more than 292 million
  1221  // years before or after 1970). The result does not depend on the
  1222  // location associated with t.
  1223  func (t Time) UnixMilli() int64 {
  1224  	return t.unixSec()*1e3 + int64(t.nsec())/1e6
  1225  }
  1226  
  1227  // UnixMicro returns t as a Unix time, the number of microseconds elapsed since
  1228  // January 1, 1970 UTC. The result is undefined if the Unix time in
  1229  // microseconds cannot be represented by an int64 (a date before year -290307 or
  1230  // after year 294246). The result does not depend on the location associated
  1231  // with t.
  1232  func (t Time) UnixMicro() int64 {
  1233  	return t.unixSec()*1e6 + int64(t.nsec())/1e3
  1234  }
  1235  
  1236  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1237  // since January 1, 1970 UTC. The result is undefined if the Unix time
  1238  // in nanoseconds cannot be represented by an int64 (a date before the year
  1239  // 1678 or after 2262). Note that this means the result of calling UnixNano
  1240  // on the zero Time is undefined. The result does not depend on the
  1241  // location associated with t.
  1242  func (t Time) UnixNano() int64 {
  1243  	return (t.unixSec())*1e9 + int64(t.nsec())
  1244  }
  1245  
  1246  const (
  1247  	timeBinaryVersionV1 byte = iota + 1 // For general situation
  1248  	timeBinaryVersionV2                 // For LMT only
  1249  )
  1250  
  1251  // MarshalBinary implements the encoding.BinaryMarshaler interface.
  1252  func (t Time) MarshalBinary() ([]byte, error) {
  1253  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
  1254  	var offsetSec int8
  1255  	version := timeBinaryVersionV1
  1256  
  1257  	if t.Location() == UTC {
  1258  		offsetMin = -1
  1259  	} else {
  1260  		_, offset := t.Zone()
  1261  		if offset%60 != 0 {
  1262  			version = timeBinaryVersionV2
  1263  			offsetSec = int8(offset % 60)
  1264  		}
  1265  
  1266  		offset /= 60
  1267  		if offset < -32768 || offset == -1 || offset > 32767 {
  1268  			return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
  1269  		}
  1270  		offsetMin = int16(offset)
  1271  	}
  1272  
  1273  	sec := t.sec()
  1274  	nsec := t.nsec()
  1275  	enc := []byte{
  1276  		version,         // byte 0 : version
  1277  		byte(sec >> 56), // bytes 1-8: seconds
  1278  		byte(sec >> 48),
  1279  		byte(sec >> 40),
  1280  		byte(sec >> 32),
  1281  		byte(sec >> 24),
  1282  		byte(sec >> 16),
  1283  		byte(sec >> 8),
  1284  		byte(sec),
  1285  		byte(nsec >> 24), // bytes 9-12: nanoseconds
  1286  		byte(nsec >> 16),
  1287  		byte(nsec >> 8),
  1288  		byte(nsec),
  1289  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
  1290  		byte(offsetMin),
  1291  	}
  1292  	if version == timeBinaryVersionV2 {
  1293  		enc = append(enc, byte(offsetSec))
  1294  	}
  1295  
  1296  	return enc, nil
  1297  }
  1298  
  1299  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
  1300  func (t *Time) UnmarshalBinary(data []byte) error {
  1301  	buf := data
  1302  	if len(buf) == 0 {
  1303  		return errors.New("Time.UnmarshalBinary: no data")
  1304  	}
  1305  
  1306  	version := buf[0]
  1307  	if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 {
  1308  		return errors.New("Time.UnmarshalBinary: unsupported version")
  1309  	}
  1310  
  1311  	wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2
  1312  	if version == timeBinaryVersionV2 {
  1313  		wantLen++
  1314  	}
  1315  	if len(buf) != wantLen {
  1316  		return errors.New("Time.UnmarshalBinary: invalid length")
  1317  	}
  1318  
  1319  	buf = buf[1:]
  1320  	sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
  1321  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
  1322  
  1323  	buf = buf[8:]
  1324  	nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
  1325  
  1326  	buf = buf[4:]
  1327  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
  1328  	if version == timeBinaryVersionV2 {
  1329  		offset += int(buf[2])
  1330  	}
  1331  
  1332  	*t = Time{}
  1333  	t.wall = uint64(nsec)
  1334  	t.ext = sec
  1335  
  1336  	if offset == -1*60 {
  1337  		t.setLoc(&utcLoc)
  1338  	} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
  1339  		t.setLoc(Local)
  1340  	} else {
  1341  		t.setLoc(FixedZone("", offset))
  1342  	}
  1343  
  1344  	return nil
  1345  }
  1346  
  1347  // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
  1348  // The same semantics will be provided by the generic MarshalBinary, MarshalText,
  1349  // UnmarshalBinary, UnmarshalText.
  1350  
  1351  // GobEncode implements the gob.GobEncoder interface.
  1352  func (t Time) GobEncode() ([]byte, error) {
  1353  	return t.MarshalBinary()
  1354  }
  1355  
  1356  // GobDecode implements the gob.GobDecoder interface.
  1357  func (t *Time) GobDecode(data []byte) error {
  1358  	return t.UnmarshalBinary(data)
  1359  }
  1360  
  1361  // MarshalJSON implements the [json.Marshaler] interface.
  1362  // The time is a quoted string in the RFC 3339 format with sub-second precision.
  1363  // If the timestamp cannot be represented as valid RFC 3339
  1364  // (e.g., the year is out of range), then an error is reported.
  1365  func (t Time) MarshalJSON() ([]byte, error) {
  1366  	b := make([]byte, 0, len(RFC3339Nano)+len(`""`))
  1367  	b = append(b, '"')
  1368  	b, err := t.appendStrictRFC3339(b)
  1369  	b = append(b, '"')
  1370  	if err != nil {
  1371  		return nil, errors.New("Time.MarshalJSON: " + err.Error())
  1372  	}
  1373  	return b, nil
  1374  }
  1375  
  1376  // UnmarshalJSON implements the [json.Unmarshaler] interface.
  1377  // The time must be a quoted string in the RFC 3339 format.
  1378  func (t *Time) UnmarshalJSON(data []byte) error {
  1379  	if string(data) == "null" {
  1380  		return nil
  1381  	}
  1382  	// TODO(https://go.dev/issue/47353): Properly unescape a JSON string.
  1383  	if len(data) < 2 || data[0] != '"' || data[len(data)-1] != '"' {
  1384  		return errors.New("Time.UnmarshalJSON: input is not a JSON string")
  1385  	}
  1386  	data = data[len(`"`) : len(data)-len(`"`)]
  1387  	var err error
  1388  	*t, err = parseStrictRFC3339(data)
  1389  	return err
  1390  }
  1391  
  1392  // MarshalText implements the [encoding.TextMarshaler] interface.
  1393  // The time is formatted in RFC 3339 format with sub-second precision.
  1394  // If the timestamp cannot be represented as valid RFC 3339
  1395  // (e.g., the year is out of range), then an error is reported.
  1396  func (t Time) MarshalText() ([]byte, error) {
  1397  	b := make([]byte, 0, len(RFC3339Nano))
  1398  	b, err := t.appendStrictRFC3339(b)
  1399  	if err != nil {
  1400  		return nil, errors.New("Time.MarshalText: " + err.Error())
  1401  	}
  1402  	return b, nil
  1403  }
  1404  
  1405  // UnmarshalText implements the [encoding.TextUnmarshaler] interface.
  1406  // The time must be in the RFC 3339 format.
  1407  func (t *Time) UnmarshalText(data []byte) error {
  1408  	var err error
  1409  	*t, err = parseStrictRFC3339(data)
  1410  	return err
  1411  }
  1412  
  1413  // Unix returns the local Time corresponding to the given Unix time,
  1414  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1415  // It is valid to pass nsec outside the range [0, 999999999].
  1416  // Not all sec values have a corresponding time value. One such
  1417  // value is 1<<63-1 (the largest int64 value).
  1418  func Unix(sec int64, nsec int64) Time {
  1419  	if nsec < 0 || nsec >= 1e9 {
  1420  		n := nsec / 1e9
  1421  		sec += n
  1422  		nsec -= n * 1e9
  1423  		if nsec < 0 {
  1424  			nsec += 1e9
  1425  			sec--
  1426  		}
  1427  	}
  1428  	return unixTime(sec, int32(nsec))
  1429  }
  1430  
  1431  // UnixMilli returns the local Time corresponding to the given Unix time,
  1432  // msec milliseconds since January 1, 1970 UTC.
  1433  func UnixMilli(msec int64) Time {
  1434  	return Unix(msec/1e3, (msec%1e3)*1e6)
  1435  }
  1436  
  1437  // UnixMicro returns the local Time corresponding to the given Unix time,
  1438  // usec microseconds since January 1, 1970 UTC.
  1439  func UnixMicro(usec int64) Time {
  1440  	return Unix(usec/1e6, (usec%1e6)*1e3)
  1441  }
  1442  
  1443  // IsDST reports whether the time in the configured location is in Daylight Savings Time.
  1444  func (t Time) IsDST() bool {
  1445  	_, _, _, _, isDST := t.loc.lookup(t.Unix())
  1446  	return isDST
  1447  }
  1448  
  1449  func isLeap(year int) bool {
  1450  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1451  }
  1452  
  1453  // norm returns nhi, nlo such that
  1454  //
  1455  //	hi * base + lo == nhi * base + nlo
  1456  //	0 <= nlo < base
  1457  func norm(hi, lo, base int) (nhi, nlo int) {
  1458  	if lo < 0 {
  1459  		n := (-lo-1)/base + 1
  1460  		hi -= n
  1461  		lo += n * base
  1462  	}
  1463  	if lo >= base {
  1464  		n := lo / base
  1465  		hi += n
  1466  		lo -= n * base
  1467  	}
  1468  	return hi, lo
  1469  }
  1470  
  1471  // Date returns the Time corresponding to
  1472  //
  1473  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1474  //
  1475  // in the appropriate zone for that time in the given location.
  1476  //
  1477  // The month, day, hour, min, sec, and nsec values may be outside
  1478  // their usual ranges and will be normalized during the conversion.
  1479  // For example, October 32 converts to November 1.
  1480  //
  1481  // A daylight savings time transition skips or repeats times.
  1482  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1483  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1484  // choice of time zone, and therefore the time, is not well-defined.
  1485  // Date returns a time that is correct in one of the two zones involved
  1486  // in the transition, but it does not guarantee which.
  1487  //
  1488  // Date panics if loc is nil.
  1489  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
  1490  	if loc == nil {
  1491  		panic("time: missing Location in call to Date")
  1492  	}
  1493  
  1494  	// Normalize month, overflowing into year.
  1495  	m := int(month) - 1
  1496  	year, m = norm(year, m, 12)
  1497  	month = Month(m) + 1
  1498  
  1499  	// Normalize nsec, sec, min, hour, overflowing into day.
  1500  	sec, nsec = norm(sec, nsec, 1e9)
  1501  	min, sec = norm(min, sec, 60)
  1502  	hour, min = norm(hour, min, 60)
  1503  	day, hour = norm(day, hour, 24)
  1504  
  1505  	// Compute days since the absolute epoch.
  1506  	d := daysSinceEpoch(year)
  1507  
  1508  	// Add in days before this month.
  1509  	d += uint64(daysBefore[month-1])
  1510  	if isLeap(year) && month >= March {
  1511  		d++ // February 29
  1512  	}
  1513  
  1514  	// Add in days before today.
  1515  	d += uint64(day - 1)
  1516  
  1517  	// Add in time elapsed today.
  1518  	abs := d * secondsPerDay
  1519  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1520  
  1521  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1522  
  1523  	// Look for zone offset for expected time, so we can adjust to UTC.
  1524  	// The lookup function expects UTC, so first we pass unix in the
  1525  	// hope that it will not be too close to a zone transition,
  1526  	// and then adjust if it is.
  1527  	_, offset, start, end, _ := loc.lookup(unix)
  1528  	if offset != 0 {
  1529  		utc := unix - int64(offset)
  1530  		// If utc is valid for the time zone we found, then we have the right offset.
  1531  		// If not, we get the correct offset by looking up utc in the location.
  1532  		if utc < start || utc >= end {
  1533  			_, offset, _, _, _ = loc.lookup(utc)
  1534  		}
  1535  		unix -= int64(offset)
  1536  	}
  1537  
  1538  	t := unixTime(unix, int32(nsec))
  1539  	t.setLoc(loc)
  1540  	return t
  1541  }
  1542  
  1543  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1544  // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
  1545  //
  1546  // Truncate operates on the time as an absolute duration since the
  1547  // zero time; it does not operate on the presentation form of the
  1548  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1549  // minute, depending on the time's Location.
  1550  func (t Time) Truncate(d Duration) Time {
  1551  	t.stripMono()
  1552  	if d <= 0 {
  1553  		return t
  1554  	}
  1555  	_, r := div(t, d)
  1556  	return t.Add(-r)
  1557  }
  1558  
  1559  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1560  // The rounding behavior for halfway values is to round up.
  1561  // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
  1562  //
  1563  // Round operates on the time as an absolute duration since the
  1564  // zero time; it does not operate on the presentation form of the
  1565  // time. Thus, Round(Hour) may return a time with a non-zero
  1566  // minute, depending on the time's Location.
  1567  func (t Time) Round(d Duration) Time {
  1568  	t.stripMono()
  1569  	if d <= 0 {
  1570  		return t
  1571  	}
  1572  	_, r := div(t, d)
  1573  	if lessThanHalf(r, d) {
  1574  		return t.Add(-r)
  1575  	}
  1576  	return t.Add(d - r)
  1577  }
  1578  
  1579  // div divides t by d and returns the quotient parity and remainder.
  1580  // We don't use the quotient parity anymore (round half up instead of round to even)
  1581  // but it's still here in case we change our minds.
  1582  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1583  	neg := false
  1584  	nsec := t.nsec()
  1585  	sec := t.sec()
  1586  	if sec < 0 {
  1587  		// Operate on absolute value.
  1588  		neg = true
  1589  		sec = -sec
  1590  		nsec = -nsec
  1591  		if nsec < 0 {
  1592  			nsec += 1e9
  1593  			sec-- // sec >= 1 before the -- so safe
  1594  		}
  1595  	}
  1596  
  1597  	switch {
  1598  	// Special case: 2d divides 1 second.
  1599  	case d < Second && Second%(d+d) == 0:
  1600  		qmod2 = int(nsec/int32(d)) & 1
  1601  		r = Duration(nsec % int32(d))
  1602  
  1603  	// Special case: d is a multiple of 1 second.
  1604  	case d%Second == 0:
  1605  		d1 := int64(d / Second)
  1606  		qmod2 = int(sec/d1) & 1
  1607  		r = Duration(sec%d1)*Second + Duration(nsec)
  1608  
  1609  	// General case.
  1610  	// This could be faster if more cleverness were applied,
  1611  	// but it's really only here to avoid special case restrictions in the API.
  1612  	// No one will care about these cases.
  1613  	default:
  1614  		// Compute nanoseconds as 128-bit number.
  1615  		sec := uint64(sec)
  1616  		tmp := (sec >> 32) * 1e9
  1617  		u1 := tmp >> 32
  1618  		u0 := tmp << 32
  1619  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1620  		u0x, u0 := u0, u0+tmp
  1621  		if u0 < u0x {
  1622  			u1++
  1623  		}
  1624  		u0x, u0 = u0, u0+uint64(nsec)
  1625  		if u0 < u0x {
  1626  			u1++
  1627  		}
  1628  
  1629  		// Compute remainder by subtracting r<<k for decreasing k.
  1630  		// Quotient parity is whether we subtract on last round.
  1631  		d1 := uint64(d)
  1632  		for d1>>63 != 1 {
  1633  			d1 <<= 1
  1634  		}
  1635  		d0 := uint64(0)
  1636  		for {
  1637  			qmod2 = 0
  1638  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1639  				// subtract
  1640  				qmod2 = 1
  1641  				u0x, u0 = u0, u0-d0
  1642  				if u0 > u0x {
  1643  					u1--
  1644  				}
  1645  				u1 -= d1
  1646  			}
  1647  			if d1 == 0 && d0 == uint64(d) {
  1648  				break
  1649  			}
  1650  			d0 >>= 1
  1651  			d0 |= (d1 & 1) << 63
  1652  			d1 >>= 1
  1653  		}
  1654  		r = Duration(u0)
  1655  	}
  1656  
  1657  	if neg && r != 0 {
  1658  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1659  		//	q*d + r = -t
  1660  		// But the right answers are given by -(q-1), d-r:
  1661  		//	q*d + r = -t
  1662  		//	-q*d - r = t
  1663  		//	-(q-1)*d + (d - r) = t
  1664  		qmod2 ^= 1
  1665  		r = d - r
  1666  	}
  1667  	return
  1668  }
  1669  

View as plain text