// run // Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package slices provides functions for basic operations on // slices of any element type. package main import ( "fmt" "math" "strings" ) type Ordered interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr | ~float32 | ~float64 | ~string } type Integer interface { ~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr } // Max returns the maximum of two values of some ordered type. func _Max[T Ordered](a, b T) T { if a > b { return a } return b } // Min returns the minimum of two values of some ordered type. func _Min[T Ordered](a, b T) T { if a < b { return a } return b } // _Equal reports whether two slices are equal: the same length and all // elements equal. All floating point NaNs are considered equal. func _Equal[Elem comparable](s1, s2 []Elem) bool { if len(s1) != len(s2) { return false } for i, v1 := range s1 { v2 := s2[i] if v1 != v2 { isNaN := func(f Elem) bool { return f != f } if !isNaN(v1) || !isNaN(v2) { return false } } } return true } // _EqualFn reports whether two slices are equal using a comparison // function on each element. func _EqualFn[Elem any](s1, s2 []Elem, eq func(Elem, Elem) bool) bool { if len(s1) != len(s2) { return false } for i, v1 := range s1 { v2 := s2[i] if !eq(v1, v2) { return false } } return true } // _Map turns a []Elem1 to a []Elem2 using a mapping function. func _Map[Elem1, Elem2 any](s []Elem1, f func(Elem1) Elem2) []Elem2 { r := make([]Elem2, len(s)) for i, v := range s { r[i] = f(v) } return r } // _Reduce reduces a []Elem1 to a single value of type Elem2 using // a reduction function. func _Reduce[Elem1, Elem2 any](s []Elem1, initializer Elem2, f func(Elem2, Elem1) Elem2) Elem2 { r := initializer for _, v := range s { r = f(r, v) } return r } // _Filter filters values from a slice using a filter function. func _Filter[Elem any](s []Elem, f func(Elem) bool) []Elem { var r []Elem for _, v := range s { if f(v) { r = append(r, v) } } return r } // _Max returns the maximum element in a slice of some ordered type. // If the slice is empty it returns the zero value of the element type. func _SliceMax[Elem Ordered](s []Elem) Elem { if len(s) == 0 { var zero Elem return zero } return _Reduce(s[1:], s[0], _Max[Elem]) } // _Min returns the minimum element in a slice of some ordered type. // If the slice is empty it returns the zero value of the element type. func _SliceMin[Elem Ordered](s []Elem) Elem { if len(s) == 0 { var zero Elem return zero } return _Reduce(s[1:], s[0], _Min[Elem]) } // _Append adds values to the end of a slice, returning a new slice. // This is like the predeclared append function; it's an example // of how to write it using generics. We used to write code like // this before append was added to the language, but we had to write // a separate copy for each type. func _Append[T any](s []T, t ...T) []T { lens := len(s) tot := lens + len(t) if tot <= cap(s) { s = s[:tot] } else { news := make([]T, tot, tot+tot/2) _Copy(news, s) s = news } _Copy(s[lens:tot], t) return s } // _Copy copies values from t to s, stopping when either slice is full, // returning the number of values copied. This is like the predeclared // copy function; it's an example of how to write it using generics. func _Copy[T any](s, t []T) int { i := 0 for ; i < len(s) && i < len(t); i++ { s[i] = t[i] } return i } func TestEqual() { s1 := []int{1, 2, 3} if !_Equal(s1, s1) { panic(fmt.Sprintf("_Equal(%v, %v) = false, want true", s1, s1)) } s2 := []int{1, 2, 3} if !_Equal(s1, s2) { panic(fmt.Sprintf("_Equal(%v, %v) = false, want true", s1, s2)) } s2 = append(s2, 4) if _Equal(s1, s2) { panic(fmt.Sprintf("_Equal(%v, %v) = true, want false", s1, s2)) } s3 := []float64{1, 2, math.NaN()} if !_Equal(s3, s3) { panic(fmt.Sprintf("_Equal(%v, %v) = false, want true", s3, s3)) } if _Equal(s1, nil) { panic(fmt.Sprintf("_Equal(%v, nil) = true, want false", s1)) } if _Equal(nil, s1) { panic(fmt.Sprintf("_Equal(nil, %v) = true, want false", s1)) } if !_Equal(s1[:0], nil) { panic(fmt.Sprintf("_Equal(%v, nil = false, want true", s1[:0])) } } func offByOne[Elem Integer](a, b Elem) bool { return a == b+1 || a == b-1 } func TestEqualFn() { s1 := []int{1, 2, 3} s2 := []int{2, 3, 4} if _EqualFn(s1, s1, offByOne[int]) { panic(fmt.Sprintf("_EqualFn(%v, %v, offByOne) = true, want false", s1, s1)) } if !_EqualFn(s1, s2, offByOne[int]) { panic(fmt.Sprintf("_EqualFn(%v, %v, offByOne) = false, want true", s1, s2)) } if !_EqualFn(s1[:0], nil, offByOne[int]) { panic(fmt.Sprintf("_EqualFn(%v, nil, offByOne) = false, want true", s1[:0])) } s3 := []string{"a", "b", "c"} s4 := []string{"A", "B", "C"} if !_EqualFn(s3, s4, strings.EqualFold) { panic(fmt.Sprintf("_EqualFn(%v, %v, strings.EqualFold) = false, want true", s3, s4)) } } func TestMap() { s1 := []int{1, 2, 3} s2 := _Map(s1, func(i int) float64 { return float64(i) * 2.5 }) if want := []float64{2.5, 5, 7.5}; !_Equal(s2, want) { panic(fmt.Sprintf("_Map(%v, ...) = %v, want %v", s1, s2, want)) } s3 := []string{"Hello", "World"} s4 := _Map(s3, strings.ToLower) if want := []string{"hello", "world"}; !_Equal(s4, want) { panic(fmt.Sprintf("_Map(%v, strings.ToLower) = %v, want %v", s3, s4, want)) } s5 := _Map(nil, func(i int) int { return i }) if len(s5) != 0 { panic(fmt.Sprintf("_Map(nil, identity) = %v, want empty slice", s5)) } } func TestReduce() { s1 := []int{1, 2, 3} r := _Reduce(s1, 0, func(f float64, i int) float64 { return float64(i)*2.5 + f }) if want := 15.0; r != want { panic(fmt.Sprintf("_Reduce(%v, 0, ...) = %v, want %v", s1, r, want)) } if got := _Reduce(nil, 0, func(i, j int) int { return i + j }); got != 0 { panic(fmt.Sprintf("_Reduce(nil, 0, add) = %v, want 0", got)) } } func TestFilter() { s1 := []int{1, 2, 3} s2 := _Filter(s1, func(i int) bool { return i%2 == 0 }) if want := []int{2}; !_Equal(s2, want) { panic(fmt.Sprintf("_Filter(%v, even) = %v, want %v", s1, s2, want)) } if s3 := _Filter(s1[:0], func(i int) bool { return true }); len(s3) > 0 { panic(fmt.Sprintf("_Filter(%v, identity) = %v, want empty slice", s1[:0], s3)) } } func TestMax() { s1 := []int{1, 2, 3, -5} if got, want := _SliceMax(s1), 3; got != want { panic(fmt.Sprintf("_Max(%v) = %d, want %d", s1, got, want)) } s2 := []string{"aaa", "a", "aa", "aaaa"} if got, want := _SliceMax(s2), "aaaa"; got != want { panic(fmt.Sprintf("_Max(%v) = %q, want %q", s2, got, want)) } if got, want := _SliceMax(s2[:0]), ""; got != want { panic(fmt.Sprintf("_Max(%v) = %q, want %q", s2[:0], got, want)) } } func TestMin() { s1 := []int{1, 2, 3, -5} if got, want := _SliceMin(s1), -5; got != want { panic(fmt.Sprintf("_Min(%v) = %d, want %d", s1, got, want)) } s2 := []string{"aaa", "a", "aa", "aaaa"} if got, want := _SliceMin(s2), "a"; got != want { panic(fmt.Sprintf("_Min(%v) = %q, want %q", s2, got, want)) } if got, want := _SliceMin(s2[:0]), ""; got != want { panic(fmt.Sprintf("_Min(%v) = %q, want %q", s2[:0], got, want)) } } func TestAppend() { s := []int{1, 2, 3} s = _Append(s, 4, 5, 6) want := []int{1, 2, 3, 4, 5, 6} if !_Equal(s, want) { panic(fmt.Sprintf("after _Append got %v, want %v", s, want)) } } func TestCopy() { s1 := []int{1, 2, 3} s2 := []int{4, 5} if got := _Copy(s1, s2); got != 2 { panic(fmt.Sprintf("_Copy returned %d, want 2", got)) } want := []int{4, 5, 3} if !_Equal(s1, want) { panic(fmt.Sprintf("after _Copy got %v, want %v", s1, want)) } } func main() { TestEqual() TestEqualFn() TestMap() TestReduce() TestFilter() TestMax() TestMin() TestAppend() TestCopy() }